2013学年第一学期初三数学质量检测试卷25题解答(长宁区)

合集下载

2013年上海市长宁区初中数学一模卷试题及参考答案

2013年上海市长宁区初中数学一模卷试题及参考答案

长宁区2012学年第一学期初三数学期终质量调研试卷(满分150分,考试时间100分钟)2013.1.16考生注意:1. 本试卷含三个大题,共25题;2. 考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。

一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1. 已知△ABC 中,︒=∠90C ,则cos A 等于( ) A.ABBCB.ACBCC.ACABD.ABAC2. 如图,在平行四边形ABCD 中,如果AB a = ,AD b =,那么a b + 等于( ) A .BDB .ACC .DBD .CA3. 如图,圆O 的弦AB 垂直平分半径OC ,则四边形OACB 一定是( ) A . 正方形 B .长方形 C . 菱形 D .梯形4. 已知抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,5. 如图,△ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG//BC ),若AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A.91 B.92 C.31 D.946.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)DCBA第2题图EHF GCBA 第5题图第3题图A .B . C. D .第14题图第17题图第12题图第16题图 EPDCBA的图像可能..是 ( )二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.已知实数x 、y 满足23=y x ,则=+y y x 22 . 8. 已知,两个相似的△ABC 与△DEF 的最短边的长度之比是3:1,若△ABC 的周长是27,则△DEF 的周长为 . 9. 已知△ABC 中,G 是△ABC 的重心,则=∆∆ABCABGS S . 10. 在直角坐标平面内,抛物线y =-x 2+2x +2沿y 轴方向向下平移3个单位后,得到新的抛物线解析式为 .11.在直角坐标平面内,抛物线y =-x 2+c 在y 轴 侧图像上升(填“左”或“右”). 12. 正八边形绕其中心至少要旋转 度,就能与原来的图形重合.13. 已知圆⊙O 的直径为10,弦AB 的长度为8,M 是弦AB 上一动点,设线段OM =d ,则d 的取值范围是 .14. 如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是 .15.已知两圆相切,圆心距为2 cm ,其中一个圆的半径是6 cm ,则另一个圆的半径是____ cm. 16.已知△ABC 中,AB=6,AC=9,D 、E 分别是直线AC 和AB 上的点,若ABAEAC AD =且AD=3,则BE= .17. 如图,已知Rt △ABC ,︒=∠90ACB ,︒=∠30B ,D 是AB 边上一点,△ACD 沿CD 翻折, A 点恰好落在BC 边上的E 点处,则EDB cot ∠= .18. 已知,二次函数f (x ) = ax 2 + bx + c 的部分对应值如下表,则f (- 3) = .三、解答题:(本大题共7题,第19--22题,每题10分;第23、24题,每题12分;25题14分;满分78分)19.计算:︒⋅︒+︒30345245tan -sin tan .20.如图,在正方形网格中,每一个小正方形的边长都是1,已知向量a 和b 的起点、终点都是小正方形的顶点.请完成下列问题:(1)设:()()b a b a m 41213143---=,()()b a b a n 3252635+-+=.判断向量n m 、是否平行,说明理由; (2)在正方形网格中画出向量:a b 234-,并写出a b 234- 的模.(不需写出做法,只要写出哪个向量是所求向量).21.如图,等腰梯形ABCD 中,AD//BC ,AB=CD ,AD =3,BC =7,∠B =45º, P 在BC 边上,E 在CD 边上,∠B =∠APE . (1)求等腰梯形的高; (2)求证:△ABP ∽△PCE.x -2 -1 0 1 2 3 4 5 y5-3-4-3512DE O AC BD C M A B O yx22.由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段。

2013年上海市中考数学试卷及答案

2013年上海市中考数学试卷及答案

1 / 122013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是( )AB; C; D2.下列关于x 的一元二次方程有实数根的是( ) A .210x +=; B .210x x ++=; C .210x x -+=; D .210x x --=.3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .()212y x =-+; B .()212y x =++; C .21y x =+; D .23y x =+.4.数据0,1,1,3,3,4的中位数和平均数分别是( ) A .2和2.4; B .2和2; C .1和2; D .3和2.5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且:3:5AD DB =,那么:CF CB 等于( )A .5:8;B .3:8;C .3:5;D .2:5.6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( ) A .BDC BCD ∠=∠; B .ABC DAB ∠=∠;C .ADB DAC ∠=∠;D .AOB BOC ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:21a -= .8.不等式组1023x x x->⎧⎨+>⎩的解集是 .9.计算:23b a a b⋅= . 10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面e 的概率是 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为 .15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,B F =C E ,A C ∥D F ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y (升)与行驶里程x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是 升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .3 / 1218.如图5,在△ABC 中,AB AC =,8BC =,32tanC =,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为 .三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)1910112π-⎛⎫-+ ⎪⎝⎭. 20.解方程组:22220x y x xy y -=-⎧⎨--=⎩. 21.已知平面直角坐标系xOy (如图6),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点()2,A t 在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值;(2)如果反比例函数k y x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图(1)所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图(2)所示,其示意图如图(3)所示,其中AB BC ⊥,EF ∥BC ,143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:370.60sin ≈,370.80cos ≈,370.75tan ≈.)23.如图8,在△ABC 中,90ACB ∠=,B A ∠>∠,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xOy 中,顶点为M 的抛物线()20y ax bx a =+>经过点A 和x 轴正半轴上的点B ,2AO BO ==,120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =.设AP x =,BQ y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F .如果4EF EC ==,求x 的值.2013年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、D ;3、C ;4、B ;5、A ;6、C二、 填空题7、(a+1)(a ﹣1); 8、x >1; 9、3b ; 10、2+ ; 11、1; 12、 ; 13、40%;14、;15、AC=DF;16、2;17、30°;18、.三、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB =OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,5 / 12则反比例解析式为y=.22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC ﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.7 / 1224.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,9 / 12∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.11 / 12∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.。

2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解

2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解

2023学年第一学期初三数学教学质量调研试卷(考试时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.512AC BC -= B.12AC AB -= C.512BC AB -= D.352BC AC =4.已知a为非零向量,且3a b =-,那么下列说法错误的是()A.13a b=-B.3b a = C.30b a += D.b a∥5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①②B.②③C.①③D.①②③二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.8.式子2cos30tan45︒-︒的值是______.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯13.已知向量a 与单位向量e 方向相反,且3a = ,那么a =____________________(用向量e 的式子表示)14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF ;(2)先化简,再求作:()()3222a b a b +-+(直接作在图中).21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.2023学年第一学期初三数学教学质量调研试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α【答案】B【分析】本题考查了锐角三角函数的定义的应用,主要考查学生的理解能力和计算能力.画出图形,根据锐角三角函数的定义求出即可.【详解】解:cot ACBCα=,∴cot cot AC BC a αα=⋅=⋅,故选:B .2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的【答案】D【分析】本题考查二次函数的性质、二次函数图象上点的坐标特征,根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确.【详解】解:∵抛物线223y x x =+-,∴20a =>,在对称轴左侧,该抛物线下降,在对称轴右侧上升,故选项A 、B 、C 均错误,不符合题意,选项D 正确,符合题意;故选:D .3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.12AC BC -= B.12AC AB -= C.12BC AB -= D.32BC AC =【答案】B【分析】本题考查黄金分割、解一元二次方程,把AB 当作已知数求出AC ,求出BC ,再分别求出各个比值,根据结果判断即可.【详解】解:令AC x =,()0AB a a =>,则BC a x =-,2AC BC AB =⋅可变形为()2x a x a =-⋅,整理,得220x ax a +-=,()2224150a a a ∆=-⨯⨯-=>,解得22a a x -±-±==,边长为正数,∴)122a a x --+==,)(1322a a a x a -=-=,即512AC AB -=⋅,352BC AB =⋅,∴23525112A ABC BC -⋅=+==,故A选项错误;122ABACABAB -==,故B选项正确;3322BC B B ABA A -==⋅,故C选项错误;251B ABC AC =-==,故D 选项错误;故选B .4.已知a 为非零向量,且3a b =- ,那么下列说法错误的是()A.13a b=-B.3b a= C.30b a += D.b a∥【答案】C【分析】本题考查了实数与向量相乘,向量的相关定义,根据其运算法则进行计算即可求解.【详解】解:A .∵a 为非零向量,且3a b =- ,∴13a b =- ,正确,故本选项不符合题意;B .∵a 为非零向量,且3a b =-,∴3b a = ,正确,故本选项不符合题意;C .∵a 为非零向量,且3a b =- ,∴30b a += ,原说法错误,故本选项符合题意;D .∵a 为非零向量,且3a b =-,∴b a ∥,故本选项不符合题意;故选:C .5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =【答案】C【分析】根据各个选项的条件只要能推出AD AE AB AC =或AB ACAD AE=,即可得出△ADE ∽△ABC ,推出∠ADE=∠B ,根据平行线的判定推出即可.【详解】解:A 、根据23AD BD =和23CE AE =,不能推出DE ∥BC ,故本选项错误;B 、根据23AD AB =和23DE BC =,不能推出DE ∥BC ,故本选项错误;C 、∵12EC AE =,∴32AC AE =,∵32AB AD =,∴AB AD =ACAE∵∠A=∠A ,∴△ABC ∽△ADE ,∴∠ADE=∠B ,∴DE ∥BC ,故本选项正确;D 、根据AB AD =43和AE EC =43,不能推出DE ∥BC ,故本选项错误;故选C .【点睛】本题考查了相似三角形的性质和判定,平行线的判定的应用,解题的关键是推出△ABC ∽△ADE .6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①② B.②③C.①③D.①②③【答案】A【分析】本题考查添加条件证明三角形相似,根据ADC △与'''A D C △相似,可得C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',再根据相似三角形的判定方法逐项判断即可.【详解】解: ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,∴C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',①AD A D ''、分别是ABC 与A B C ''' 的角平分线时:2BAC DAC ∠=∠,2B A C D A C ''''''∠=∠,∴BAC B A C '''∠=∠,又∴C C '∠=∠,∴ABC A B C '''∽ ;故①正确;②AD A D ''、分别是ABC 与A B C ''' 的中线时,2BC DC =,2B C D C ''''=,∴BC DCB C D C='''',∴AC BCA CBC ='''',又∴C C '∠=∠,∴ABC A B C '''∽ ;故②正确;③AD A D ''、分别是ABC 与A B C ''' 的高时,现有条件不足以证明ABC A B C '''∽ ,故③错误;综上可知,添加①或②时,可以证明ABC 与A B C ''' 相似故选A .二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.【答案】38【分析】本题考查的是比例的基本性质,令3x a =,则5y a =,然后化简整理即可求得.令3x a =,则5y a =,,()():33538x x y +=+=::,即可作答.【详解】解:根据题意,可令3x a =,则5y a =,因此,()():3353838x x y a a a a a +=+==:::.故答案为:38.8.式子2cos30tan45︒-︒的值是______.【答案】1-##1-【分析】直接将特殊角的三角函数值代入计算即可解答.【详解】解:32cos30tan452112︒-︒=⨯-=.1.【点睛】本题主要考查了三角函数的混合运算,牢记特殊角的三角函数值成为解答本题的关键.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .【答案】【详解】试卷分析:根据线段的比例中项的定义列式计算即可得解.∵线段a=3cm ,b=4cm ,∴线段a 、b 的比例中项=cm .故答案为考点:比例线段.10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.【答案】4∶9【详解】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.考点:相似三角形的性质.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.【答案】6【分析】根据平行线分线段成比例定理结合比例解答即可.【详解】解:∵////AB CD EF ,:2:3,AC CE =∴23BD AC DF CE ==∵10BF =∴31065DF =⨯=.故答案为6.【点睛】本题考查平行线分线段成比例定理,灵活应用平行线分线段成比例定理列出比例式是解答本题的关键.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x ⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯【答案】11-【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.利用表中数据确定抛物线的对称轴,然后根据抛物线的对称性求解.【详解】解:利用表中数据得抛物线的对称轴为直线2x =-,所以5x =-和1x =时的函数值相等,即当5x =-时,y 的值为11-.故答案为:11-.13.已知向量a 与单位向量e 方向相反,且3a = ,那么a = ____________________(用向量e 的式子表示)【答案】3e- 【分析】此题考查了平面向量的知识,由向量a 与单位向量e 方向相反,且3a = ,根据单位向量与相反向量的知识,即可求得答案.【详解】解:∵向量a 与单位向量e 方向相反,且3a = ,∴3a e =- .故答案为:3e - .14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.【答案】1:2.4【分析】本题考查坡度,先利用勾勾股定理求出水平距离,然后利用公式计算是解题的关键.【详解】解:如图,13AB =,5AE =,∴12BE ===,∴斜坡的坡度为i :5:121:2.4AE BE ===,故答案为:1:2.4.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.【答案】3011【分析】本题考查了相似三角形的判定和性质及矩形的性质,通过四边形EFGH 为矩形推出EH BC ,因此AEH 与ABC 两个三角形相似,将AM 视为AEH 的高,可得出::AM AD EH BC =,再将数据代入计算是本题的关键.【详解】解:设AD 与EH 交于点M .∵四边形EFGH 是矩形,∴EH BC ,∴AEH ABC ∽,∵AM 和AD 分别是AEH 和ABC 的高,∴::AM AD EH BC =,DM EF =,∴3AM AD DM AD EF EF =-=-=-,∵2EH EF =,代入可得:3235EF EF -=,解得1511EF =,∴153021111EH =⨯=,故答案为:3011.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.【答案】23【分析】延长CG 交AB 于F ,过G 作GD AC ⊥于G ,直线DG 交BC 于E ,证明DCE ACB ∽V V ,得CD DE AC AB =,同理可得DG CD CG GE AF AC CF BF ===,即有DE CG AB CF=,根据G 为ABC 的重心,3AC =,得2DE =,设tan ACG x ∠=,根据勾股定理列式计算53AG ===可得答案.【详解】解:过G 作GD AC ⊥于G ,延长CF 交AB 于点F ,如图:∵90GD AC BAC ⊥∠=︒,,∴DE AB ∥,90CDE BAC ==︒∠∠,∵DCE ACB ∠=∠,∴DCG ACF ∽,∴CD DG CG AC AF CF==,∵G 为ABC 的重心,∴23CD DG CG AC AF CF ===,∵3AC =,∴21CD AD ==,,∴2243DG AG AD =-=,则在直角三角形CDG 中,423tan 23DG ACG CD ∠===,故答案为:23【点睛】本题考查三角形的重心,涉及相似三角形的判定与性质,勾股定理,解直角三角形,难度较大,综合性较强,解题的关键是作辅助线,构造相似三角形.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.【答案】5【分析】本题考查相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程.如图,过过点A 作AF BC ⊥于点F .证明FAD FBA ∽,推出51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,构建方程求解.【详解】解:如图,过点A 作AF BC ⊥于点F .∵AB AC AD AE AF BC ==⊥,,,∴DF EF BF FC BAF CAF DAF EAF ==∠=∠∠=∠,,,,∵180BAC DAE ∠+∠=︒,∴22180BAF DAF ∠+∠=︒,∴90BAF DAF ∠+∠=︒,∵90BAF B ∠+∠=︒,∴∠=∠DAF B ,∵90AFD AFB ∠=∠=︒,∴FAD FBA ∽,∴51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,∵222AB AF BF =+,∴()()2221024x x =+,∴5x =,∴285BC BF x ===故答案为:85.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.【答案】46BP <<【分析】本题考查矩形的折叠问题,相似三角形的判定和性质等,计算出点Q 恰好落在AD 边上,以及点Q 恰好落在AC 边上时BP 的值,即可得出线段BP 的取值范围.【详解】解:当点C 的对应点Q 恰好落在AD 边上时,如图:由折叠的性质知CD QD =,CP QP =,90PQD PCD ∠=∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴四边形QDCP 是正方形,∴4CP CD AB ===,∴844BP BC CP AD CP =-=-=-=;当点C 的对应点Q 恰好落在AC 边上时,如图,由折叠的性质知PD CQ ⊥,∴90PDC ACD ∠+∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴90CAD ACD ∠+∠=︒,∴PDC CAD ∠=∠,又 90PCD CDA ∠=∠=︒,∴PDC CAD ∽,∴PC CD CD AD =,即448PC =,∴2PC =,∴826BP BC PC =-=-=,∴线段BP 的取值范围是46BP <<.故答案为:46BP <<.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.【答案】(1)该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--(2)(1,4)--【分析】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.(1)利用配方法把一般式化为顶点式,根据二次函数的性质写出抛物线的开口方向、对称轴和顶点坐标.(2)设平移后的抛物线解析式为22(1)y x =+1k -+,代入点(1,4),求得k 的值即可求解.【小问1详解】解:2241y x x =++()222121x x =++-+22(1)1x =+-,∴该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--;【小问2详解】设平移后的抛物线解析式为22(1)y x =+1k -+,∵新的抛物线经过点(1,4),∴24221k =⨯-+,解得3k =-,∴平移后的抛物线解析式为22(1)4y x =+-,∴平移后的抛物线的顶点坐标是(1,4)--.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF;(2)先化简,再求作:()()3222a b a b +-+ (直接作在图中).【答案】(1)1136a b - (2)12a b -- ,见详解【分析】本题主要考查平行四边形的性质、平行线分线段成比例定理和平面向量,()1根据题意得AD BC ∥和BC AD =,进一步得到AE EF BC FB =,则1132EF DA AB ⎛⎫=+ ⎪⎝⎭,代入向量即可.()2化解得12a b -- ,将对应线段代入得到()AB AE -+ ,过点E 作EG AB ∥,则AE BG = ,1=2a b GA -- ,连接GA 即可.【小问1详解】解:∵四边形ABCD 为平行四边形,∴AD BC ∥,BC AD =,∴AFE CFB ∽,则AE EF BC FB=,∵点E 是AD 的中点,∴12AE AD =,则12EF FB =,∴()1111123332EF FB EB EA AB DA AB ⎛⎫===+=+ ⎪⎝⎭ ,∵,AB a AD b == ,∴1111=3236EF b a a b ⎛⎫=-+- ⎪⎝⎭ .【小问2详解】()()3312223222a b a b a b a b a b +-+=+--=-- ,∵,AB a AD b == ,∴()1122a b AB AD AB AE AB AE --=--=--=-+ ,过点E 作EG AB ∥,则AE BG = ,∴()()1===2a b AB AE AB BG AG GA --=-+-+- ,如图,GA即为所求.21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.【答案】(1)3:4(2)1CF =【分析】本题考查了相似三角形的性质与判定、解直角三角形:(1)根据90BAD AC BC DE AC ∠=⊥︒⊥,,,得90AED ACB ∠=∠=︒,EAD ABC ∠=∠,证明AED BCA △∽△,结合相似三角形的性质,得:AD AB 的值;(2)根据相似三角形的性质且1tan 2BAC ∠=,得2BC =, 1.5AE =,再证明BCF DEF ∽,列式代数计算,即可作答.【小问1详解】解:∵90BAD AC BC DE AC∠=⊥︒⊥,,∴90AED ACB ∠=∠=︒,90BAC DAE BAC ABC∠+∠=︒=∠+∠∴EAD ABC ∠=∠,∴AED BCA△∽△则::3:4AD AB DE AC ==【小问2详解】解:如图:∵AED BCA △∽△,1tan 2BAC ∠=,∴11242BC BC BAC ADE AC ==∠=∠,,,∴2BC =,∴1tan 32AE AE ADE ED ∠===,得 1.5AE =,∴4 1.5 2.5EC AC AE =-=-=,∵AC BC DE AC ⊥⊥,,∴90BCF DEF ∠=∠=︒,∵BFC DFE ∠=∠,∴BCF DEF ∽,即BC CF DE EF=,∴23 2.5CF CF =-,解得1CF =.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)【答案】(1)90βα=︒-(2)()6.6米【分析】本题考查了解直角三角形−仰角俯角问题,列代数式,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)延长OD 交PK 于L ,根据题意可得:OL PK ⊥,从而可得:90OLP ∠=︒,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长GQ 交EF 于点M ,根据题意可得: 1.6GM EF GH QR MF ⊥===,米,10GQ HR ==米,然后设EM x =米,分别在Rt EGM 和Rt EQM 中,利用锐角三角函数的定义求出GM 和QM 的长,从而列出关于x 的方程,进行计算即可解答.【小问1详解】解:如图:延长OD 交PK 于L ,由题意得:OL PK ⊥,∴90OLP ∠=︒,∵POD α∠=,∴9090OPL POD α∠=︒-∠=︒-,∴90βα=︒-;【小问2详解】解:延长GQ 交EF 于点M ,由题意得: 1.610GM EF GH QR MF GQ HR ⊥=====,m,m ,设EM x =米,在Rt EGM 中,60GEM ∠=︒,∴tan60GM EM =⋅︒=(米),在Rt EQM 中,45QEM ∠=︒,∴45QM EM tan x =⋅︒=(米),∵GM QM GQ -=,10x -=解得:5x =∴()5EM =米,∴()5 1.6 6.6EF EM FM =+=+=米,∴大楼EF 的高度为()6.6+米.23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.【答案】(1)见解析(2)见解析【分析】本题主要考查相似三角形的判定和性质,等腰三角形的判定和性质:(1)根据等边对等角可得EDC ACB ∠=∠,再证这组夹角的两边成比例即可;(2)作DH CF ∥交AB 于点H ,可证BHD BFC ∽,AFE AHD ∽,推出12HD BD FC BC ==,12FE AE HD AD ==,进而可得4FC EF =,再根据ABC DCE ∽得出FBC FCB ∠=∠,推出CF BF =,等量代换可证4BF EF =.【小问1详解】证明: AD AC =,∴ADC ACD ∠=∠,即EDC ACB ∠=∠,又 点,D E 分别是,BC AD 的中点,∴12DC CB =,1122ED AD AC ==,∴12DC ED CB AC ==,∴AC ED CB DC=,∴ABC ECD ∽;【小问2详解】证明:如图,作DH CF ∥交AB 于点H ,DH CF ∥,∴BHD BFC ∠=∠,BDH BCF ∠=∠;AFE AHD ∠=∠,AEF ADH ∠=∠,∴BHD BFC ∽,AFE AHD ∽,又 点,D E 分别是,BC AD 的中点,∴12HD BD FC BC ==,12FE AE HD AD ==,∴2FC HD =,2HD FE =,∴4FC EF =,由(1)得ABC ECD ∽,∴ABC ECD ∠=∠,即FBC FCB ∠=∠,∴CF BF =,∴4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.【答案】(1)21262y x x =+-(2)①13②1532⎛⎫- ⎪⎝⎭,【分析】(1)先由一次函数求出()()6060A C --,,,,再运用待定系数法求二次函数解析式,即可作答.(2)①依题意,得DF CF ⊥,PE BC PDF ACB ∠=∠ ,,根据角的等量代换,即PDF OCB ∠=∠,先求出点B 的坐标.PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②先表达出21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,,23438EN p p -=,3EM p =-再根据相似三角形的性质与判定,列式化简计算,即可作答.【小问1详解】解:∵直线6y x =--经过点A 与点C则当06x y ==-,;06y x ==-,∴()()6060A C --,,,∴60186c b c =-⎧⎨=-+⎩,,解得62c b =-⎧⎨=⎩21262y x x =+-;【小问2详解】解:①如图:∵()()6060A C --,,,,且C F 、两点关于抛物线21262y x x =+-的对称轴对称,∴6F c y y ==-,221222b x a =-=-=-⨯则4F x =-∵DF CF⊥∴DF y ∥轴则FDC OCA∠=∠∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB∠=∠ ,则PDF OCB∠=∠∵21262y x x =+-x 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x =+-∴6x =-,2x =∴()20B ,∵PDF OCB∠=∠则PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②设21262P p p p ⎛⎫+- ⎪⎝⎭,,BC 的解析式为y mx n =+∴把()()0620C B -,,,代入y mx n =+得602n m n=-⎧⎨=+⎩解得63n m =-⎧⎨=⎩∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E∴设PE 的解析式为3y x b=+把21262P p p p ⎛⎫+- ⎪⎝⎭,代入3y x b =+得2162p p b =--∴21623y x p p =--+令0x =,2162p p y =--即21062E p p ⎛⎫-- ⎪⎝⎭,当261362y x y x p p =--⎧⎪⎨=+--⎪⎩解得21184x p p +=-则把21184x p p +=-代入21623y x p p =--+得211684y p p =--∴22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,∵过点P 作PM y ⊥轴,过点D 作DN y ⊥轴,∴EDN EPM∽∴EN DE EM EP=∵:3:5PD DE =∴58EN EM =∶∶∵21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,∴222111336628484EN p p p p p p ⎛⎫=-----=- ⎪⎝⎭,2211626322EM p p p p p ⎛⎫=---+-=- ⎪⎝⎭∴23358348p p p --=∶∶解得1103p p ==-,∵点P 在线段AC 下方的抛物线上,∴10p =(舍去)∴3p =-.把3p =-代入21262y p p =+-∴19241592362222y =⨯-⨯-=-=∴点P 的坐标1532⎛⎫- ⎪⎝⎭,【点睛】本题考查了二次函数的几何综合,相似三角形的判定与性质,解直角三角形,勾股定理等,综合性强,难度较大,正确掌握相关性质内容是解题的关键.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.【答案】(1)10(2)278(3)325【分析】(1)证明ABG CAB ∽ ,再根据相似三角形的性质,等腰三角形的判定与性质,即可得到答案;(2)过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,先证明ABF DCE ∽ ,进一步求得6BD =,接着利用面积法证明4=3AF DF ,设4AF x =,证明FAG EAD ∽ ,求得3221FG =,即可进一步求得答案;(3)先证明CDE CBG ∽ ,可得32CD CE =,再利用等腰三角形的判定与性质以及平行线的性质逐步求得43FG =,最后证明AFG ADE ∽ ,进一步求出125CE =,即可得到答案.【小问1详解】BG 平分ABC ∠,22ABC ABG GBC ∴∠=∠=∠,2ABC C ∠=∠ ,ABG C GBC ∴∠=∠=∠,BAG CAB ∠=∠ ,ABG ACB ∴∽ ,AB AG BG AC AB CB ∴==,16838BG AC CB ∴==,12AC ∴=,32BC BG =,16201233CG AC AG ∴=-=-=,C GBC ∠=∠ ,203BG CG ∴==,3102BC BG ∴==;【小问2详解】过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,ADE ABC ∠=∠ ,ADE CDE ABC FAB ∠+∠=∠+∠,FAB EDC ∴∠=∠,又ABG C ∠=∠ ,ABF DCE ∴∽ ,AB AF BF CD DE CE∴==,2BF CE = ,142CD AB ∴==,2AF DE =,1046BD BC CD ∴=-=-=,BG 平分ABC ∠,FM FN ∴=,142132ABF DBF AB FM S AF S DF BD FN ⋅∴===⋅ ,设4AF x =,则3DF x =,7AD x =,2DE x =,2AGF GBC C C ABC ∠=∠+∠=∠=∠ ,ADE ABC =∠∠,AGF ADE ∴∠=∠,又FAG EAD ∠=∠ ,FAG EAD ∴∽ ,AG FG AD ED ∴=,16372FG x x ∴=,3221FG ∴=,367BF BG FG ∴=-=,3627732821BF GF ∴==;【小问3详解】ADE 是以AD 为腰的等腰三角形,AD AE ∴=,ADE AED ∴∠=∠,AGF ADE ∠=∠ ,AGF AED ∴∠=∠,BG DE ∴∥,CDE CBG ∴∽ ,CE CD CG CB ∴=,20103CE CD ∴=,32CD CE ∴=,BG DE ∥ ,AFG ADE ∴∠=∠,GBC EDC ∠=∠,AFG AGF ∴∠=∠,163AF AG ∴==,FAB EDC ∠=∠ ,ABG GBC C ∠=∠=∠,FAB ABG ∴∠=∠,EDC C ∠=∠,163BF AF ∴==,CE DE =,43FG BG BF ∴=-=,BG DE ∥ ,AFG ADE ∴∽ ,AG FG AE DE ∴=,1643312CE CE ∴=-,解得125CE =,3321225BD BC CD CE ∴=-=-=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,平行线的判定与性质,利用面积比求线段比等知识与方法,灵活运用相关知识与方法是解答本题的关键.。

2013年上海市中考数学试卷及 答案(Word版)

2013年上海市中考数学试卷及    答案(Word版)

2013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是().;.;.;..2.下列关于的一元二次方程有实数根的是().;.;.;..3.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是().;.;.;..4.数据0,1,1,3,3,4的中位数和平均数分别是().2和2.4;.2和2;.1和2;.3和2.5.如图1,已知在△中,点、、分别是边、、上的点,∥,∥,且,那么等于().5:8;.3:8;.3:5;.2:5.6.在梯形中,∥,对角线和交于点,下列条件中,能判断梯形是等腰梯形的是().;.;.;..二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:.8.不等式组的解集是.9.计算:.10.计算:.11.已知函数,那么.12.将“定理”的英文单词中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面的概率是.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.14.在⊙中,已知半径长为3,弦长为4,那么圆心到的距离为.15.如图3,在△和△中,点、、、在同一直线上,=,A∥D,请添加一个条件,使△≌△,这个添加的条件可以是(只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.如图5,在△中,,,,如果将△沿直线翻折后,点落在边的中点处,直线与边交于点,那么的长为.三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)19.计算:.20.解方程组:.21.已知平面直角坐标系(如图6),直线经过第一、二、三象限,与轴交于点,点在这条直线上,联结,△的面积等于1.(1)求的值;(2)如果反比例函数(是常量,)的图像经过点,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图(1)所示,点是栏杆转动的支点,点是栏杆两段的连接点.当车辆经过时,栏杆升起后的位置如图(2)所示,其示意图如图(3)所示,其中,∥,,米,求当车辆经过时,栏杆段距离地面的高度(即直线上任意一点到直线的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:,,.)23.如图8,在△中,,,点为边的中点,∥交于点,∥交的延长线于点.(1)求证:;(2)联结,过点作的垂线交的延长线于点,求证:.24.如图9,在平面直角坐标系中,顶点为的抛物线经过点A和轴正半轴上的点,,.(1)求这条抛物线的表达式;(2)联结,求的大小;(3)如果点在轴上,且△与△相似,求点的坐标.25.在矩形中,点是边上的动点,联结,线段的垂直平分线交边于点,垂足为点,联结(如图10).已知,.设,.(1)求关于的函数解析式,并写出的取值范围;(2)当以长为半径的⊙和以长为半径的⊙外切时,求的值;(3)点在边上,过点作直线的垂线,垂足为.如果,求的值.2013年上海市初中毕业统一学业考试数学试卷参考答案1、选择题1、B;2、D;3、C;4、B;5、A;6、C2、填空题7、(a+1)(a﹣1); 8、x>1; 9、3b ; 10、2+; 11、1;12、; 13、40%;14、; 15、AC=DF ; 16、2; 17、30°; 18、.3、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.24.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x ﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.。

2013年上海市中学考试数学试卷及问题详解Word版

2013年上海市中学考试数学试卷及问题详解Word版

实用文档文案大全2013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是()A9;B7;C20;D13.2.下列关于x的一元二次方程有实数根的是()A.210x??;B.210xx???;C.210xx???;D.210xx???.3.如果将抛物线22yx??向下平移1个单位,那么所得新抛物线的表达式是()A.??212yx???;B.??212yx???;C.21yx??;D.23yx??.4.数据0,1,1,3,3,4的中位数和平均数分别是()A.2和2.4;B.2和2;C.1和2;D.3和2.5.如图1,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且:3:5ADDB?,那么:CFCB等于()A.5:8;B.3:8;C.3:5;D.2:5.6.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.BDCBCD???;B.ABCDAB???;C.ADBDAC???;D.AOBBOC???.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:21a??8.不等式组1023xxx???????的解集是29.计算:23baab??10.计算:??23abb????2f?11.已知函数??231fxx??,那12.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面e的概率是13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为14.在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为15.如图3,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=C E,A C∥D F,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角?是另一个内角?的两倍时,我们称此三角形为“特征三角形”,其中?称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为实用文档文案大全18.如图5,在△ABC中,ABAC?,8BC?,32tanC?,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)19.计算:1018212????????????.20.解方程组:22220xyxxyy?????????.21.已知平面直角坐标系xOy(如图6),直线12yxb??经过第一、二、三象限,与y 轴交于点B,点??2,At在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数kyx?(k是常量,0k?)的图像经过点A,求这个反比例函数的解析式.422.某地下车库出口处“两段式栏杆”如图(1)所示,点A是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图(2)所示,其示意图如图(3)所示,其中ABBC?,EF∥BC,143EAB??,1.2ABAE??米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:370.60sin?,370.80cos?,370.75tan?.)23.如图8,在△ABC中,90ACB??,BA???,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DEEF?;(2)联结CD,过点D作DC的垂线交CF的延长线于点G,求证:BADGC?????.实用文档??20yaxbxa???文案大全24.如图9,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,2AOBO??,120AOB??.(1)求这条抛物线的表达式;(2)联结OM,求AOM?的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.在矩形ABCD中,点P是边AD上的动点,联结BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图10).已知13AD?,5AB?.设APx?,BQy?.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F.如果4EFEC??,求x 的值.62013年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、B;2、D;3、C;4、B;5、A;6、C二、填空题7、(a+1)(a﹣1); 8、x>1; 9、3b; 10、2+; 11、1; 12、;13、40%;14、; 15、AC=DF; 16、2; 17、30°; 18、.三、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OB?AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,实用文档文案大全将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=..22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE?cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,8∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.24.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:实用文档文案大全,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,10∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).实用文档文案大全(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0 将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=..(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,12∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=..。

2013届上海市初三数学质量检测试卷(理科班用)

2013届上海市初三数学质量检测试卷(理科班用)

上海市2013届初三数学质量检测试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 下列计算正确的是(A )426x x x +=; (B )422x x x -=; (C )428x x x ⋅=; (D )428()x x =. 2. 将直线2y x =向左平移两个单位后所得图象对应的函数解析式为(A )22y x =+; (B )22y x =-; (C )24y x =+; (D )24y x =-. 3.4. 5. 关于x 的二次函数2(1)y x m x m =+--,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是(A )1m <-; (B )10m -<<; (C )01m <<; (D )1m >. 6. 一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”.图1中的四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a ,4a ,则下列关系中正确的是(A )421a a a >>; (B )432a aa >>; (C )123a a a >>; (D )234a a a >>. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. =8. 因式分解:29x y y -图19. 方程273x -=的根是 ▲ .10. 若关于x 的一元二次方程2230x x k --=有两个相等的实数根,则k 的值为 ▲ . 11. 已知一组数据1x ,2x ,,n x 的方差是2S ,则新的一组数据11ax +,21ax +,,1n ax +(a 为常数,0a ≠)的方差是 ▲ (用含a ,2S 的代数式表示). 12. 函数124xy x x =++-+的定义域是 ▲ .13. 如图2,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC和BD 相等,OC = OD )量零件的内孔直径AB .若:1:2OC OA =,量得CD = 10mm ,则零件的厚度x = ▲ mm . 14. 在△ABC 中,点D 在边BC 上,BD = 3CD ,AB a =,AC b =,那么AD = ▲ (用a 和b 表示).15. 甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a ,b 分别取0,1,2,3,若a ,b 满足1a b -≤,则称甲、乙两人“心有灵犀”,现任意找两人玩这个游戏,得出“心有灵犀”的概率为 ▲ . 16. 在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴的正方向的夹角为α,则用 [ρ,α]表示点P 的极坐标.显然,点P 的坐标和它的极坐标存在一一对应关系,如点P 的坐标(1,1)的极坐标为P [2,45︒],则极坐标Q [23,120︒]的坐标为 ▲ . 17. 勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票(图3).所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在如图4所示的勾股图中,已知∠ACB = 90°,∠BAC = 30°,AB = 4.作△PQR 使得∠R = 90°,点H 在边QR 上,点D 、E 在边PR 上,点G 、F 在边PQ 上,那么△PQR 的周长等于 ▲ .18. 如图5,在△ABC 中,∠ACB = 90°,AC = BC = 10,在△DCE 中,∠DCE = 90°,DC = EC= 6,点D 在线段AC 上,点E 在线段BC 的延长线上,将△DCE 绕点C 旋转60°得到△D CE ''(点D 的对应点为点D ',点E 的对应点为点E '),过点C 作CN BE '⊥,垂足为N ,直线CN 交直线AD '于点M ,则MN 的长为 ▲ .xФ25 图2O DCBA图3 A B C DE 图5 C K图4 A B P GF三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:12012cos 60()(32)()233-︒+---÷-.20.(本题满分10分)解方程:2212212x x x x-=--. 21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)图6、7分别是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心O ,支架CD 与水平面AE 垂直,AB = 150cm ,∠BAC = 30°,另一根辅助支架DE = 76cm ,∠CED = 60°. (1)求垂直支架CD 的长度(结果保留根号);(2)求水箱半径OD 的长度(结果保留三个有效数字,参考数据:2 1.41=,3 1.73=).22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测. (1)图8是小芳家2012年全年月用电量的条形统计图.根据图中提供的信息,回答下列问题:①2012年小芳家月用电量最小的是 ▲ 月,四个季度中用电量最大的是第 ▲ 季度;②求2012年5月至6月用电量的月增长率;(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2012年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?图6 图7DB AC OE192 178 162 11680132 185 198 181 129 155178图850 100 150 20023.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形.如图9,ABCD 中,若AB = 1,BC = 2,则ABCD 为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是 ▲ 阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图10,把ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F ,得到四边形ABFE . 求证:四边形ABFE 是菱形;(2)操作、探究与计算:①已知ABCD 的邻边长分别为1,a (1)a >,且是3阶准菱形,请画出ABCD 及裁剪线的示意图,并在图形下方写出a 的值; ②已知ABCD 的邻边长分别为a ,b ()a b >,满足6a b r =+,5b r =,请写出ABCD是几阶准菱形.24.(本题满分12分,第(1)小题满分2分,第(2)小题满分4分,第(3)小题满分6分)如图11,经过点A (0,-4)的抛物线212y x bx c =++与x 轴相交于B (-2,0)、C 两点,O 为坐标原点.(1)求抛物线的解析式; (2)将抛物线212y x bx c =++向上平移72个单位长度,再向左平移m (0)m >个单位长度得到新抛物线,若新抛物线的顶点P 在△ABC 内,求m 的取值范围;(3)设点M 在y 轴上,∠OMB + ∠OAB = ∠ACB ,求AM 的长.图11图9 B C 图10 E F A B C D25.(本题满分14分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分7分)如图12,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A 、B 两点,交y 轴于C 、D 两点,且C 为AE 的中点,AE 交y 轴于点G ,若点A 的坐标为(-2,0), AE = 8.(1)求点C 的坐标;(2)联结MG 、BC ,求证:MG ∥BC ;(3)如图13,过点D 作⊙M 的切线,交x 轴于点P .请你探究:动点F 在⊙M 的圆周上运动时,OFPF的比值是否发生变化,若不变,求出比值;若变化,说明变化规律.上海市2013届初三数学质量检测试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题共6题,每题4分,满分24分)1. D ;2. C ;3. C ;4. B ;5. D ;6. B .二、填空题:(本大题共12题,每题4分,满分48分)7.; 8. (3)(3)y x x +-; 9. x = 8; 10. 3-;11. 22a S ; 12. 4x >-且3,1x x ≠-≠; 13. 2.5; 14.1344a b +;15.58; 17. 27+ 18. 7+7三、解答题:(本大题共7题,满分78分)19. 解:原式12(2)212=⋅+-÷……………………………………………………(4分)1(2)(2=+--…………………………………………………………(3分)3=.……………………………………………………………………(3分)20. 解:原方程整理为:2212212x x x x--=--;令22y x x =-,则原方程化为2120y y +-=;………………………………(3分) 解得:3y =或4y =-;…………………………………………………………(2分)223x x -=,解得:121,3x x =-=;…………………………………………(2分) 224x x -=-,120∆=-<,此方程无解;……………………………………(2分)∴原方程的解是121,3x x =-=.…………………………………………………(1分)21. 解:(1)∵DE =76cm ,∠CED = 60°,∴sin 6076CD CDDE ︒==,…………………………………………………………(2分)∴CD =.………………………………………………………………(1分)答:垂直支架CD 的长度是;…………………………………………(1分)(2)设水箱半径OD 的长度为x cm ,(150)AO x cm =+;12AO ,………………………………………………(1分) 2分)解得:150150131.4818.5x cm =-=-≈.………………………………(2分) 答:水箱半径OD 的长度是18.5cm .…………………………………………(1分)22. 解:(1)①5;三;(2分)②13280100%65%80-⨯=;……………………………(2分) (2)设今年5月至6月用电量月增长率为1.5x ,则6月至7月用电量月增长率为x ;根据题意列方程得:120(1)(1 1.5)240x x ++=,………………………………(2分)2分)1分)1分)23. 解:(1)①2;…………………………………………………………………………(1分)②证明:由折叠知:∠ABE =∠FBE ,AB = BF ;……………………………(1分) ∵四边形ABCD 是平行四边形, ∴AE ∥BF ;∴∠AEB =∠FBE ; ∴∠AEB =∠ABE ; ∴AE = AB ;∴AE = BF ;………………………………………………………………………(1分) ∴四边形ABFE 是平行四边形;…………………………………………………(1分) 又∵AB = BF ,∴四边形ABFE 是菱形;…………………………………………………………(1分) (2)①如图所示:4a = 52a =43a = 53a =……………………………………………………………………………………(5分) (注:本小题满分5分,答对一种给2分,以后每画对一个逐个加1分) ②∵6a b r =+,5b r =; ∴6531a r r r =⨯+=; 如图所示:故ABCD是10阶准菱形.…………………………………………………(2分)24. 解:(1)将A(0,-4)、B(-2,0)代入抛物线212y x bx c=++中,得:()20412202cb c+=-⎧⎪⎨--+=⎪⎩,解得14bc=-⎧⎨=-⎩;………………………………………(1分)∴抛物线的解析式:2142y x x=--;………………………………………(1分)(2)由题意,新抛物线的解析式可表示为:217()()422y x m x m=+-+-+,即:22111(1)222y x m x m m=+-+--,顶点的坐标为P(1 - m,- 1);…(1分)由(1)的抛物线解析式可得:A(0,-4),那么直线:24AB y x=--,直线:4AC y x=-;当点P在直线AB上时,2(1)41m---=-,解得:52m=;当点P在直线AC上时,(1)41m--=-,解得:2m=-;∴当点P在△ABC内时,522m-<<;………………………………………(2分)又∵0m>,∴m的取值范围是52m<<;…………………………………(1分)(3)解法一:如图,取OA中点H,联结BH,则OB = OH = 2,……………(1分)∴△BOH是等腰直角三角形,∠BHO = 45°,18045135AHB∠=︒-︒=︒;∵OA = OC = 4,∠AOC = 90°,∴∠ACO = 45°;∴45OMB OAB ACB∠+∠=∠=︒,18045135ABM∠=︒-︒=︒;∴135ABM AHB∠=∠=︒;……………(1分)又∵∠BAO =∠OAB,∴△ABM∽△AHB,……………………(1分)AM ABAB AH=;…………………………(1分)=,得AM = 10;…………(1分)由对称性知M关于原点的对称点M'此时2AM'=;…………………………(1分)综上所述,AM的长为10或2.解法二:如图,过点A作AH⊥MB的延长线,点H为垂足,设OM k=(0)k>;………………………(1分)∵AO = CO,∠AOC = 90°,∴∠ACO = 45°;∴45OMB OAB ACB∠+∠=∠=︒;∴45ABH OMB OAB∠=∠+∠=︒;∵AB ===∴sin 45AH BH ==︒=1分) ∵∠OMB =∠HMA ,∠BOM =∠AHM = 90°, ∴△BOM ∽△AHM ,…………………(1分)BM AMBO AH=;………………………(1分)=6k =或23k =-(舍去); ∴此时AM = OM + OA = 10;……………………………………………………(1分) 由对称性知M 关于原点的对称点M '也符合题意,此时2AM '=;………(1分) 综上所述,AM 的长为10或2.25. 解:(1)∵直径AB ⊥CD ; ∴12CO CD =,AD AC =; ∵C 为AE 的中点,∴AC CE =; ∴AE CD =;……………………(1分) ∴CD = AE ;………………………(1分)∴142CO CD ==; ∴点C 的坐标为(0,4);……(1分)(2)联结CM 交AE 于点N ,设半径AM CM r ==,则2OM r =-;由222OC OM MC +=得:2224(2)r r +-=,解得:5r =;………………(1分) ∵∠AOC =∠ANM = 90°,∠EAM =∠MAE ; ∴△AOG ∽△ANM ,OG AOMN AN=; ∵MN = OM = 3;即234OG =,得32OG =;………………………………………………………(1分) ∴ 1.5348OG OC ==,38OM OB =,∴OG OMOC OB=;………………………………(1分) ∴MG ∥BC ;………………………………………………………………………(1分) (3)如图,联结DM ,则DM ⊥PD ,DO ⊥PM ;∴△MOD ∽△MDP ,2DM OM MP =⋅,……………………………………(1分) △MOD ∽△DOP ,2DO OM OP =⋅,即243OP =⋅,得163OP =;……………………………………………………(1分) 动点F 在⊙M 的圆周上运动:(I )当点F 与点A 重合时:2316523OF AO PF AP ===-;………………………(1分)(II )当点F 与点B 重合时:8316583OF OB PF PB ===+;………………………(1分)(III )当点F 不与点A 、B 重合时:联结OF 、PF 、FM ;∵2DM OM MP DM FM ⎧=⋅⎨=⎩,得FM MPOM FM =;………………………………………(1分) ∵∠PMF =∠FMP ;∴△MFO ∽△MPF ;…………………(1∴35OF OM PF FM ==;…………………(1分) 综上所述,OF PF 的比值不变,比值为35.。

2013年长宁区

2013年长宁区

1长宁2013年九年级数学教学质量检测(二模)试卷一、单项选择题:(本大题共6题,每题4分,满分24分) 1. 下列各数中,无理数是( ).A. 21 B. 3.14 C. 3 D. 382. 下列各式中,运算正确的是( ).A. 523a a a=+ B. a a a 2=-3C. 523a a a =⋅ D. 2323a a a =÷3. 下列二次根式中,最简二次根式是( ).A. 4B. 6C. 8D. 12 4. 下列图形中,中心对称图形是( ).5. 一次函数y =3x +1的图像不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 甲、乙、丙、丁四人进行射击比赛,每人射击10次,四人射击成绩的平均数都是8.9环,方差分别是4502甲.=S ,5502乙.=S ,5002丙.=S ,6502丁.=S ,则射击成绩最稳定的是( ).A. 甲B. 乙C. 丙D. 丁二、填空题:(本大题共12题,每题4分,满分48分)7. 函数43-x y =的定义域是 .8. 在实数范围内分解因式:32-m = .9. 不等式组:⎩⎨⎧<-≥021,63x x 的解集是 .10. 计算:⎪⎭⎫ ⎝⎛b -a -a212= . 11. 已知,△ABC 的重心G 到BC 边中点D 的距离是2,则BC 边上的中线长是 .12.方程:31=-x 的解是 .13. 若将抛物线122+=x -x y 沿着x 轴向左平移1个单位,再沿y 轴向下平移2个单位,则得到的新抛物线的顶点坐标是 .14. 如图,某超市的自动扶梯长度为13米,该自动扶梯到达的最大高度是5米,设自动扶梯与地面所成的角为θ,则tan θ= .15. 为了解某区高三学生的身体发育状况,抽查了该区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图,从图中可知,这100名学生中体重不小于55.5kg 且小于65.5kg 的学生人数是 . 16. 若实数x 、y 满足:yx >,则称:x 比y 远离0. 如图,已知A 、B 、C 、D 、E五点在数轴上对应的实数分别是a 、b 、c 、d 、e. 若从这五个数中随机选一个数,则这个数比其它数都远离0的概率是 .17. 如图所示,将边长为2的正方形纸片折叠,折痕为EF ,顶点A 恰好落在CD 边上的中点P 处, B 点落在点Q 处,PQ 与CF 交于点G . 设C 1为△PCG 的周长,C 2为△PDE 的周长,则C 1 :C 2 = .A .B .C .D .第14题5米13米θ第15题图 kg )第16题图 e -110c b a2 CBOA yxO C B A 18. 已知边长为1的正方形,按如图所示的方式分割,第1次分割后的阴影部分面积S 1=21,第2次分割后的阴影部分面积S 2=43,第3次分割后的阴影部分面积S 3=87,…….按照这样的规律分割,则第n (n 为正整数)次分割后的阴影部分面积可用n 表示为S n = .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()32230tan 31212+-︒⎪⎭⎫⎝⎛+-.20.(本题满分10分)解方程:3353112-x x x -x-x x +=+.21.(本题满分10分)如图,已知等腰直角△ABC 中,∠BAC =︒90,圆心O 在△ABC 内部,且⊙O 经过B 、C 两点,若BC=8,AO=1,求⊙O 的半径.22.(本题满分10分) 周末,小明和爸爸骑电动自行车从家里出发到郊外踏青.从家出发0.5小时后到达A 地,游玩一段时间后再前往B 地.小明和爸爸离家1.5小时后,妈妈驾车沿相同路线直接前往B 地,如图是他们离家的路程y (千米)与离家时间t (小时)的函数图像.(1)根据函数图像写出小明和爸爸在A 地游玩的时间; (2)分别求小明和爸爸骑车的速度及妈妈的驾车速度;(3)妈妈出发时,小明和爸爸距离B 地有多远?23.(本题满分12分)如图,△ABC 中,∠ACB =︒90,D 、E 分别是BC 、BA 的中点,联结DE ,F 在DE延长线上,且AF=AE . (1)求证:四边形ACEF 是平行四边形; (2)若四边形ACEF 是菱形,求∠B 的度数.24.(本题满分12分)如图,直线AB 交x 轴于点A ,交y 轴于点是坐标原点,A (-3,0)且sin ∠ABO=53,抛物线y =ax 2+、B 、C 三点,C (-1,0). (1)求直线AB 和抛物线的解析式;(2)若点D (2,0),在直线AB 上有点P ABO 和△ADP 相似,求出点P 的坐标;(3)在(2)的条件下,以A 为圆心,AP ⊙A , 再以D 为圆心,DO 长为半径画⊙D ,的位置关系,并说明理由.25.(本题满分14分)△ABC 和△DEF 的顶点A 与D 重合,已知∠∠BAC =︒30.,BC=6,∠FDE =︒90,DF=DE=4.(1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(2)在(1)的条件下,求当x 为何值时 AB PC //;(3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段AD 、FC 、BC 的长度为边长的三角形是直角三角形.第1次分割 第2次分割 第3次分割 第4次分割 第18题图 O y (千米)302010t (小时)21.510.5F EDBCA 图①图②EF H GFEA(D)B3DOCBA 321F EDBCA2013年初三数学教学质量检测试卷参考答案一、 单项选择题:(本大题共6题,每题4分,满分24分)1、C2、C3、B4、B5、D6、A二、填空题:(本大题共12题,每题4分,满分48分) 7、x ≠4 8、(m +3)(m -3) 9、x ≥2 10、b 2 11、 6 12、x =10 13、(0,-2)14、12515、35 16、0 17、4:3 18、1-n21三、解答题:(本大题共7题,满分78分) 19、(本题满分10分)解:原式=)32(23332--⨯+ (8分,每个化简结果2分)=32432++-=233- (结果正确,2分)20、(本题满分10分)解:方程两边同时乘以3x (x -1),得3(x +1)-(x -1)=x (x +5) (3分)整理得 x 2+3x -4=0(x -1) (x +4)=0 (2分) x 1=1 x 2=-4 (2分)经检验:x 1=1 是原方程的增根 (1分) ∴ x 2=4是原方程的根 (2分)21、(本题满分10分)解:联结BO 、CO ,联结AO 并延长交BC 于D . (1分) ∵等腰直角△ABC 且∠BAC =︒90 ∴ AB=AC ∵ O 是圆心 ∴OB=OC∴直线OA 是线段BC 的垂直平分线 ∴ AD ⊥BC ,且D 是BC 的中点 (4分)在Rt △ABC 中,AD=BD =BC 21∵BC=8 ∴ BD=AD = 4 (2分)∵AO=1 ∴OD=BD-AO=3 (1分) ∵AD ⊥BC ∴∠BDO =︒90 ∴OB =5432222=+=+BD OD(2分)22、(本题满分10分)解:(1)0.5 (2分)(2)骑车速度:10÷0.5=20千米/小时 (2分) 驾车速度:30÷0.5=60千米/小时 (2分)(3)设小明和爸爸从A 地前往B 地时,y=kt+b (k ≠0)) 由图可知 t =1时,y =10;t =2时,y =30代入得⎩⎨⎧+=+=b k bk 23010 解得⎩⎨⎧==1020-b k (2分)得y =20t – 10当t =1.5时,y =20, 30-20=10 (1分)∴ 妈妈出发时,小明和爸爸离B 地10千米。

2013上海中考一模数学(上海各区共11套)

2013上海中考一模数学(上海各区共11套)

浦东新区2012学年度第一学期期末质量测试 初三数学试卷 2013.1.17(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定的位置作答,在草稿纸、本试卷上 答题一律无效;2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤;3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A .2:1; B .2:3; C .3:1; D .3:2.2.已知Rt ABC ∆中,90C ∠=,A α∠=,2AB =,那么BC 长( )A .2sin α;B .2cos α;C .2sin α; D .2cos α.3.如果将抛物线2y x =向左平移2个单位,那么所得到的抛物线表达式为( )A .22y x =+;B . 22y x =-;C .2(2)y x =+;D .2(2)y x =-.4.如果抛物线2y ax bx c =++经过点(1,0)-和(3,0),那么对称轴是直线( )A .=0x ;B .=1x ;C .=2x ;D .=3x .5.如果乙船在甲船的北偏东40方向上,丙船在甲船的南偏西40方向上,那么丙船在乙船的方向是( )A .北偏东40;B .北偏西40;C .南偏东40;D .南偏西40.6.如图,已知在ABC ∆中,边6BC =,高3AD =,正方形EFGH 的顶点F G、在边BC 上,顶点E H 、分别在边AB 和AC 上,那么这个正方形的边长等于( )A .3;B .2.5;C .2;D .2.5.二、填空题:(本大题共12题,,每题4分,满分48分)7. 已知线段b 是线段a 、c 的比例中项,且a =1、=2b 那么=c .8.计算:11()(2)22a b a b --+= .9.如果抛物线2(2)y a x =-的开口方向向下,那么a 的取值范围是 .10.二次函数23y x =-的图像的最低点坐标是 .11.在边长为6的正方形中间挖去一个边长为(06)x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为 .12.已知α是锐角,230tan cos α=,那么α= 度.13.已知从地面进入地下车库的斜坡的坡度为1:2.4,地下车库的地坪与地面的垂直距离等于5米,那么此 斜坡的长度等于 米.14.小明用自制的直角三角形纸板DEF 测量树AB 的高度.测量时,使直角边DF 保持水平状态,其延长 线交AB 于点G ;使斜边DE 与点A 在同一条直线上.测得边DF 离地面的高度为1.4m ,点D 到AB 的距 离等于6m (如图所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013学年第一学期初三数学质量检测试卷(长宁区)
(1)这是一个典型的多个直角的问题,所以利用同角的余角相等,可以证如图两组角相等,从而得到△BMP ∽△NMQ
(2)第一种情况如图,当点P在线段AB上时:
先根据含有30度的直角三角形三边的比例关系计算出各边的长度,然后根据第(1)
小题中得到的相似三角形各对应边的比例关系,计算得到NQ=,得到AQ=+4,再利用三角形面积公式得到
第二种情况,如图,点P在BA的延长线上时
利用上述的方法计算得到NQ和AQ的长度,再利用面积公式得到
(3)要证的这三条线段是分散的条件,所以首先要考虑将这三条线段集中到一个三角形内,这样因为点M是中点,所以将△MQC绕点M旋转180度到△BMD的位置,这样QC就转化为了BD,只需要证PD=PQ,就能将原来的三条线段集中到Rt△PBD中,从而这三条线段就满足勾股定理。

作法:延长QM到点D,使MD=QM,联结BD,PD,很容易可以证得△QMC≌△DMB,得到QC=BD,再根据PM⊥QM,QM=DM,得到PQ=PD;再根据勾股定理就得到PQ2=PB2+QC2
作者:老张博客:老张爱数学。

相关文档
最新文档