江苏省泰兴中学高中数学 第1章 导数及其应用 13 应用导数解决实际问题(1)教学案(无答案)苏教版选修2-2
高中数学第一章导数及其应用导数在实际生活中的应用教案苏教版选修

x x x x 6060导数在实际生活中的应用【教学目标】1. 进一步熟练函数的最大值与最小值的求法;⒉ 初步会解有关函数最大值、最小值的实际问题.【教学重点、难点】解有关函数(如边际函数、边际成本)最大值、最小值的实际问题.【教学过程】一、复习引入:导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决.利用导数求函数的最值步骤:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[,]a b 上的最值.二、例题分析:例1、在边长为60cm 的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少?例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?b变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值?例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b .例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比)例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x ,(1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量)(2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?三、课堂小结(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.(3)相当多有关最值的实际问题用导数方法解决较简单四、课后作业。
江苏省泰兴中学导数及其应用多选题试题含答案

江苏省泰兴中学导数及其应用多选题试题含答案一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.3.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos x g x x x=-=-≤', 所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.4.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭. 【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>,可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根,等价于y k =和ln xy x=只有一个交点, 2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >, 知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误;对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立,即ln 1+≥x m x在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x -'=,令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.5.已知2()ln f x x x =,2()()f x g x x'=,()'f x 是()f x 的导函数,则下列结论正确的是( )A .()f x 在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增. B .()g x 在(0,)+∞上两个零点C .当120x x e <<< 时,221212()()()m x x f x f x -<-恒成立,则32m ≥D .若函数()()h x f x ax =-只有一个极值点,则实数0a ≥ 【答案】ACD 【分析】求出导函数()'f x ,由()0f x '>确定增区间,判断A ,然后可得()g x ,再利用导数确定()g x 的单调性与极值,结合零点存在定理得零点个数,判断B ,构造函数2()()x f x mx ϕ=-,由()ϕx 在(0,)e 上递减,求得m 范围,判断C ,利用导数研究()h x 的单调性与极值点,得a 的范围,判断D . 【详解】()(2ln 1)(0)f x x x x '=+>,令()0f x '>,得1212ln 10ln 2x x x e -+>⇒>-⇒>,故A 正确2ln 1()x g x x+=, 212ln ()x g x x -'=,令()0g x '>得121ln 2x x e <⇒<,()0g x '<得120x e <<,故()g x 在120,e ⎛⎫ ⎪⎝⎭上为减函数,在12e ⎛⎫+∞ ⎪⎝⎭上为增函数.当x →时,()g x →-∞;当x →+∞时,()0g x →且g()0x >()g x ∴的大致图象为()g x ∴只有一个零点,故B 错.记2()()x f x mx ϕ=-,则()ϕx 在(0,)e 上为减函数,()(2ln 1)20x x x mx ϕ'∴=+-≤对(0,)x e ∈恒成立22ln 1m x ∴≥+对(0,)x e ∈恒成立 23m ∴≥32m ∴≥. 故C 正确.2()()ln h x f x ax x x ax =-=-,()(2ln 1)h x x x a =+'-,设()(2ln 1)H x x x =+,()h x 只有一个极值点, ()h x '0=只有一个解,即直线y a =与()y H x =的图象只有一个交点.()2(ln 1)12ln 3H x x x '=++=+,()H x '在(0,)+∞上为增函数,令()0H x '=,得320x e -=,当0(0,)x x ∈时,()0H x '<;当0(,)x x ∈+∞时,()0H x '>.()H x ∴在0(0,)x 上为减函数,在0(,)x +∞上为增函数,332203()21202H x e e --⎡⎤⎛⎫=⨯-+=-< ⎪⎢⎥⎝⎭⎣⎦,0(0,)x x ∈时,322ln 12ln 120x e -+<+=-<,即()0H x <,且0x →时,()0H x →,又x →+∞时,()H x →+∞,因此()H x 的大致图象如下(不含原点):直线y a =与它只有一个交点,则0a ≥.故D 正确. 故选:ACD . 【点睛】关键点点睛:本题考查用导数研究函数的性质,解题关键是由导数确定函数的单调性,得出函数的极值,对于零点问题,需要结合零点存在定理才能确定零点个数.注意数形结合思想的应用.6.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( ) A .()()()m x f x g x =-在302x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1- D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey ex =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x+'∴=+=>, 当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误;对于D ,函数()f x 和()h x 的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线方程为(2ey k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R ),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.7.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.8.对于函数2ln ()xf x x =,下列说法正确的是( ) A .函数在x e =12eB .函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦C .()f x 有两个不同的零点D .(2))3)f f f π<<【答案】ABD 【分析】求导,利用导数研究函数的单调区间,进而研究函数的极值可判断A 选项,作出函数()f x 的抽象图像可以判断BCD 选项. 【详解】函数的定义域为()0,∞+,求导2431ln 212ln()x x xx x f x x x ⋅-⋅-'==, 令()0f x '=,解得:x e = x()0,ee(),e +∞ ()'f x+-()f x极大值所以当x e =时,函数有极大值()2fe e =,故A 正确;对于BCD ,令()0f x =,得ln 0x =,即1x =,当x →+∞时,ln 0x >,20x >,则()0f x >作出函数()f x 的抽象图像,如图所示:由图可知函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦,故B 正确;函数只有一个零点,故C 错误;又函数()f x 在),e +∞32e π<<<,则(2)3)f f f π<<,故D正确; 故选:ABD 【点睛】方法点睛:本题考查利用导数研究函数单调性,函数的极值,函数的值域,及求函数零点个数,求函数零点个数常用的方法:(1)方程法:令()0f x =,如果能求出解,有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图像与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图像的交点个数问题.先画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.。
高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用 第1课时 函数的单调性教案 新

江苏省铜山县高中数学第一章导数及其应用1.3.1 导数在研究函数中的应用第1课时函数的单调性教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中数学第一章导数及其应用1.3.1 导数在研究函数中的应用第1课时函数的单调性教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中数学第一章导数及其应用1.3.1 导数在研究函数中的应用第1课时函数的单调性教案新人教A版选修2-2的全部内容。
1。
3.1 导数在研究函数中的应用 第1课时 函数的单调性一、教学目标:1.会从几何直观了解可微函数的单调性与其导数之间的关系,并会灵活应用;2.会用导数判断或证明函数的单调性;3.通过对可微函数单调性的研究,加深学生对函数导数的理解,提高学生用导数解决实际问题的能力,增强学生数形结合的思维意识. 二、教学重点:正确理解“用导数法判别函数的单调性”的思想方法,并能灵活应用. 教学难点:灵活应用导数法去解决函数单调性的有关问题的能力,以及解题善于运用数形结合的思想方法.三、教学用具:多媒体四、教学过程1.复习引入问题1 对于函数34)(2+-==x x x f y ,利用函数单调性的定义讨论它在R 上的单调性.(此题是教科书中引例的变式.多媒体展示)教师引导学生独立完成,并请学生上台板演,以帮助学生复习函数单调性的有关知识.点评学生的解答后,展示教师的推演过程与函数图象,理清学生的思路.略解:对任意R 21∈<x x ,有)4)(()()(21212121-+-=-=-x x x x x f x f y y .当221<<x x 时,有021>-y y ,知)(x f 在其中是减函数;当212x x <<时,有021<-y y ,知)(x f 在其中是增函数.2.新授(多媒体画面中,问题1的解答消失,问题1与图形适当调整位置,并增加展示出图象上点))(,(00x f x 处的切线随0x 变化的动画.给出问题2)问题2 对于函数34)(2+-=x x x f ,它的增减性与函数图象在相应区间上的切线的斜率有何联系?从动画中学生不难看出:在区间),2(+∞内,函数为增函数,切线的斜率为正;在区间)2,(-∞内,函数为减函数,切线的斜率为负;在2=x 时,函数的切线的斜率为0.(画面中问题1、2与图形适当调整位置,给出问题3)问题 3 对于函数34)(2+-==x x x f y ,它的增减性与函数在相应区间上导数的正负符号有何联系?因函数在某点处的导数就是函数在该点的切线的斜率,或从动画中学生易知:函数在区间),2(+∞内导数为正;在区间)2,(-∞内导数为负;在2=x 时,函数的切线的斜率为0.分段展示结论:一般地,设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数;如果在某区间内恒有0)(='x f ,则)(x f 为常数.特别说明第三点:)(x f 在某区间内为常数,当且仅当0)(=x f 在该区间内“恒有”之时.否则可能只是“驻点”(曲线在该点处的切线与x 轴平行).3.例题与练习例1 (展示教科书上的例1)题解可引导学生自己完成,教师加以完善.然后向学生展示教师的书写格式与此函数的图象,使学生能清楚解题时应如何表达书写为好.最后可提示学生,)(,0)1(x f f ='在1=x 处改变了增减性,)(x f 改变了正负符号,为下一节的学习作铺垫.练习:教科书第134页练习1.学生独立完成并请上台板演.点评时注意学生的思路、符号、术语、书写格式是否合理.然后向学生展示教师的推演过程与函数的图象,以帮助学生理清思路.(解题过程略) 例2 (展示教科书上的例2)师生共同完成,展示教师的解答与此函数的图象,加深学生的理解.说明在1=x 和2=x 处函数改变增减性,导数为0.一是使学生能更清楚在何种情况下)(x f 为常数,而不是驻点;二是为下一节课学习函数的极值埋下伏笔.(解题过程略)特别说明:利用导数法去探讨可微函数的单调性,一般要比定义法简捷,提醒学生在以后解题时可多尝试使用此法.练习2教科书习题补充练习1函数53)(23--=x x x f 的单调递增区间是_____________.略解:由0)2(363)(2>-=-='x x x x x f ,得增区间为)0,(-∞与),2(+∞.补充练习2 已知函数31232)(23+-+=x x x x f ,则函数)(x f 在(-2,1)内是( )A .单调递减B .单调递增C .可能递增也可能递减D .以上都不成立略解:当)1,2(-∈x 时,有0)1)(2(6)(<-+='x x x f ,递减.故选A .补充练习3 已知函数x x x f ln )(=,则( )A .在),0(+∞上递增B .在),0(+∞上递减C .在⎪⎭⎫ ⎝⎛e 1,0上递增D .在⎪⎭⎫ ⎝⎛e 1,0上递减 略解:当⎪⎭⎫ ⎝⎛∈e x 1,0时,01ln )(<+='x x f ,递减.故选D . 补充练习4 函数1+-=x e y x 的递减区间是_______________.略解:要使01<-='x e y ,只需0<x ,故递减区间为)0,(-∞.补充练习 5 证明函数22x x y -=在区间(0,1)上单调递减,而在区间(1,2)上单调递增.略证:由)2(1x x x y --=',在(0,1)上0>'y ,增;在(1,2)上0<'y ,减. 补充练习6 讨论函数x x y sin 2-=在)2,0(π内的单调性.略解:因x y cos 21-=',由0>'y ,得353ππ<<x ,增.由0<'y ,得30π<<x ,ππ235<<x ,减.4.归纳小结(1)函数导数与单调性的关系:0)(>'x f 时,增函数;0)(<'x f 时,减函数.用导数去研究函数的单调性比用定义法更为简便.(2)本节课中,用导数方法去研究函数单调性问题是中心,灵活应用导数法去解题是目的,适当的见识与练习是达到目的最佳手段,数形结合是应使学生养成的良好思维习惯.五、布置作业教科书习题3。
江苏省泰州中学导数及其应用多选题试题含答案

江苏省泰州中学导数及其应用多选题试题含答案一、导数及其应用多选题1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.2.已知偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式中不成立的是( )A 34f ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭B 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫>- ⎪⎝⎭ D .63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭【答案】ABC 【分析】 构造函数()()cos f x g x x =,结合导数和对称性可知()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,即可得23643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可判断ABD 选项,由()04g g π⎛⎫< ⎪⎝⎭可判断C 选项.【详解】因为偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>,所以构造函数()()cos f x g x x =,则()()2cos sin ()0cos f x x f x x g x x'+'=>, ∴()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,32333cos 3f g g f πππππ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭∴-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4444cos 4f g g πππππ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,666cos 6f g f ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭== ⎪ ⎪⎝⎭⎝⎭,由函数单调性可知643g g g πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 对于AB,4343f f ππππ⎛⎫⎛⎫⎛⎫<=- ⎪ ⎪⎛⎫-= ⎪⎝⎭⎝⎭⎝ ⎪⎭⎭⎝,故AB 错误; 对于C ,()04g g π⎛⎫<⎪⎝⎭,()044f ππ⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,故C 错误; 对于D263f fππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 正确; 故选:ABC. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,解题的关键是利用已知条件构造对应的新函数()()cos f x g x x=,利用导数研究函数的单调性,从而比较大小,考查学生的逻辑推理能力与转化思想,属于较难题.3.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误. 【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.4.对于函数2ln ()xf x x =,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x在上为单调递增函数.当x >()0f x '<,故()f x在)+∞上为单调递减函数.所以()f x在x =12f e=,故A 正确;当0x <<()0f x '>,()f x在上为单调递增函数,因为()10f =,所以函数()f x在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x 在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x>-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解, 所以2ln 1()max x k x +<,设2ln 1()x g x x +=,则32ln 1()x g x x --'=,令()0g x '=,解得x=当x>()0f x '<,故()f x 在)+∞上为单调递减函数. 当0x<<时,()0f x '>,故()f x 在上为单调递增函数. 所以()22max e eg x g e ==-=. 故2ek <,故D 正确. 故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.6.关于函数()sin x f x e a x =+,(),x π∈-+∞,下列结论正确的有( ) A .当1a =时,()f x 在()0,(0)f 处的切线方程为210x y -+= B .当1a =时,()f x 存在惟一极小值点0x C .对任意0a >,()f x 在(),π-+∞上均存在零点 D .存在0a <,()f x 在(),π-+∞有且只有一个零点 【答案】ABD 【分析】逐一验证,选项A ,通过切点求切线,再通过点斜式写出切线方程;选项B ,通过导数求出函数极值并判断极值范围,选项C 、D ,通过构造函数,将零点问题转化判断函数的交点问题. 【详解】对于A :当1a =时,()sin xf x e x =+,(),x π∈-+∞,所以(0)1f =,故切点为()0,1,()cos x f x e x '=+,所以切线斜(0)2k f '==,故直线方程为()120y x -=-,即切线方程为:210x y -+=,故选项A 正确; 对于B :当1a =时,()sin xf x e x =+,(),x π∈-+∞,()cos x f x e x '=+,()()sin 0,,xf x e x x π''=->∈-+∞恒成立,所以()f x '单调递增,又202f π⎛⎫'=>⎪⎝⎭,334433cos 0442f e e ππππ--⎛⎫⎛⎫'-=+-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=, 即00cos 0xe x +=,则在()0,x π-上,()0f x '<,()f x 单调递减,在()0,x +∞上,()0f x '>,()f x 单调递增, 所以存在惟一极小值点0x ,故选项B 正确;对于 C 、D :()sin xf x e a x =+,(),x π∈-+∞,令()sin 0xf x e a x =+=得:1sin x x a e-=, 则令sin ()xxF x e =,(),x π∈-+∞,)cos sin 4()x x x x x F x e e π--'==,令()0F x '=,得:4x k ππ=+,1k ≥-,k Z ∈,由函数)4y x π=-图象性质知:52,244x k k ππππ⎛⎫∈++ ⎪⎝⎭)04x π->,sin ()x x F x e =单调递减,52,2244x k k πππππ⎛⎫∈+++ ⎪⎝⎭)04x π-<,sin ()x x F x e =单调递增,所以当524x k ππ=+,1k ≥-,k Z ∈时,()F x 取得极小值, 即当35,,44x ππ=-时,()F x 取得极小值, 又354435sin sin 44eeππππ-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭<<,即3544F F ππ⎛⎫⎛⎫-<< ⎪⎪⎝⎭⎝⎭,又因为在3,4ππ⎛⎫--⎪⎝⎭,sin ()xx F x e =单调递减,所以343()4F x F e ππ⎛⎫≥=⎪⎝⎭, 所以24x k ππ=+,0k ≥,k Z ∈时,()F x 取得极大值,即当944x ππ=、, 时,()F x 取得极大值. 又9449sin sin 44e e ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<<,即()442F x F e π⎛⎫≤=⎪⎝⎭当(),x π∈-+∞时,344()2e F x e π≤≤,所以当3412e a π-<-,即34a e π>时, ()f x 在(),π-+∞上无零点,所以选项C 不正确;当341e a π-=时,即4a e π=时, 1=-y a 与sin x xy e=的图象只有一个交点,即存在0a <,()f x 在(),π-+∞有且只有一个零点, 故选项D 正确. 故选:ABD 【点睛】本题考查函数的极值、切线、零点的问题,属于较难题.7.对于函数2ln ()x f x x =,下列说法正确的是( ) A.函数在x e =处取得极大值12e B .函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦ C .()f x 有两个不同的零点D .(2)()(3)f f f π<<【答案】ABD【分析】 求导,利用导数研究函数的单调区间,进而研究函数的极值可判断A 选项,作出函数()f x 的抽象图像可以判断BCD 选项.【详解】函数的定义域为()0,∞+,求导2431ln 212ln ()x x x x x f x x x ⋅-⋅-'==, 令()0f x '=,解得:x e =x()0,e e (),e +∞ ()'f x+ 0 - ()f x 极大值所以当x e =时,函数有极大值()2f e e=,故A 正确; 对于BCD ,令()0f x =,得ln 0x =,即1x =,当x →+∞时,ln 0x >,20x >,则()0f x >作出函数()f x 的抽象图像,如图所示:由图可知函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦,故B 正确;函数只有一个零点,故C 错误;又函数()f x 在),e +∞32e π<<<,则(2)3)f f f π<<,故D 正确;故选:ABD【点睛】方法点睛:本题考查利用导数研究函数单调性,函数的极值,函数的值域,及求函数零点个数,求函数零点个数常用的方法:(1)方程法:令()0f x =,如果能求出解,有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图像与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图像的交点个数问题.先画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210x f x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
江苏省泰州市泰州中学导数及其应用多选题试题含答案

江苏省泰州市泰州中学导数及其应用多选题试题含答案一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-<⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.已知函数()3sin f x x x ax =+-,则下列结论正确的是( )A .()f x 是奇函数B .当3a =-时,函数()f x 恰有两个零点C .若()f x 为增函数,则1a ≤D .当3a =时,函数()f x 恰有两个极值点【答案】ACD 【分析】利用函数奇偶性的定义可判断A 选项的正误;利用导数分析函数()f x 的单调性,可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;利用导数以及零点存在定理可判断D 选项的正误. 【详解】对于A 选项,函数()3sin f x x x ax =+-的定义域为R ,()()()()33sin sin f x x x ax x x ax f x -=-+-+=--+=-,函数()f x 为奇函数,A 选项正确;对于B 选项,当3a =-时,()3sin 3f x x x x =++,则()2cos 330f x x x '=++>,所以,函数()f x 在R 上为增函数,又()00f =,所以,函数()f x 有且只有一个零点,B 选项错误;对于C 选项,()2cos 3f x x x a '=+-,由于函数()f x 为增函数,则()0f x '≥对任意的x ∈R 恒成立,即23cos a x x ≤+. 令()23cos g x x x =+,则()6sin g x x x '=-,则()6cos 0g x x ''=->,所以,函数()g x '在R 上为增函数,当0x <时,()()00g x g ''<=,此时,函数()g x 为减函数; 当0x >时,()()00g x g ''>=,此时,函数()g x 为增函数. 所以,()()min 01g x g ==,1a ∴≤,C 选项正确;对于D 选项,当3a =时,()3sin 3f x x x x =+-,则()2cos 33f x x x '=+-.由B 选项可知,函数()f x '在(),0-∞上单调递减,在()0,∞+上单调递增,()()11cos10f f ''-==>,()020f '=-<,由零点存在定理可知,函数()f x '在()1,0-和()0,1上都存在一个零点, 因此,当3a =时,函数()f x 有两个极值点,D 选项正确. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.3.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2xx aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.4.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减 【答案】AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故1515y -≤≤,当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max y =B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.5.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( ) A .若0a ≤,则函数()f x 没有极值 B .若0a >,则函数()f x 有极值C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=,当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点, 当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减, 在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增, ∴当1x a=时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1a e=时,()f x 有且只有一个零点; 当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.已知函数()()2214sin 2xxex f x e -=+,则下列说法正确的是( )A .函数()y f x =是偶函数,且在(),-∞+∞上不单调B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2xx xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xx f x e x e'=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xxg x e x e =-+, 则1()+2cos 2+2cos 0x xg x e x x e '=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.7.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln x f x x =,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3e x y =D .1122y x =- 【答案】AB【分析】 根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解.【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,由函数()ln x f x x =,可得()21ln x f x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方;又由函数()1x g x e -=,可得()1e 0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合;设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为0201ln x k x -=, 又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x =,所以12k e ==,可得切线方程为2x y e =,又由直线3x y e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1, 明显不满足,排除D.故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.8.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t1,其中0<t1<1,由f(x)=t1∈(0,1),此时x只有1个解,即函数y=f[f(x)]+1有1个零点.故选:CD.【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。
江苏省泰兴中学高中数学 第1章 导数及其应用 17 导数

导数综合复习(3)【教学目标】1.理解导数的定义及其几何意义;2.掌握几种常见函数的求导公式及其函数的和、差、积、商的求导法则;3.能利用导数法解决函数的单调性问题、极值、最值问题 [基础训练]1、已知函数)(()(x f x f x y ''=其中的图象如右图所示是函数()f x 的导函数), 则函数)(x f y =的递增区间是2、已知正实数x, y 满足2242,x y x +=则22x y 的最大值是 .3、对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论, A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上 其中有且仅有一个结论是错误的,则函数解析式为 【典型例题】例1、已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性; (II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.例2、已知函数()x f e x x =-(e 为自然对数的底数),(Ⅰ)求()f x 的最小值; (Ⅱ)设不等式()f ax x >的解集为P ,且{}|02P x x ⊆≤≤,求实数a 的取值范围.例3、已知函数()1ln1xf x x+=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值.江苏省泰兴中学高二数学课后作业(38)班级: 姓名: 学号:1、函数22ln y x x =-的单调递增区间是 2、函数2x y xe-=的最大值为_________.3、设()f x 为三次函数,且图像关于原点对称,当x=1时函数有极小值-2, 则函数的解析式为____________4、设()sin f x x x =在0x x =处取得极值,则200(1)(1cos 2)x x ++的值为________.5、已知32()f x x ax bx c =+++的大致图象如图,则2212x x +的值是____________.6.设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是7.已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .8.设函数()2ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值; (2)证明:若()f x 存在零点,则()f x在区间(上仅有一个零点.9.已知()(1)ln 1f x x x x =+-+.(1)若2'()1xf x x ax ≤++,求a 的取值范围; (2)证明:(1)()0x f x -≥.10.设函数)10(3231)(223<<+-+-=a b x a ax x x f .(1)求f(x)的单调区间和极值; (2)当x ∈[a+1,a+2]时,恒有a x f ≤'|)(|,求实数a 的取值范围;(3)当32=a 时,关于x 的方程f(x)=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值范围.。
江苏高中数学第一章导数及其应用131单调性课件苏教版选修2

由于曲线 y=f(x)在(1,f(1))处的切线与 x 轴平行,
所以 f′(1)=0,因此 k=1.
(2)由(1)得 f′(x)=x1ex(1-x-xln x),x∈(0,+∞), 令 h(x)=1-x-xln x,x∈(0,+∞), 当 x∈(0,1)时,h(x)>0;当 x∈(1,+∞)时,h(x)<0. 又 ex>0,所以当 x∈(0,1)时,f′(x)>0; 当 x∈(1,+∞)时,f′(x)<0. 因此 f(x)的单调递增区间为(0,1), 单调递减区间为(1,+∞).
复习课件
江苏高中数学第一章导数及其应用1.3.1单调性课件苏教版选修2
2021/4/17
江苏高中数学第一章导数及其应用131单调性课件苏教版选 修2
1.3.1 单 调 性
[探究发现] 已知函数 y1=x,y2=x2,y3=1x. 问题 1:试作出上述三个函数的图象. 提示:图象为
问题 2:试根据上述图象说明函数的单调性. 提示:函数 y1=x 在 R 上为增函数, y2=x2 在(-∞,0)上为减函数,在(0,+∞)上为增函数, y3=1x在(-∞,0),(0,+∞)上为减函数.
令 f′(x)<0,即6x2x-1<0,
∵x>0,∴6x2-1<0,∴0<x<
6 6.
∴f(x)的单调递增区间为 66,+∞, 单调递减区间为0, 66.
(2)①当 a=0 时,f(x)=x2+1,其单调递减区间为(-∞, 0),单调递增区间为(0,+∞).
②当 a<0 时,f′(x)=-ax2+2x, f′(x)>0⇔(-ax+2)x>0⇔x-2ax>0⇔x>0 或 x<2a;f′(x)<0 ⇔2a<x<0. 故 f(x)的单调递增区间为-∞,2a和(0,+∞),单调递减 区间为2a,0.
高中数学第一章导数及其应用1.3导数在研究函数中的应用1.3.1函数的单调性与导数优化练习新人教A

2017-2018学年高中数学第一章导数及其应用1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数优化练习新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章导数及其应用1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数优化练习新人教A 版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章导数及其应用1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数优化练习新人教A版选修2-2的全部内容。
1。
3。
1 函数的单调性与导数[课时作业][A组基础巩固]1.函数f(x)=错误!的递减区间为()A.(3,+∞)B.(-∞,2)C.(-∞,2)和(2,3) D.(2,3)和(3,+∞)解析:函数f(x)的定义域为(-∞,2)∪(2,+∞).f′(x)=错误!=错误!.因为x∈(-∞,2)∪(2,+∞),所以e x>0,(x-2)2>0.由f′(x)<0得x〈3。
又定义域为(-∞,2)∪(2,+∞),所以函数f(x)的单调递减区间为(-∞,2)和(2,3).答案:C2.若f(x)=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是()A.a≥3 B.a=3C.a≤3 D.0<a<3解析:f′(x)=3x2-2ax,∵f′(x)在(0,2)内单调递减,∴错误!,∴错误!,∴a≥3.答案:A3.y=x ln x在(0,5)上是()A.单调递增函数B.单调递减函数C.在(0,错误!)上单调递减,在(错误!,5)上单调递增D.在(0,错误!)上单调递增,在(错误!,5)上单调递减解析:∵y′=x·错误!+ln x=1+ln x,令y′>0,得x>错误!,令y′〈0,得0〈x<错误!,故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用导数解决实际问题(1)
【教学目标】
1.培养读题能力,学会提取建模信息;
2.建立关于“利润最大”,“费用最省”等实际问题的数学模型;
3.学会解模并正确解答.
4.进一步体会导数的工具性作用,学以致用.
【问题引入】
1.在经济学中,生产x 单位产品的成本称为成本函数,记为)(x C ,出售x 单位产品的收益称为收益函数,记为)(x R ,)()(x C x R -称为利润函数,记为)(x P .
(1) 若10005003.010)(236++-=-x x x x C ,则生产多少单位产品时,边际成本)('x C 最低?
(2) 如果1000050)(+=x x C ,产品的单价x p 01.0100-=,那么怎样定价可使利润最大?
【典型例题】
1.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080
y x x x =
-+<≤已知甲.乙两地相距100千米.
(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
2.从旅游景点A 到B 有一条100km 的水路,某轮船公司开设一个游轮观光项目.已知游轮每小时使用的燃料费用与速度的立方成正比例,其他费用为每小时3240元,游轮最大时速为50km/h ,当游轮速度为10km/h 时,燃料费用为每小时60元,单程票价定为150元/人.
(1)若一艘游轮单程以40km/h 的速度航行,所载游客为180人,则轮船公司获利是多少?
(2)如果轮船公司要获取最大利润,游轮的航速为多少?
3.根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率p 与日产量x (件)之间近似地满足关系式
p =⎩⎪⎨⎪⎧ 215-x , 1≤x ≤9,x ∈N *,
x 2
+60540, 10≤x ≤20,x ∈N *.,已知每生产一件正品可赢利2千元,而生
产一件废品则亏损1千元.(日产品废品率=日废品量日产量
×100%,该车间的日利润y =日正品赢利额-日废品亏损额)
(1)将该车间日利润y (千元)表示为日产量x (件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?
江苏省泰兴中学高二数学课后作业(34)
班级: 姓名: 学号:
1.已知某厂生产某种产品x 件的总成本为32()120075
C x x =+(万元),且产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50万元,则产量定为 时总利润最大.
2.甲.乙两地相距1000km ,货车从甲地匀速行驶到乙地,速度不得超过80km/h ,已知货车每
小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的14
,固定成本为a 元.
(1)将全程运输成本y (元)表示为速度v (km/h)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大的速度行驶?
3.经销商用一辆J 型卡车将某种水果从果园运送(满载)到相距400km 的水果批发市场.据测算,J 型卡车满载行驶时,每100km 所消耗的燃油量u (单位:L)与速度v (单位:km/h)的关
系近似地满足u =⎩⎪⎨⎪⎧ 100v +23,0<v ≤50,
v 2500+20,v >50.除燃油费外,人工工资.车损等其他费用平均
每小时300元.已知燃油价格为7.5元/L.
(1)设运送这车水果的费用为y (元)(不计返程费用),将y 表示成速度v 的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?。