2019-2020年高考数学一轮总复习第3章三角函数解三角形3.5两角和与差的正弦余弦和正切公式模拟演练课件文

合集下载

2019届高考数学一轮复习 第三章 三角函数、解三角形 第3讲 两角和与差的正弦、余弦和正切公式课件

2019届高考数学一轮复习 第三章 三角函数、解三角形 第3讲 两角和与差的正弦、余弦和正切公式课件

1100°°-sin
10°·cossin255°°-cossin52°5°=2csoisn 1100°°-sin
cos 10°·1
10°
2sin 10°
=2csoisn
1100°°-2cos
10°=cos
10°-2sin 2sin 10°
3 .
方法感悟 两角和与差的三角函数公式可看作是诱导公式的推广,可用α、 β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公 式时,特别要注意角与角之间的关系,完成统一角和角与角转换的 目的.
【针对补偿】
1.(2018·东北三校第二次联考)已知sin
α+cos
α=
1 3
,则
sin2π4-α=(
[解析]
tan α=tanα+π4-π4=t1a+ntαa+nα4π+-4π1=1.
[答案] 1
题型二 三角函数式的化简(基础保分题,自主练透)
例2
(1)若tan α=2tanπ5,则csoisnαα--13π50π等于(
)
A.1
B.2
C.3
D.4
(2)求值:1+2sicnos202°0°-sin
题型一 三角函数公式的应用(基础保分题,自主练透) 例1 (江苏卷)已知α∈π2,π,sin α= 55. (1)求sinπ4+α的值; (2)求cos56π-2α的值.
[解] (1)因为α∈π2,π,sin α= 55,
所以cos α=-
1-sin2α=-2
5
5 .
故sinπ4+α=sin
π 4cos
α=
π 2sinα±4.
3.角的变换技巧 α=(α+β)-β; α=β-(β-α); α=12[(α+β)+(α-β)]; β=12[(α+β)-(α-β)]; π4+α=π2-π4-α.

2019版高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理

2019版高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
运用多个公式解决含多个未知数的问题。
动态演示
结合动画演示,直观地呈现三角函数的计算过 程。
总结
1 重点内容概括
回顾本章重点内容,检 查概念与公式的掌握程 度。
2 解题方法总结
总结解题技巧和常用公 式,为下一步的练习做 好准备。
3 知识点巩固提示
练习做题、做笔记,多 次温习概念与公式,通 过追溯源头的方式加深 理解。
正弦、余弦、正切公式
正弦公式
三角形任意两边的比值相等,即a/sinA=b/sinB=c/sinC。
余弦公式
根据勾股定理和余弦函数,得到c²=a²+b²-2ab*cosC。
正切公式
将正弦公式与余弦公式相除得到tanA=a/b*tanC-b/a。
解题技巧
1
使用两角和/差公式
判断题中是否存在三角形两个角之和/
合理运用公式
2
差,使用对应的公式。
根据题目中所给的信息,选择合适的
公式,并化简,变形运用。
3注意化简Fra bibliotek将多个三角函数合并为一个统一的三 角函数,然后进行化简,避免表达式 过于复杂。
练习题
求第三个角度
已知三角形内两角的度数,求第三个角的度数。
求解三角形的边长
已知部分边长与角度,求解三角形剩余边长度。
复杂问题
数学一轮复习:三角函数 解三角形
本课件旨在帮助你理解三角形的两角和与差,掌握正弦、余弦、正切公式, 并运用解题技巧快速解决问题。
三角形的两角和与差
两角和公式
两个角的和为第三个角的补角,即A+B=180°-C, 其中C为第三个角的度数。
两角差公式
两个角的差的余角等于这两个角的余角之积,即 A-B=C-》sinA*sinB=sinC*sin(A+B)。

2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

3.5 两角和与差的正弦、余弦与正切公式[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·c os 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin 20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝⎛ π4-⎭⎪⎫β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223. 由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ( 2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z . ∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3,∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D.二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π, 所以cos(α+β)=-1-sin2α+β=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12,又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α = 1+34=72, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎪⎫2x -π3.令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a的取值范围.解 (1)f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6=(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6 =1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到.∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3.(2)由A =π3,得f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝⎛⎭⎪⎫3x +π3-12.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32,从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24.18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝⎛⎭⎪⎫x +3π4.(1)求函数f (x )的最小正周期和单调递增区间; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值. 解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x-cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6=2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2.∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.。

高考数学一轮复习 第三章 三角函数、解三角形 3-5 两角和与差的正弦、余弦与正切公式练习 文-人教

高考数学一轮复习 第三章 三角函数、解三角形 3-5 两角和与差的正弦、余弦与正切公式练习 文-人教

3-5 两角和与差的正弦、余弦与正切公式练习 文[A 组·基础达标练]1.化简cos15°cos45°-cos75°sin45°的值为( ) A.12B.32 C .-12D .-32答案 A解析 cos15°cos45°-cos75°sin45°=cos15°cos45°-sin15°·sin45°=cos(15°+45°)=cos60°=12.2.[2015·某某中学二调]3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin20°12sin20°=-4,故选D.3.[2016·某某四校联考]已知sin ⎝ ⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π3的值是( )A.12B.23 C .-12D .1答案 C解析 由已知得cos α=12,sin α=-32,cos ⎝ ⎛⎭⎪⎫α-π3=12cos α+32sin α=-12. 4.[2016·某某期末]tan π12-1tan π12等于( )A .4B .-4C .23D .-2 3 答案 D解析 ∵tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3·ta nπ4=3-11+3=2-3,∴tan π12-1tan π12=2-3-12-3=-2 3.5.[2015·某某监测]已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235C.45D .-45 答案 D解析 sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.6.[2015·某某一模]已知cos α=13,cos(α+β)=-13,且α,β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( )A .-12B.12C .-13D.2327答案 D解析 ∵α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-79,∴sin2α=1-cos 22α=429,而α,β∈⎝⎛⎭⎪⎫0,π2,∴α+β∈(0,π),∴sin(α+β)=1-cos2α+β=223, ∴cos(α-β)=cos[2α-(α+β)] =cos2αcos(α+β)+sin2αsin(α+β)=⎝ ⎛⎭⎪⎫-79×⎝ ⎛⎭⎪⎫-13+429×223=2327. 7.[2016·某某检测]在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C ,两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.8.[2016·日照一模]函数y =sin ⎝ ⎛⎭⎪⎫3x +π3·cos ⎝ ⎛⎭⎪⎫x -π6-cos ⎝ ⎛⎭⎪⎫3x +π3cos ⎝ ⎛⎭⎪⎫x +π3的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =-π12D .x =-π24答案 A解析 对函数进行化简可得y =sin ⎝⎛⎭⎪⎫3x +π3cos ⎝⎛⎭⎪⎫x -π6-cos ⎝⎛⎭⎪⎫3x +π3cos ⎝⎛x +π2⎭⎪⎫-π6=sin ⎝ ⎛⎭⎪⎫3x +π3cos ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫3x +π3· sin ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫3x +π3+x -π6=sin ⎝ ⎛⎭⎪⎫4x +π6, 则由4x +π6=k π+π2,k ∈Z ,得x =k π4+π12,k ∈Z . 当k =0时,x =π12.故选A.9.化简:sin50°(1+3tan10°)=________. 答案 1 解析sin50°(1+3tan10°)=sin50°⎝ ⎛⎭⎪⎫1+3·sin10°cos10°=sin50°×cos10°+3sin10°cos10°=sin50°×2⎝ ⎛⎭⎪⎫12cos10°+32sin10°cos10°=2sin50°·cos50°cos10°=sin100°cos10°=cos10°cos10°=1.10.[2015·某某摸底]已知tan(3π-α)=-12,tan(β-α)=-13,则tan β=________.答案 17解析 依题意得tan α=12,又tan(β-α)=-13,∴tan β=tan[(β-α)+α]=tan β-α+tan α1-tan β-α·tan α=17.11.[2014·某某高考]已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos2α=1-2sin 2α=1-2×⎝⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.12.[2015·某某模拟]已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝ ⎛⎭⎪⎫θ+π8的值.解 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2. 由题意知函数f (x )的最小正周期为π, ∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin2x +2cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65, ∴sin ⎝ ⎛⎭⎪⎫θ+π4=35,∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝⎛⎭⎪⎫θ+π4=-1-sin 2⎝⎛⎭⎪⎫θ+π4=-45,∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4cos π4-cos ( θ+π4 )sin π4=7210,∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos2θ=2(1-2sin 2θ)=2⎣⎢⎡⎦⎥⎤1-2×⎝⎛⎭⎪⎫72102=-4825. [B 组·能力提升练]1.设a =12cos6°-32sin6°,b =2tan13°1+tan 213°,c =1-cos50°2,则有() A .a >b >c B .a <b <c C .b <c <a D .a <c <b 答案 D 解析 a =12cos6°-32sin6°=sin24°,b =2tan13°1+tan 213°=sin26°,c =1-cos50°2=sin25°,所以b >c >a ,故选D. 2.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________. 答案17250解析 因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin2⎝ ⎛⎭⎪⎫α+π6=2425,cos2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6sin π4=2425×22-725×22=17250. 3.[2016·某某八校联考]如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.答案513解析 由题意得|OB |=|BC |=1,从而△OBC 为等边三角形,∴sin ∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,3cos 2α2-sin α2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎝ ⎛⎭⎪⎫α+2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫α+2π3=sin ⎝ ⎛⎭⎪⎫π3-α=513.4.[2015·某某二模]已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,函数f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求f (2B )的取值X 围.解 f (x )=3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. (1)由f (x )=1,可得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,则cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=2sin 2⎝ ⎛⎭⎪⎫x 2+π6-1=-12.(2)由余弦定理及a cos C +c2=b ,可得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12,∴A =π3,∴B +C =2π3.又∵△ABC 是锐角三角形,∴B ∈⎝ ⎛⎭⎪⎫π6,π2, ∴π3<B +π6<2π3,又f (2B )=sin ⎝ ⎛⎭⎪⎫B +π6+12,∴1+32<f (2B )≤32.∴f (2B )的取值X 围是⎝ ⎛⎦⎥⎤1+32,32.。

2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

(5)tan (α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan (α+β)=1t-antαan+αttaannββ(T(α+β)).
2.二倍角公式 (1)基本公式 ①sin 2α=2sin αcos α. ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
答案:C 【反思感悟】 理解数学文化内容,结合题目条件进行三角变换求值是关键.
【高分训练】
(2021 年泸州市模拟)《周髀算经》中给出了弦图,所谓弦图
是由四个全等的直角三角形和中间一个小正方形拼成
一个大的正方形,若图3-3-1中直角三角形两锐角分别
为α,β,且小正方形与大正方形面积之比为 9∶25,
答案:12
⊙三角变换与数学文化的创新问题 新高考数学考查的学科素养提炼为理性思维,数学应用,数 学探究和数学文化,其中数学文化作为素养考查的四大内涵之一, 以数学文化为背景的试题将是新高考的必考内容.
[例 4]公元前 6 世纪,古希腊的毕达哥拉斯学派研究过正五边 形和正十边形的作图方法,发现了黄金分割,其比值约为 0.618,
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
θ+cos θ)sin 2+2cos θ
2θ-cos
θ 2
=______.
解析:由 θ∈(0,π),得 0<2θ<π2, ∴cos 2θ>0,∴ 2+2cos θ= 4cos22θ=2cos2θ.
又(1+sin θ+cos θ)sin
解析:原式=1-cos22α-π3+1-cos 22α+π3-sin2α=1- 12cos2α-π3+cos 2α+π3-sin2α=1-cos2α·cos π3-sin2α=1- co2s2α-1-c2os 2α=12.

2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式

2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式

第三节两角和与差的正弦、余弦和正切公式1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 两角和与差的正弦、余弦、正切公式 1.基本公式sin(α±β)=________, cos(α±β)=________, tan(α±β)=________. 2.公式变形(1)tan α±tan β=________.(2)函数f(α)=asin α+bcos α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f(α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b .答案1.sin αcos β±cos αsin β cos αcos β∓sin αsin β tan α±tan β1∓tan αtan β2.(1)tan(α±β)(1∓tan αtan β)1.sin75°的值为________.解析:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=22×32+22×12=6+24. 答案:6+242.已知cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,则sin ⎝⎛⎭⎪⎫α+π3的值是____. 解析:∵cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=45,∴sin ⎝ ⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3=45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310.答案:4-33103.tan20°+tan40°+3tan20°tan40°=________. 解析:∵tan60°=tan(20°+40°)=tan20°+tan40°1-tan20°tan40°,∴tan20°+tan40°=tan60°(1-tan20°tan40°) =3-3tan20°tan40°,∴原式=3-3tan20°tan40°+3tan20°tan40°= 3. 答案: 3知识点二 二倍角的正弦、余弦、正切公式 1.基本公式 sin2α=________.cos2α=________=________=________. tan2α=________. 2.有关公式的逆用、变形等(1)cos 2α=________,sin 2α=________. (2)1+sin2α=(sin α+cos α)2, 1-sin2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 答案1.2sin αcos α cos 2α-sin 2α 2cos 2α-1 1-2sin 2α 2tan α1-tan 2α 2.(1)1+cos2α2 1-cos2α24.计算:tan7.5°1-tan 27.5°=________. 解析:tan7.5°1-tan 27.5°=12×2tan7.5°1-tan 27.5° =12tan15°=12tan(45°-30°) =12×tan45°-tan30°1+tan45°tan30°=12×1-331+33=2-32. 答案:2-325.(2016·浙江卷)已知2cos 2x +sin2x =Asin(ωx +φ)+b(A>0),则A =________,b =________. 解析:由于2cos 2x +sin2x =1+cos2x +sin2x =2sin(2x +π4)+1,所以A =2,b =1.答案: 2 1热点一 三角公式的正用与逆用【例1】 (1)化简:+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π);(2)求值:sin50°(1+3tan10°).【解】 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos2θ2=2cos θ2. 又(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ2=⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ2=2cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)sin50°(1+3tan10°) =sin50°(1+tan60°·tan10°)=sin50°·cos60°cos10°+sin60°sin10°cos60°cos10°=sin50°·cos 60°-10°cos60°cos10°=2sin50°cos50°cos10°=sin100°cos10°=cos10°cos10°=1.(1)求sin7°+cos15°sin8°cos7°-sin 15°sin8°的值;(2)求tan20°+4sin20°的值. 解:(1)原式 =-+cos15°sin8°--sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=1-331+33=3-13+1=2- 3. (2)原式=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°=sin20°+2sin40°cos20°=-++cos20°=32cos10°+32sin10°cos20°=332cos10°+12sin10°cos20°=3-cos20°= 3.热点二 三角函数式求值 考向1 给值求值【例2】 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.【解】 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050.1.在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.2.若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=35-131+35×13=29.考向2 给值求角【例3】 已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【解】 ∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.(1)(2016·新课标全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725B.15C .-15D .-725(2)已知cos α=-1213,cos(α+β)=17226,且α∈⎝ ⎛⎭⎪⎫π,3π2,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,求β的值. 解析:(1)因为cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin2α=1825,所以sin2α=-725,故选D. (2)解:∵π<α<3π2,3π2<α+β<2π,∴0<β<π.又cos α=-1213,cos(α+β)=17226,∴sin α=-513,sin(α+β)=-7226.cos β=cos[(α+β)-α]=17226×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-7226×⎝ ⎛⎭⎪⎫-513=-22,且0<β<π,所以β=3π4.答案:(1)D热点三 三角恒等变换的综合应用 【例4】 (2016·天津卷)已知函数 f(x)=4tanxsin ⎝⎛⎭⎪⎫π2-x cos ⎝⎛⎭⎪⎫x -π3- 3.(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性. 【解】 (Ⅰ)f(x)的定义域为{x|x≠π2+k π,k ∈Z}.f(x)=4tanxcosxcos ⎝⎛⎭⎪⎫x -π3- 3=4sinxcos ⎝ ⎛⎭⎪⎫x -π3-3=4sinx ⎝ ⎛⎭⎪⎫12cosx +32sinx - 3=2sinxcosx +23sin 2x -3=sin2x +3(1-cos2x)- 3 =sin2x -3cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以,f(x)的最小正周期T =2π2=π.(Ⅱ)令z =2x -π3,函数y =2sinz 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤2x-π3≤π2+2k π,得-π12+k π≤x≤5π12+k π,k ∈Z.设A =[-π4,π4],B ={x|-π12+k π≤x≤5π12+k π,k ∈Z},易知A∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f(x)在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝⎛⎭⎪⎫0,π2,求sin α的值. 解:(1)f(x)=cos2ωx +3sin2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6,由于直线x =π3是函数f(x)=2sin ⎝ ⎛⎭⎪⎫2ωx +π6的图象的一条对称轴,所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1.因此2π3ω+π6=k π+π2(k ∈Z),解得ω=32k +12(k ∈Z),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.由2k π-π2≤x+π6≤2k π+π2(k ∈Z),得2k π-2π3≤x≤2k π+π3(k ∈Z),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z).(2)由题意可得g(x)=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +2π3+π6,即g(x)=2cos x2,由g ⎝ ⎛⎭⎪⎫2α+π3=2cos ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫2α+π3=2cos ⎝ ⎛⎭⎪⎫α+π6=65,得cos ⎝ ⎛⎭⎪⎫α+π6=35, 又α∈⎝ ⎛⎭⎪⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6·cos π6-cos ⎝⎛⎭⎪⎫α+π6·sin π6=45×32-35×12=43-310.求值、化简、证明是三角函数中最常见的题型,其解题一般思路为“五遇六想”即:遇切割,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.“五遇六想”作为解题经验的总结和概括,操作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联系,促进转化),两种数学思想(转化思想和方程思想),三个追求目标(化为特殊角的三角函数值,使之出现相消项或相约项),三种变换方法(切割化弦法,消元降次法,辅助元素法).三角恒等变换中的解题策略三角恒等变换位于三角函数与数学变换的结合点,其公式多、变法活的特点使不少同学在学习此知识点时感到困难重重,力不从心.本文介绍了几种常用的三角恒等变换中的解题策略,旨在帮助大家全面、系统地了解和掌握三角变换中的常规思路与基本技巧,促进同学们的推理能力和运算能力的提升.策略1 从角入手,寻找关系好解题解有关三角函数的题目时,要特别注意角与角之间的关系,只要明确了其中的关系,解题就完成了一半.【例1】 已知α为锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin α=________. 【解析】 解法1:cos ⎝ ⎛⎭⎪⎫α+π6=32cos α-12sin α=35,①又sin 2α+cos 2α=1,② 由①可得cos 2α=13⎝⎛⎭⎪⎫sin α+652,代入②并整理得100sin 2α+60sin α-39=0, 解得sin α=43-310,或sin α=-43+310(舍).解法2:因为α为锐角,即α∈⎝⎛⎭⎪⎫0,π2,所以α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,则sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=45,所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=43-310.【答案】43-310【点评】 不少同学习惯用解法1,却往往因运算量大而出现了各种问题;解法2抓住了α=⎝ ⎛⎭⎪⎫α+π6-π6这一关系,减少了运算量,使求解轻松简捷. 策略2 从函数名入手,化切为弦助解题在有关三角函数的题目中,当正弦(余弦)与正切“相遇”时,可采用化切为弦的方法,即将正切转化为正弦(余弦).【例2】 求1+cos20°2sin20°-sin10°⎝ ⎛⎭⎪⎫1tan5°-tan5°.【解】 因为1tan5°-tan5°=cos5°sin5°-sin5°cos5°=cos 25°-sin 25°sin5°cos5°=2cos10°sin10°, 所以原式=2cos 210°4sin10°cos10°-sin10°·2co s10°sin10°=cos10°2sin10°-sin20°sin10°=cos10°2sin10°--sin10° =cos10°2sin10°-cos10°-3sin10°2sin10°=3sin10°2sin10°=32. 策略3 从结构入手,存同化异探思路三角恒等变换中的公式较多,每个公式都有其固有的结构.解题时要善于从结构入手,存同化异,寻求结构形式的统一.【例3】 (1)已知3sin β=sin(2α+β),α≠k π+π2,α+β≠k π+π2(k ∈Z).求证:tan(α+β)=2tan α;(2)已知cosxcosy =12,求sinxsiny 的取值范围. 【解】 (1)证明:由3sin β=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],即3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,整理可得sin(α+β)cos α=2cos(α+β)·sin α. 因为α≠k π+π2,α+β≠k π+π2(k ∈Z), 所以cos(α+β)·cos α≠0,则有tan(α+β)=2tan α.(2)设p =sinxsiny ,则cos(x -y)=cosxcosy +sinxsiny =12+p ,cos(x +y)=cosxcosy -sinxsiny =12-p. 因为|cos(x±y)|≤1, 所以-1≤12+p≤1,且-1≤12-p≤1, 解得-12≤p≤12. 【点评】 题(1)由条件向结论靠拢,从统一角的结构入手,顺利完成解题;题(2)从结构的相似(部分相似)展开联想,寻找解题突破口,亦成功解题.这两个方法都是值得重视的、从结构入手解题的常用方法.策略4 “先化简后求值”与“先局部后整体”“先化简后求值”本是初中数学中的一种题型,这里将其引申为一种解题策略.这种策略能简化解题过程,有事半功倍之功效;“先局部后整体”,则与之相反,虽其方法略显笨拙,但其逐个“击破”的策略却能降低解题难度,且解题方向明确,也是一个不错的思路.【例4】 已知0<x<π4,sin ⎝ ⎛⎭⎪⎫π4-x =513,求 cos2x cos ⎝ ⎛⎭⎪⎫π4+x 的值. 【解】 解法1(先化简后求值): 原式=cos 2x -sin 2x22-=2(cosx +sinx)=2cos ⎝ ⎛⎭⎪⎫π4-x , ∵0<x<π4,∴0<π4-x<π4, 则原式=21-sin 2⎝ ⎛⎭⎪⎫π4-x =2413. 解法2(先局部后整体):cos ⎝ ⎛⎭⎪⎫π4+x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-x =sin ⎝ ⎛⎭⎪⎫π4-x =513. 下面从两个角度求cos2x :角度1:cos2x =sin ⎝⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ; 角度2:cos2x =cos 2x -sin 2x =(cosx -sinx)·(cosx+sinx)=2sin ⎝ ⎛⎭⎪⎫π4-x ·2cos ⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x . ∵0<x<π4,∴0<π4-x<π4, 则cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213, 故cos2x =2×513×1213=120169. 所以cos2x cos ⎝ ⎛⎭⎪⎫π4+x =120169÷513=2413. 【点评】 采用“先化简后求值”解题简捷流畅,采用“先局部后整体”解题思路简单,条理清晰.两种方法各有千秋,都是值得我们重视的好方法.。

(浙江通用)高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式-

(浙江通用)高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式-

【步步高】(某某通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°等于( )A .1 B. 3 C. 2 D .2 答案 C解析 原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.2.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧sin α=31010,cos α=1010,故tan α=sin αcos α=-13或tan α=3,代入可得tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-131-⎝ ⎛⎭⎪⎫-132=-34, 或tan 2α=2tan α1-tan 2α=2×31-32=-34.3.(2015·某某)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56 答案 A解析 tan β=tan[(α+β)-α]=tan α+β-tan α1+tan α+βtan α=12-131+12×13=17.4.(教材改编)sin 347°cos 148°+sin 77°cos 58°=________. 答案22解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 5.(2015·某某质量检测)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.答案17250解析 ∵α为锐角,cos(α+π6)=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,∴cos(2α+π3)=2cos 2(α+π6)-1=725,∴sin(2α+π12)=sin(2α+π3-π4)=22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin α+π4=________.(2)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________. 答案 (1)-75 (2) 3解析 (1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231--32= 3.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35B.45 C .-35 D .-45(2)已知sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,则f ⎝⎛⎭⎪⎫α-π12=________________________. 答案 (1)A (2)36+4210解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵si n 2α+cos 2α=1,∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)∵sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,∴cos α=45,f ⎝⎛⎭⎪⎫α-π12=2sin ⎝⎛⎭⎪⎫α-π12+π4=2sin ⎝⎛⎭⎪⎫α+π6=2⎝ ⎛⎭⎪⎫sin αcos π6+cos αsin π6=36+4210. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A.2B.22C.12D.32(2)(2015·某某)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A .1B .2C .3D .4 答案 (1)B (2)C解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)] =sin 45°=22.故选B.(2)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4B.π3 C.π2D.3π4(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为( )A .2B .3C .2+3D .2- 3 答案 (1)A (2)B解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以A =π4.(2)f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎪⎫2x -π3+1,可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255 D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示:①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2等于( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝⎛⎭⎪⎫α+β2=13×33+223×63=539.4.三角函数求值忽视角的X 围致误典例 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,则cos(α+β)的值为________.(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A =________.易错分析 (1)角α2-β,α-β2的X 围没有确定准确,导致开方时符号错误.(2)对三角形中角的X 围挖掘不够,忽视隐含条件,B 为钝角. 解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53,sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459,∴cosα+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.(2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin2A +B =-53, ∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-34+23×74=35+2712. 答案 (1)-239729(2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的X 围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧] 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos2α2,1-cos α=2sin2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. [失误与防X]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的X 围.A 组 专项基础训练 (时间:30分钟)1. cos 85°+sin 25°cos 30°cos 25°等于( )A .-32B.22C.12D .1 答案 C解析 原式=sin 5°+32sin 25°cos 25°=sin 30°-25°+32sin 25°cos 25°=12cos 25°cos 25°=12.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45 C.74D.34答案 D解析 由sin 2θ=378和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.若tan θ=3,则sin 2θ1+cos 2θ等于( )A.3B .- 3C.33D .-33答案 A解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.4.若sin(π+α)=35,α是第三象限角,则sin π+α2-cos π+α2sin π-α2-cos π-α2等于() A.12B .-12C .2D .-2答案 B解析 sin π+α2-cos π+α2sin π-α2-cos π-α2=cos α2+sin α2cos α2-sin α2=⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2=cos 2α2+2sin α2cos α2+sin 2α2cos 2α2-sin 2α2=1+sin αcos α.∵sin(π+α)=-sin α=35,∴sin α=-35. ∵α是第三象限角,∴cos α=-45,故原式=1+⎝ ⎛⎭⎪⎫-35-45=-12.5.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4等于( )A.1318B.1322C.322D.16答案 C解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎪⎫β-π4, 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝ ⎛⎭⎪⎫β-π4 =tan α+β-tan ⎝ ⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322. 6.sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°21+sin 10°=1-cos 90°+10°21+sin 10°=1+sin 10°21+sin 10°=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.函数f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3的最大值为__________. 答案 1-32解析 ∵f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3=2cos x ⎝ ⎛⎭⎪⎫12sin x -32cos x =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, ∴f (x )的最大值为1-32. 9.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解 (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α =cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14, 即sin ⎝⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3 ∴cos ⎝⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3 =sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3 =12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.如图,已知单位圆上有四点E (1,0),A (cos θ,sin θ),B (cos 2θ,sin 2θ),C (cos3θ,sin 3θ),0<θ≤π3,分别设△OAC ,△ABC 的面积为S 1和S 2.(1)用sin θ,cos θ表示S 1和S 2;(2)求S 1cos θ+S 2sin θ的最大值及取最大值时θ的值. 解 (1)根据三角函数的定义,知∠xOA =θ,∠xOB =2θ,∠xOC =3θ,所以∠xOA =∠AOB=∠BOC =θ,所以S 1=12·1·1·sin(3θ-θ)=12sin 2θ. 因为S 1+S 2=S 四边形OABC=12·1·1·sin θ+12·1·1·sin θ=sin θ, 所以S 2=sin θ-12sin 2θ=sin θ(1-cos θ). (2)由(1)知S 1cos θ+S 2sin θ=sin θcos θcos θ+sin θ1-cos θsin θ =sin θ-cos θ+1=2sin ⎝⎛⎭⎪⎫θ-π4+1. 因为0<θ≤π3,所以-π4<θ-π4≤π12, 所以-22<sin ⎝⎛⎭⎪⎫θ-π4≤sin π12=6-24, 所以S 1cos θ+S 2sin θ的最大值为3+12,此时θ的值为π3. B 组 专项能力提升(时间:15分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos α-π4等于( )A .-255B .-3510C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,所以sin α=-1010. 故2sin 2α+sin 2αcos α-π4=2sin αsin α+cos α22sin α+cos α=22sin α =-255. 12.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C.2D. 3 答案 D解析 ∵α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14, ∴sin 2α+cos 2α-sin 2α=14, ∴cos 2α=14, ∴cos α=12或-12(舍去), ∴α=π3,∴tan α= 3. 13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝⎛⎭⎪⎫2α+π3=________. 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________. 答案 ± 3解析 f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4 =cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4 =2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝⎛⎭⎪⎫x +π4 =(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4. 依题意有2+a 2=2+3,∴a =± 3. 15.(2015·某某一模)已知函数f (x )=1-2sin ⎝⎛⎭⎪⎫x +π8 ·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π12,求函数f ⎝⎛⎭⎪⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8[sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8] =1-2sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π8cos ⎝⎛⎭⎪⎫x +π8 =cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝⎛⎭⎪⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π.(2)由(1)可知f ⎝ ⎛⎭⎪⎫x +π8=2cos ⎝⎛⎭⎪⎫2x +π4. 由于x ∈⎣⎢⎡⎦⎥⎤-π2,π12,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,5π12, 所以cos ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1,则f ⎝ ⎛⎭⎪⎫x +π8∈[-1,2],所以f ⎝ ⎛⎭⎪⎫x +π8的值域为[-1,2].。

高考数学一轮复习第三章三角函数解三角形3.5.2两角和差及倍角公式的应用理

高考数学一轮复习第三章三角函数解三角形3.5.2两角和差及倍角公式的应用理
cos(
x) x)
sin
2(
4
x)
4
1 1 sin 2 2 x来自22 2cos( x )
4 sin( x )
sin
2( 4
x)
4
1 cos22x 2 sin( 2x )
1 2
cos
2x.
2
答案: 1 c o s 2 x 2
4.(2016·武汉模拟)若 1tan 20 1 5 , 则 1tan2
1tan
co s 2
=
.
【解析】因为1 ta =n 2015, 1 tan
所以 c o s 1 2 ta n 2 1 c o s s in 2 2 1 c o s 2 2 s in s c in o s 2
( c o s s in ) 2 c o s s in 1 ta n 2 0 1 5 . ( c o s s in ) ( c o s s in )c o s s in 1 ta n
【规范解答】(1)方法一:(从“角”入手,倍角→单角)
原式=sin2α·sin2β+cos2α·cos2β- ·(21 cos2α-
1)·(2cos2β-1)
2
=sin2α·sin2β+cos2α·cos2β- (4cos2α·cos2β
1
-2cos2α-2cos2β+1)
2
=sin2α·sin2β-cos2α·cos2β+cos2α+cos2β- 1 2
sin[()]sin sin sin
【规律方法】 1.三角恒等变换的化简、求值问题的求解策略 (1)对于和、差式子,见到平方要降幂、消项、逆用公 式等. (2)对于分式,通分后分子分母化简时尽量出现约分的 式子,或逆用公式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=1+sin2A=53,所以 sinA+cosA=
15 3.
2.[2016·浙江舟山模拟]已知 α 是第二象限角,且 sin(π
+α)=-35,则 tan2α 的值为(
)
A.45
B.-273
C.274
D.-274
解析 sinα=35,cosα=-45,则 tanα=-34,所以 tan2α
=1- 2tatannα2α=-274.
)
A.π2
B.π
C.32π
D.2π
3sinx+cosx)(
3cosx-
解 析 ∵ f(x) = ( 3 sinx + cosx)( 3 cosx - sinx) =
4sinx+π6·cosx+π6=2sin2x+π3,∴T=22π=π,故选 B.
5.已知 sinα+ 2cosα= 3,则 tanα=(
所以 A=π-(B+C),
于是 cosA=-cos(B+C)=-cosB+4π =-cosBcosπ4+sinBsinπ4,
又 cosB=45,sinB=35,

cosA=-45×
2+3× 25
2=- 2
2 10 .
因为 0<A<π,所以 sinA= 1-cos2A=7102.


3sin20°=1.
8.[2016·浙江高考]已知 2cos2x+sin2x=Asin(ωx+φ)+ b(A>0),则 A=_____2___,b=_____1___.
解析 ∵2cos2x+sin2x=1+cos2x+sin2x= 2sin( 2x+
π 4
)+1,
∴A=
2,b=1.
9.已知函数 f(x)=cos4x-2sinxcosx-sin4x. (1)求 f(x)的最小正周期; (2)求 f(x)的单调区间; (3)若 x∈0,π2,求 f(x)的最大值及最小值.
14.[2017·四川检测]已知函数 f(x)=cosx·sin(x+π3)- 3 cos2x+ 43,x∈R.
(1)求 f(x)的最小正周期; (2)求 f(x)在闭区间-π4,π4上的最大值和最小值.
解 (1)由已知,有
f(x)=cosx·12sinx+ 23cosx-
解析 因为 θ 是第四象限角,且 sinθ+π4=35,所以 θ
+π4为第一象限角,所以
cos θ+π4 = 45, 所 以
tan

θ-

π 4

sinθ-π4

cosθ-
π 4
=-sicnosπ2+ 2π+θ- θ-π4π4 =-csoinsθθ+ +π4π4=-43.
)
A.
2 2
B. 2
C.-
2 2
D.- 2
解析 ∵sinα+ 2cosα= 3,∴(sinα+ 2cosα)2=3. ∴sin2α+2 2sinαcosα+2cos2α=3, ∴sin2α+2sin22sαin+αccooss2αα+2cos2α=3, ∴tan2α+ tan22α2+ta1nα+2=3, ∴2tan2α-2 2tanα+1=0,∴tanα= 22,故选 A.
1-2-18=34.
12.若 tanα=34,α 是第三象限角,则11- +ttaannα2α2=(
)
A.-12
B.12
C.2
D.-2
解析 由 tanα=34,α 是第三象限角,得 sinα=-35,cosα
=-45,所以11+ -ttaannα22α=ccoossα2α2- +ssiinnα2α2=
cosα2-sin
α2
2

cos2α+sinα2cosα2-sin2α
8 =1- cossiαቤተ መጻሕፍቲ ባይዱα=-54=-2.
5
13.[2016·全国卷Ⅰ]已知 θ 是第四象限角,且 sinθ+π4 =35,则 tanθ-π4=___-__43___.
3.已知 sinα=23,则 cos(π-2α)=(
)
A.-
5 3
B.-19
C.19
D.
5 3
解析 由诱导公式,得 cos(π-2α)= - cos2α. 因 为 cos2α=1-2sin2α=1-2×49=19,所以 cos(π-2α)=-19.
4.[2016·山东高考]函数 f(x)=(
sinx)的最小正周期是(
解 (1)f(x)=(cos2x-sin2x)(cos2x+sin2x)-sin2x=cos2x -sin2x= 2cos2x+π4,
所以最小正周期 T=22π=π.
(2)由 2kπ-π≤2x+π4≤2kπ,k∈Z, 得 kπ-58π≤x≤kπ-π8,k∈Z, 所以函数 f(x)的单调增区间为kπ-58π,kπ-18π(k∈Z). 由 2kπ≤2x+π4≤2kπ+π,k∈Z. 得 kπ-18π≤x≤kπ+38π,k∈Z, 所以函数 f(x)的单调减区间为kπ-18π,kπ+38π(k∈Z).
C.
7 4
D.34
解析 因为 θ∈π4,π2,所以 2θ∈π2,π,cos2θ<0,sinθ>0. 因为 sin2θ=3 8 7,
所以 cos2θ=- 1-sin22θ=- 又因为 cos2θ=1-2sin2θ,
1-3
8
72=-18.
所以 sinθ= 1-c2os2θ=
(3)因为 0≤x≤π2,所以π4≤2x+π4≤54π,

-1≤cos2x+
π4≤
22,-
2≤f(x)≤1.
所以当 x=0 时,f(x)有最大值为 1,
当 x=38π 时,f(x)有最小值为- 2.
10.[2016·江苏高考]在△ABC 中,AC=6,cosB=45,C =π4.
3
7.[2017·兰州模拟]计算:2sin50c°o-s203°sin20°=___1_____.
解析 原式=2sin30°+c2o0s2°0- ° 3sin20°
=2sin30°cos20°+2ccooss3200°°sin20°- 3sin20°
=cos20°+
3sin20°- cos20°
3cos2x+
3 4
=12sinx·cosx-
23cos2x+
3 4
=14sin2x-
43(1+cos2x)+
3 4
=14sin2x-
3 4 cos2x
=12sin2x-π3. 所以 f(x)的最小正周期 T=22π=π.
(2)由 x∈-π4,4π得 2x-π3∈-56π,π6, 则 sin2x-π3∈-1,21, 即函数 f(x)=12sin2x-π3∈-21,14. 所以函数 f(x)在闭区间-π4,4π上的最大值为14,最小值 为-12.
(1)求 AB 的长; (2)求 cosA-6π的值.
解 (1)因为 cosB=45,0<B<π,所以 sinB= 1-cos2B=
1-452=35.
由正弦定理知 AC = AB ,所以 sinB sinC
AB=ACsi·nsiBnC=6×3
2 2=
5
5 2.
(2)在△ABC 中,A+B+C=π,
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已

cos
A-π6

cosA
cos
π 6

sinAsin
π 6


2 10
×
3 2

7 2×1=7 10 2
2- 20
6 .
[B 级 知能提升](时间:20 分钟)
11.[2017·衡水模拟]若 θ∈π4,π2,sin2θ=38 7,则 sinθ
=(
)
A.35
B.45
2019/7/20
最新中小学教学课件
thank
you!
2019/7/20
最新中小学教学课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
6.[2016·全国卷Ⅲ]函数 y=sinx-π 3cosx 的图象可由函 数 y=2sinx 的图象至少向右平移____3____个单位长度得到.
解析 因为 y=sinx- 3cosx=2sinx-π3,所以函数 y =sinx- 3cosx 的图象可由函数 y=2sinx 的图象至少向右 平移π个单位长度得到.
板块四 模拟演练·提能增分
[A 级 基础达标](时间:40 分钟)
1.已知△ABC 的内角 A 满足 sin2A=23,则 sinA+cosA
相关文档
最新文档