高考数学一轮复习第二章函数、导数及其应用第讲幂函数与二次函数习题(新)-课件
高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件

解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。
高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

_奇__函__数____
__非__奇__非__偶_ __函__数_____
__奇__函__数___
函数
单调 性
y=x
y=x2
y=x3
在__(_-__∞__,__0_) _
_在__R_上__单___ 上__单__调__递__减__,_ _在__R__上__单__ 调__递__增___ 在__(_0_,__+__∞__)上_ _调__递__增____
2
D.
52-1,2
【解析】 因为函数 y=x21的定义域为[0,+∞), 且在定义域内为增函数,
所以不等式等价于 2mm2++m1≥-01,≥0, 2m+1>m2+m-1。
解 2m+1≥0,得 m≥-12;
- 解 m2+m-1≥0,得 m≤
25-1或 m≥
52-1。
解 2m+1>m2+m-1,得-1<m<2,
1
(2)幂函数 y=x,y=x2,y=x3,y=x2,y=x-1 的图像与性质
函数
y=x
定义域
R
值域
R
奇偶性 _奇__函__数____
y=x2 R
_{_y_|y_≥__0_}_
_偶__函__数Biblioteka __y=x3y=x-1
R
__{x_|_x_≥__0_}_ _{_x_|x_≠__0_}__
R
__{_y|_y_≥__0_} __{_y_|y_≠__0_}_
解析 正确。由幂函数的图像可知。
(6)关于
x
的不等式
ax2+bx+c>0
a>0, 恒成立的充要条件是b2-4ac<0。
( × )解析 错误。当 a=0,b=0,c>0 时也恒成立。ax2+bx+c>0(a≠0)恒
高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。
栏
考情分析 1
(fēnxī)
目
基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破
导
梳理
航
4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
2024届高考数学一轮总复习第二章函数导数及其应用第四讲幂函数与二次函数课件

当 x=0 时,-3<0,符合题意;
当 x≠0 时,a<321x-312-61,
易得1x∈(-∞,-1]∪[1,+∞),所以当 x=1 时,右边取得 最小值12,所以 a<12.
综上,实数 a 的取值范围是-∞,21. 答案:-∞,21
答案:B
考向 2 二次函数的单调性 通性通法:处理函数的单调性问题要注意数形结合思想的应 用,尤其是求给定区间上的二次函数最值的问题,要先“定性” (作草图),再“定量”(看图求解).
[例 2](多选题)若函数 f(x)=(x-1)·|x+a|在区间(1,2)上单调递
增,则满足条件的实数 a 的值可能是( )
方法二(分离参数):当 x∈[1,3]时,f(x)<-m+5 恒成立, 即当 x∈[1,3]时,m(x2-x+1)-6<0 恒成立. ∵x2-x+1=x-122+34>0, 又 m(x2-x+1)-6<0, ∴m<x2-6x+1.
∵函数 y=x2-6x+1=x-1262+34在[1,3]上的最小值为67, ∴只需 m<67即可. 综上所述,m 的取值范围是-∞,67.
公共点
在(-∞,0]上单 在 R 上 在[0, 在(-∞,0)
调递减;在[0, 单调递 +∞)上 和(0,+∞)
+∞)上单调递增 增
单调递增 上单调递减
(1,1)
【名师点睛】巧记幂函数 y=xα的图象 五个幂函数在第一象限内的图象的大致情况可以归纳为“正 抛负双,大竖小横”,即α>0(α≠1)时的图象是抛物线型(α>1 时 的图象是竖直抛物线型,0<α<1 时的图象是横卧抛物线型), α<0 时的图象是双曲线型.K
高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数课件理北师大版

►考法 3 二次函数中的恒成立问题
【例 4】 (1)已知函数 f(x)=ax2-2x+2,若对一切 x∈12,2,f(x)>0 都成立,则实数 a 的取值范围为( )
A.12,+∞ C.[-4,+∞)
B.12,+∞ D.(-4,+∞)
(2)已知函数 f(x)=x2+mx-1,若对于任意 x∈[m,m+1],都有 f(x)<0
幂函数的图像及性质
1.幂函数 y=f(x)的图像经过点(3, 3),则 f(x)是( ) A.偶函数,且在(0,+∞)上是增函数 B.偶函数,且在(0,+∞)上是减函数 C.奇函数,且在(0,+∞)上是减函数 D.非奇非偶函数,且在(0,+∞)上是增函数
D
[设幂函数 f(x)=xα,则 f(3)=3α=
二次函数的图像与性质
►考法 1 二次函数的单调性
【例 2】 函数 f(x)=ax2+(a-3)x+1 在区间[-1,+∞)上是递减的,
则实数 a 的取值范围是( )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
D [当 a=0 时,f(x)=-3x+1 在[-1,+∞)上递减,满足题意. 当 a≠0 时,f(x)的对称轴为 x=3- 2aa, 由 f(x)在[-1,+∞)上递减知 a<0, 3- 2aa≤-1, 解得-3≤a<0. 综上,a 的取值范围为[-3,0].]
1
1
3.若(a+1)2<(3-2a)2,则实数 a 的取值范围是________.
-1,23
1
[易知函数 y=x2的定义域为[0,+∞),在定义域内为增函数,
a+1≥0, 所以3-2a≥0,
a+1<3-2a,
解之得-1≤a<23.]
高考数学大一轮复习 第二章 函数 2.4 幂函数与二次函数教案(含解析)-人教版高三全册数学教案

§2.4幂函数与二次函数考情考向分析以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为填空题,中档难度.1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y=x y=x2y=x312y x y=x-1图象性质定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)图象定义域R R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减对称性 函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0); (3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b24a.( × )(2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ ) (3)函数122yx 是幂函数.( × )(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当n <0时,幂函数y =x n是定义域上的减函数.( × ) 题组二 教材改编2.[P89练习T3]已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.答案 32解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝ ⎛⎭⎪⎫12α.∴k =1,α=12.∴k +α=32.3.[P40练习T3]已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值X 围是________. 答案 (-∞,-3]解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3. 题组三 易错自纠 4.幂函数21023a a f x x -+=(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a =________. 答案 5解析 因为a 2-10a +23=(a -5)2-2,2(5)2a f x x --=(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6, 又(a -5)2-2为偶数,所以只能是a =5.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减, ∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.已知幂函数223(22)n nf x n n x -=+-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 答案 1解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意.2.若四个幂函数y =x a,y =x b,y =x c,y =x d在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是________.(用“>”连接)答案 a >b >c >d解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d .3.若1133(1)(32)a a --+-,则实数a 的取值X 围是____________.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 解析 不等式1133(1)(32)a a --+-等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.4.已知幂函数f (x )=x α的部分对应值如下表,则不等式f (|x |)≤2的解集是________.x 112 f (x )122答案 [-4,4]解析 由题意知,22=⎝ ⎛⎭⎪⎫12α,∴α=12,∴f (x )=12x ,∴f (|x |)=12x ,由12x ≤2,得|x |≤4,故-4≤x ≤4.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1(1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2, ∴f (x )=x 2-2x +3.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x . 思维升华求二次函数解析式的方法跟踪训练1(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0), 又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线xf (x )的图象被x 轴截得的线段长为2,所以f (xf (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值X 围是________. 答案 [0,2]解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2), 则当f (m )≤f (0)时,有0≤m ≤2.命题点2 二次函数的单调性例3函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值X 围是________. 答案 [-3,0]解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值X 围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a=-1,∴a =-3.命题点3 二次函数的最值例4已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,某某数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题例5 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值X 围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1. (2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2. 思维升华解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值X 围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路的关键都是求函数的最值或值域. 跟踪训练2(1)(3-a )(a +6)(-6≤a ≤3)的最大值为________. 答案 92解析 易知函数y =(3-a )(a +6)的两个零点是3,-6,图象的对称轴为a =-32∈[-6,3],y =(3-a )(a +6)的最大值为y =⎝⎛⎭⎪⎫3+32·⎝⎛⎭⎪⎫-32+6=⎝ ⎛⎭⎪⎫922,则(3-a )(6+a )的最大值为92.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞),所以f (x )min f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由题意得a >2x -2x2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1, ∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.24m my x-=(m ∈Z )的图象如图所示,则m 的值为________.答案 2解析 ∵24m m y x -=(m ∈Z )的图象与坐标轴没有交点, ∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 2.若幂函数2268(44)m m f x m m x -+=-+在(0,+∞)上为增函数,则m 的值为________.答案 1解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.3.(2019·某某省某某中学月考)若函数f (x )=x 2-2ax -1在(-∞,5]上单调递减,则实数a 的取值X 围是________.答案 [5,+∞)解析 由题意可得--2a2≥5,解得a ≥5.4.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为________________. 答案 {x |x >4或x <0}解析 函数f (x )=ax 2+(b -2a )x -2b 为偶函数,则b -2a =0,故f (x )=ax 2-4a =a (x -2)(x +2),因为函数f (x )在(0,+∞)上单调递增,所以a >0.根据二次函数的性质可知,不等式f (2-x )>0的解集为{x |2-x >2或2-x <-2}={x |x <0或x >4}.5.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________.解析 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.6.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值X 围是________. 答案 (-∞,-2)解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2.7.已知f (x )=x 2,g (x )=12x ,h (x )=x -2,当0<x <1时,f (x ),g (x ),h (x )的大小关系是________________.答案 h (x )>g (x )>f (x )解析 分别作出f (x ),g (x ),h (x )的图象如图所示,可知h (x )>g (x )>f (x ).8.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________________.答案 f (x )=-4x 2-12x +40 解析 设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0), 方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 9.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值X 围是______.解析 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.10.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧ f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 11.已知函数22k k f x x -++=(k ∈Z )满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出q 的值;若不存在,请说明理由. 解 (1)∵f (2)<f (3),∴-k 2+k +2>0,解得-1<k <2.∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝ ⎛⎭⎪⎫2q -12q,4q 2+14q 处取得. 而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q≥0, ∴g (x )max =4q 2+14q =178, g (x )min =g (-1)=2-3q =-4.解得q =2.∴存在q =2满足题意. 12.(2018·某某省如皋中学考试)已知函数f (x )=x 2+bx +c 的图象与y 轴的交点坐标为(0,1),且满足f (1-x )=f (1+x ).(1)求f (x )的解析式;(2)设g (x )=x f (x ),m >0,求函数g (x )在[0,m ]上的最大值.解 (1)因为图象与y 轴的交点坐标为(0,1),所以c =1,因为f (1-x )=f (1+x ),所以函数f (x )的图象关于直线x =1对称,所以b =-2,所以f (x )=x 2-2x +1.(2)因为f (x )=x 2-2x +1=(x -1)2,所以g (x )=x |x -1|=⎩⎪⎨⎪⎧ x 2-x ,x ≥1,x -x 2,x <1.作出函数g (x )的图象如图所示.当0<m ≤12时,g (x )max =g (m )=m -m 2; 当12<m ≤1+22时,g (x )max =g ⎝ ⎛⎭⎪⎫12=14; 当m >1+22时,g (x )max =g (m )=m 2-m , 综上,g (x )max =⎩⎪⎨⎪⎧ m -m 2,0<m ≤12,14,12<m ≤1+22,m 2-m ,m >1+22.y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是________.(填序号)答案 ①④解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值X 围是________. 答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立, 即m <-⎝ ⎛⎭⎪⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,x ∈(1,2),则函数y =x +4x在x ∈(1,2)上是减函数. ∴4<y <5,∴-5<-⎝ ⎛⎭⎪⎫x +4x <-4, ∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧ m ≤-5,m ≤-4,即m ≤-5.15.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值X 围是__________. 答案 [-2,0]解析 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m 2≤0,即m ≤0; 当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m 2≤1,即m ≥-2. 综上,实数m 的取值X 围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由.解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧ f (-1)=-2,f (1)=2,得a =-1(舍去);当-1≤a ≤0时,由⎩⎪⎨⎪⎧ f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧ f (a )=-2,f (-1)=2,得a 不存在;综上可得,存在实数a 满足题目条件,a =-1.。
2020高考数学一轮复习第二章函数、导数及其应用第5讲幂函数与二次函数课件

[解析] (1)f(x)=x2-2x+5=(x-1)2+4≥4, ∴f(x)的最小值为4. (2)∵f(x)的对称轴为x=1,又1∈[-1,2], ∴f(x)min=f(1)=4,由二次函数的图象知,f(x)在[-1,1]上单调递减,在[1,2] 上单调递增.
又f(-1)=(-1)2-2×(-1)+5=8,f(2)=22-2×2+5=5,∴f(x)max=8, f(x)min=4.
(2)因为抛物线与x轴交于(-2,0),(4,0)两点,所以可设二次函数解析式为y = a(x + 2)(x - 4) , 又 因 为 二 次 函 数 图 象 过 点 (1,9) , 所 以 9 = a(1 + 2)(1 - 4) , 解 得:a=-1.所以所求函数解析式为:y=-(x+2)(x-4)=-x2+2x+8.
1.已知幂函数 f(x)=k·xα 的图象过点(12, 22),则 k+α=
(C)
A.12
B.1
C.32 [解析]
D.2 由幂函数的定义知 k=1.又 f(12)= 22,所以(12)a= 22,解得 α=12,从
而 k+α=32.
2.若幂函数的图象过点(2,14),则它的单调递增区间是
A.(0,+∞)
(3)∵f(x)的对称轴为 x=1. 当 t≥1 时,f(x)在[t,t+1]上单调递增, ∴f(x)min=f(t)=t2-2t+5, 当 t<1<t+1 即 0<t<1 时,f(x)在[t,1]上单调递减,在[1,t+1]上单调递增,∴ f(x)min=f(1)=12-2+5=4. 当 t+1≤1 即 t≤0,f(x)在[t,t+1]上单调递减,f(x)min=f(t+1)=t2+4.
B.[0,+∞)
C.(-∞,+∞)
2023版高考数学一轮总复习第二章函数导数及其应用第二讲函数的单调性与最值课件

3.判断并证明函数 f(x)=ax2+1x(其中 1<a<3)在 x∈[1,2] 上的单调性.
解:f(x)在[1,2]上单调递增,证明如下. 设 1≤x1<x2≤2,则 f(x2)-f(x1)=ax22+x12-ax21-x11= (x2-x1)ax1+x2-x11x2, 由 1≤x1<x2≤2,得 x2-x1>0,2<x1+x2<4,
所以 a=f-12=f52.
当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于 函数 f(x)在(1,+∞)上单调递减,所以 b>a>c.
答案:D
考向 2 解函数不等式 通性通法:求解含“f ”的函数不等式的解题思路 先利用函数的相关性质将不等式转化为 f(g(x))>f(h(x))
[例 2]已知函数 f(x)的图象向左平移 1 个单位长度后关
于 y 轴对称,当 x2>x1>1 时,[f(x2)-f(x1)]·(x2-x1)<0 恒成立,
设 a=f-12,b=f(2),c=f(3),则 a,b,c 的大小关系为(
)
A.c>a>b C.a>c>b
B.c>b>a D.b>a>c
解析:由于函数 f(x)的图象向左平移 1 个单位长度后 得到的图象关于 y 轴对称,故函数 y=f(x)的图象关于直线 x=1 对称,
A.对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1-x2)[f(x1)-f(x2)]>0,则函数 f(x)在区间 D 上单调递增
B.函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞) C.对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数 D.函数 y=f(x)在[1,+∞)上单调递增,则函数 f(x)是 增函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考数学一轮复习 第二章 函数、导数及其应用 第6讲 幂函数与二次函数习题A 组 基础巩固一、选择题1.已知幂函数f (x )=(n 2+2n -2)·xn 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为导学号 25400349( )A .-3B .1C .2D .1或2[答案] B[解析] 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1适合题意,故选B .2.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为导学号 25400350( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13[答案] A[解析] (排除法)若函数为偶函数,则f (-x )=f (x ),故排除选项B ,D .选项C 中y =x 2为偶函数,但在x ∈(0,+∞)上单调递增,不满足题意.故选A .3.如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是导学号 25400351( )A .a ≥8B .a ≤8C .a ≥4D .a ≥-4[答案] A[解析] 函数图象的对称轴为x =a 2,由题意得a2≥4,解得a ≥8.4.已知f (x )=x 12 ,若0<a <b <1,则下列各式中正确的是导学号 25400352( ) A .f (a )<f (b )<f (1a )<f (1b)B .f (1a )<f (1b)<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a)D .f (1a)<f (a )<f (1b)<f (b )[答案] C[解析] 因为函数f (x )=x 12 在(0,+∞)上是增函数, 又0<a <b <1b <1a,故选C .5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于导学号 25400353( )A .-1B .1C .2D .-2[答案] B[解析] ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得.∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1,或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1.6.若(2m +1)12 >(m 2+m -1)12 ,则实数m 的取值范围是导学号 25400354( ) A .(-∞,-5-12]B .[5-12,+∞) C .(-1,2) D .[5-12,2) [答案] D[解析] 因为函数y =x 12 的定义域为[0,+∞), 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1.解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12.解2m +1>m 2+m -1,得-1<m <2, 综上所述,5-12≤m <2. 二、填空题7.幂函数y =(m 2-m +1)x m 2-2m -3在区间(0,+∞)上单调递减,则实数m 的值为________.导学号 25400355[答案] 0或1[解析] 由幂函数在(0,+∞)上单调递减可得m 2-2m -3<0,解得-1<m <3.又m 2-m +1=1,解得m =1或m =0.故m 的值为0或1.8.对于任意实数x ,函数f (x )=(5-a )x 2-6x +a +5恒为正值,则a 的取值范围是________.导学号 25400356[答案] -4<a <4[解析] 由题意可得⎩⎪⎨⎪⎧5-a >0,36-4 5-a a +5 <0,解得-4<a <4.9.已知函数f (x )=x 2-2x +3在[0,a ](a >0)上的最大值是3,最小值是2,则实数a 的取值范围是________.导学号 25400357[答案] [1,2][解析] 由f (x )=3,解得x =0或x =2;由f (x )=2,解得x =1.由函数图象可得,a 的取值范围为[1,2].10.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1、x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.导学号 25400358[答案] 8[解析] 由题意可得,当x ∈[t -1,t +1]时,[f (x )max -f (x )min ]min ≥8,又在二次函数的图象上,区间[t -1,t +1]离对称轴越远,f (x )max -f (x )min 越大,所以当[t -1,t +1]关于对称轴对称时,f (x )max -f (x )min 取得最小值,即f (t +1)-f (t )=2at +a +20≥8,f (t -1)-f (t )=-2at +a -20≥8,两式相加,得a ≥8,所以实数a 的最小值为8.三、解答题11.已知幂函数f (x )=x(m 2+m )-1(m ∈N *).导学号 25400359(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[答案] (1)[0,+∞),增函数 (2)[1,32)[解析] (1)∵m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,∴m 2+m 为偶数,∴函数f (x )=x (m 2+m )-1 (m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)∵函数f (x )的图象经过点(2,2), ∴2=2 x(m 2+m )-1,即212 =2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1,f (x )=x 12 .又∵f (2-a )>f (a -1), ∴⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.导学号 25400360(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. [答案] (1)a =1,b =0或a =-1,b =3 (2)(-∞,2]∪[6,+∞)[解析] (1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f 3 =5,f 2 =2⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2⇒⎩⎪⎨⎪⎧a =1,b =0.当a <0时,f (x )在[2,3]上为减函数, 故⎩⎪⎨⎪⎧f 3 =2,f 2 =5⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0, 即f (x )=x 2-2x +2.g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.故m 的取值范围为(-∞,2]∪[6,+∞).B 组 能力提升1.已知函数f (x )=ax 2+2ax +b (1<a <3),且x 1<x 2,x 1+x 2=1-a ,则下列说法正确的是导学号 25400361( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小关系不能确定[答案] A[解析] 函数图象的对称轴为x =-1,而(x 1+1)+(x 2+1)=x 1+x 2+2=3-a >0,因为x 1<x 2,故x 2到对称轴的距离大,所以f (x 2)较大,故选A .2.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =导学号 25400362( )A .a 2-2a -16 B .a 2+2a -16 C .-16 D .16[答案] C[分析] 本题采用数形结合的方法,在同一坐标系中画出函数的图象,由图象求解. [解析] 令f (x )=g (x ),即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8,即x 2-2ax +a 2-4=0,解得x =a +2或x =a -2.f (x )与g (x )的图象如图.由图象及H 1(x )的定义知H 1(x )的最小值是f (a +2),H 2(x )的最大值为g (a -2),∴A -B =f (a +2)-g (a -2)=(a +2)2-2(a +2)2+a 2+(a -2)2-2(a -2)2+a 2-8=-16.3.(2015·湖南株洲教学质量统一检测一)如图所示,在第一象限内,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12 ,y =(32)x的图象上,且矩形的边分别平行两坐标轴.若点A 的纵坐标是2,则点D 的坐标是________.导学号 25400363[答案] (12,916)[解析] 由2=log22x 得点A (12,2),由2=x 12 得点B (4,2).因为(32)4=916,即点C (4,916),所以点D 的坐标为(12,916). 4.(2015·湖南衡阳上学期五校联考)已知二次函数f (x )=ax 2+bx +1(a >0),若f (-1)=0,且对任意实数x 均有f (x )≥0成立,设g (x )=f (x )-kx .导学号 25400364(1)当x ∈[-2,2]时,g (x )为单调函数,求实数k 的范围; (2)当x ∈[1,2]时,g (x )<0恒成立,求实数k 的范围. [答案] (1)k ≥6或k ≤-2 (2)k >92[解析] (1)∵f (-1)=0,∴a -b +1=0,b =a +1.又∵f (x )=ax 2+bx +1≥0(a >0),对任意实数x 成立,则Δ=b 2-4ac ≤0,即(a +1)2-4a ≤0,∴(a -1)2≤0,解得a =1,∴b =2,∴f (x )=x 2+2x +1.g (x )=f (x )-kx =x 2+(2-k )x +1.由题意g (x )在[-2,2]上是单调函数,则只需k -22≥2或k -22≤-2.解得k ≥6或k ≤-2.(2)g (x )=x 2+(2-k )x +1<0对x ∈[1,2]恒成立,则⎩⎪⎨⎪⎧g 1 <0,g 2 <0.解得k >92.5.(2015·湖南三校联考)已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.导学号 25400365(1)求函数f (x )的解析式;(2)设函数g (x )=14f (x )+ax 3+92x 2-b (x ∈R ),其中a ,b ∈R .若函数g (x )仅在x =0处有极值,求a 的取值范围.[答案] (1)f (x )=x 4(2)[-2,2][解析] (1)∵f (x )在区间(0,+∞)上是单调增函数, ∴-m 2+2m +3>0.即m 2-2m -3<0,∴-1<m <3,又m ∈Z .∴m=0,1,2,而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数,且在区间(0,+∞)上是单调增函数,∴f(x)=x4.(2)g′(x)=x(x2+3ax+9),显然x=0不是方程x2+3ax+9=0的根.为使g(x)仅在x=0处有极值,必须有x2+3ax+9≥0恒成立,即有Δ=9a2-36≤0,解不等式,得a∈[-2,2].这时,g(0)=-b是唯一极值.∴a∈[-2,2].。