新北师版第五章二元一次方程组检测题

合集下载

2022年北师大版八年级数学上册第5章 二元一次方程组 单元测试卷含答案

2022年北师大版八年级数学上册第5章 二元一次方程组 单元测试卷含答案

北师大新版八年级上册《第5章二元一次方程组》单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)下列方程组中是二元一次方程组的是()A.B.C.D.2.(3分)二元一次方程组的解是()A.B.C.D.3.(3分)与方程组有相同解的方程是()A.x+y=3B.2x+3y+4=0C.3x+=﹣2D.x﹣y=14.(3分)若实数x,y满足|x﹣y﹣1|+=0,则2x﹣y的值为()A.0B.1C.2D.35.(3分)某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为()A.B.C.D.6.(3分)现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129B.120C.108D.967.(3分)已知单项式﹣3x m﹣1y3与5x n y m+n是同类项,那么()A.B.C.D.8.(3分)若2x+5y﹣3z=2,3x+8z=3,则x+y+z的值等于()A.0B.1C.2D.无法求出9.(3分)如图所示,方程组的解是()10.(3分)某商店有方形、圆形两种巧克力,小明如果购买3块方形巧克力和5块圆形巧克力,他带的钱会差8元;如果购买5块方形巧克力和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()A.8元B.16元C.24元D.32元二、填空题(本大题7小题,每小题4分,共28分)11.(4分)已知二元一次方程3x+y﹣1=0,用含y的代数式表示x,则x=;当y=﹣2时,x=.12.(4分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.13.(4分)一次函数y=2x与y=2x+1图象之间的位置关系是,这说明方程组解的情况是.14.(4分)一个三位数,若百位上的数为x,十位上的数为y,个位上的数是百位与十位上的数的差的2倍,则这个三位数是.15.(4分)已知方程组的解能使等式4x﹣6y=10成立,则m的值为.16.(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.17.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在平面直角坐标系中,已知点A(1,2),B(6,﹣2).(1)若点C与点B关于y轴对称,则点C的坐标是;(2)求直线AC所表示的函数表达式.19.(6分)解下列方程组:(1);(2).20.(6分)解方程组:.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知一次函数y=﹣mx+3和y=3x﹣n的图象交于点P(2,﹣1)(1)直接写出方程组的解;(2)求m和n的值.22.(8分)列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.求A,B两种奖品的单价.23.(8分)若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息.自来水销售价格每户每月用水量单价/(元•t﹣1)15t及以下a超过15t但不超过25t的部分b超过25t的部分5根据上表信息,解答下列问题:(1)小王家今年3月份用水20t,要交水费元;(用含a,b的代数式表示)(2)小王家今年4月份用水21t,交水费48元,邻居小李家4月份用水27t,交水费70元,求a,b的值;(3)在(2)的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单价的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.25.(10分)某学校期末考试要给学生印制复习资料若干份,印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费用外,甲种方式还收取制版费,而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是,乙种收费方式的函数关系式是.(2)若需印刷100﹣400份(含100和400)份复习资料,选择哪种印刷方式比较合算.参考答案一、选择题(本大题10小题,每小题3分,共30分)1.C;2.A;3.C;4.A;5.D;6.D;7.C;8.B;9.B;10.D;二、填空题(本大题7小题,每小题4分,共28分)11.;;12.;13.平行;无解;14.102x+8y;15.8;16.;17.10;三、解答题(一)(本大题3小题,每小题6分,共18分)18.(﹣6,﹣2);19.;20.;四、解答题(二)(本大题3小题,每小题8分,共24分)21.;22.;23.;五、解答题(三)(本大题2小题,每小题10分,共20分)24.(15a+5b);25.y1=0.1x+16(x≥0);y2=0.2x(x≥0);。

北师大版八年级数学上册 第五章 二元一次方程组 单元检测试题(含答案)

北师大版八年级数学上册 第五章 二元一次方程组 单元检测试题(含答案)

第五章 二元一次方程组 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列方程中是二元一次方程的是( )A.12+2y =9B.7xy −6=0C.x 2+y =18D.x +2y =32. 已知x =2,y =−1是方程2ax −y =3的一个解,则a 的值为( )A.2B.12C.1D.−13. 二元一次方程组{x +2y =10y =2x的解是( ) A.{x =4y =3B.{x =3y =6C.{x =2y =4D.{x =4y =24. 鸡兔同笼.上有35头,下有94足,问鸡兔各几只?设鸡为x 只,兔为y 只,则所列方程组正确的是( )A.{x +y =35x +2y =94B.{x +y =354x +2y =94C.{x +y =352x +4y =94D.{x +y =352x +2y =945. 在式子:2x −y =3中,把它改写成用含x 的代数式表示y ,正确的是( )A.y =2x +3B.y =2x −3C.x =3−y 2D.x =3+y 26. 下列方程组中,是二元一次方程组的是( )A. B. C. D.7. 某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8. 方程组{7x−3y=02x−y=−1的解对于方程3x+5y=44来说()A.是这方程的唯一解B.不是这方程的一个解C.是这方程的一个解D.以上结论都不对9. 若方程组{4x+3y=5kx−(k−1)y=8的解中x的值比y的值的相反数大1,则k为()A.3 B.−3 C.2 D.−210. 如果二元一次方程组{x+y=a,x−y=4a的解是二元一次方程3x−5y−28=2的一个解,那么a的值是()A.3B.2C.7D.6二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 二元一次方程组{x+y=82x+3y=21的解是________.12. 若二元一次方程组{x+y=3,3x−5y=5的解为{x=a,y=b,则a−b=________.13. 甲种物品每个4千克,乙种物品每个7千克,现有甲种物品x个,乙种物品y个,共76千克,列出关于x,y的二元一次方程是________.14. 二元一次方程组{x +y =2x −y =−2 的解是________.15. 在一年一度的“药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x 斤,乙种药材y 斤,为了求解x 和y 的值,你认为小明应该列出的方程组是:________.16. 如图,一个正方形由四个相同的小长方形组成,如果每个小长方形的周长为25,那么正方形的面积为________.17. 34个同学到某地春游,用100元钱去买快餐,每人一份.该地的快餐有两种,3元一份和2.5元一份.如果你是生活委员,3元一份的最多能买________份.18. 已知二元一次方程组{2x −y =33x +y =2的解为{x =1y =−1,则一次函数y =2x −3与y =−3x +2的交点坐标为________.19. 某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x 和y 元,根据题意,可列方程组为________.20. 某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含1千克A 原料、1千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料;丙产品每袋含有1千克A 原料、3千克B 原料.若甲产品每袋售价48元,则利润率为20%.某节庆日,该电商进行促销活动,将甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利润率为10%,则礼盒售价为________.三、解答题(本题共计6 小题,共计60分,)21. 解方程组(1){x+y=42x−y=−1(2)用图象法解方程组:{3x+y=117x−3y=15.22. 某超市在“国庆”促销活动中,由顾客摇奖决定每件商品的折扣.一位顾客购买了两件商品,分别摇得八折和九折,共付款266元.如果不打折,这两件商品共应付款315元.求两件商品的标价分别是多少?23. 某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.24. 两批货物,第一批360吨,用5辆大卡车和12辆小货车正好装完;第二批500吨,用7辆大卡车和16辆小货车正好装完.每辆大卡车和每辆小货车各装货物多少吨?25. 某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?26. 下列方程:①2x+5y=7;②x=2y+1;③x2+y=1;④2(x+y)−(x−y)=8;⑤x2−x−1=0;⑥x−y3=x+y2−1;(1)请找出上面方程中,属于二元一次方程的是:________(只需填写序号);(2)请选择一个二元一次方程,求出它的正整数解;(3)任意选择两个二元一次方程组成二元一次方程组,并求出这个方程组的解.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】D【解答】解:A 、是一元一次方程,故本选项错误;B 、是二元二次方程,故本选项错误;C 、是二元二次方程,故本选项错误;D 、是二元一次方程,故本选项正确.故选D .2.【答案】B【解答】解:把{x =2y =−1代入方程2ax −y =3,得 4a +1=3,解得a =12.故选B .3.【答案】C【解答】将y =2x 代入x +2y =10中,得x +4x =10,即5x =10,∴ x =2.∴ y =2x =4.∴ 二元一次方程组{x +2y =10y =2x的解为{x =2y =4 . 4.【答案】C【解答】解:∴ 鸡有2只脚,兔有4只脚,∴ 可列方程组为:{x+y=352x+4y=94,故选C.5.【答案】B【解答】解:方程2x−y=3,解得:y=2x−3,故选B6.【答案】A【解答】A、符合二元一次方程组的定义,符合题意;B、有三个未知数,不符合二元一次方程组的定义,不符合题意;C、属于分式,不符合题意;D、第二个方程中的xy属于二次的,不符合题意;故选:A.7.【答案】B【解答】设该商品的进价为x元,标价为y元,由题意得{500x=20%0.8y−x=500,解得:x=2500,y=3750.则3750×0.9−2500=875(元).8.【答案】C【解答】解:{7x−3y=0①2x−y=−1②,①-②×3得:x=3,把x=3代入①得:21−3y=0,∴ y=7,∴ 方程组的解是{x =3y =7, 代入方程3x +5y =44得:左边=44,右边=44,∴ 是方程的解,∴ 二元一次方程有无数解,∴ 是方程的一个解.故选C .9.【答案】A【解答】解:由题意,解得x =5k+197k−4,y =5k−327k−4,∴ x 的值比y 的值的相反数大1,∴ x +y =1,即5k+197k−4+5k−327k−4=1解得k =3,故选A .10.【答案】B【解答】解:{x +y =a①,x −y =4a②①+②得:2x =5a ,即x =2.5a ,①-②得:2y =−3a ,即y =−1.5a ,代入方程3x −5y −28=2中得:7.5a +7.5a =30,解得:a =2,故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】{x =3y =5【解答】{x +y =82x +3y =21,①×3,得:3x +3y =24 ③,③-②,得:x =3,将x =3代入①,得:3+y =8,解得y =5,所以方程组的解为{x =3y =5, 12.【答案】2【解答】解:将解代入方程组,得{a +b =3,①3a −5b =5,②①+②,得4a −4b =8,∴ a −b =2.故答案为:2.13.【答案】4x +7y =76【解答】解:甲种物品x 个重4x 千克,乙种物品y 个重7y 千克, 根据总重量为76千克可列方程4x +7y =76.故答案为4x +7y =76.14.【答案】{x =0y =2【解答】{x +y =2x −y =−2, ①+②得:2x =0,解得:x =0,①-②得:2y =4,解得:y =2,则方程组的解为{x =0y =2. 15.【答案】{x =y +220x +60y =280【解答】设买了甲种药材x 斤,乙种药材y 斤,根据题意可得:{x =y +220x +60y =280. 16.【答案】100【解答】解:设长方形的长为x ,宽为y ,由题意得,{2(x +y)=254y =x, 解得:{x =10y =2.5, 故正方形的边长为10,面积为100.故答案为:100.17.【答案】30【解答】解:设3元一份的最多能买x 份,2.5元一份的为y 份.则依题意可得方程式组:{x +y =343x +2.5y =100, 解得x =30,y =4.故答案为:3元一份的最多能买30份.18.【答案】(1, −1)【解答】解:∴ 二元一次方程组{2x −y =33x +y =2的解为{x =1y =−1, ∴ 直线yy =2x −3与y =−3x +2的交点坐标为(1, −1), 故答案为(1, −1).19.【答案】{3x =2y +605x +3y =1620【解答】设甲、乙两种规格的课桌椅每套价格分别是x 和y 元,根据题意可得:{3x =2y +605x +3y =1620, 20.【答案】264元【解答】设A 原料的成本为x 元/千克,B 原料的成本为y 元/千克,根据题意得:(1+20%)(x +y)=48,解得:x +y =40,∴ 礼盒的售价为(1+10%)×6(x +y)=1.1×6×40=264元.三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】解:(1){x +y =4①2x −y =−1②, 由①+②得:3x =3,解得:x =1,把x =1代入①得:y =3∴ {x +y =42x −y =−1的解为:{x =1y =3; (2){3x +y =11①7x −3y =15②由①得:y =11−3x ,由②得:y =73x −5,在同一平面直角坐标系中画出函数y =11−3x 与y =73x −5的图象,由图可知,它们的交点坐标为(3, 2),∴ 原方程组的解为:{x =3y =2. 【解答】解:(1){x +y =4①2x −y =−1②, 由①+②得:3x =3,解得:x =1,把x =1代入①得:y =3∴ {x +y =42x −y =−1的解为:{x =1y =3; (2){3x +y =11①7x −3y =15②由①得:y =11−3x , 由②得:y =73x −5, 在同一平面直角坐标系中画出函数y =11−3x 与y =73x −5的图象,由图可知,它们的交点坐标为(3, 2),∴ 原方程组的解为:{x =3y =2.22.【答案】一件的标价为175元,另一件为140元.【解答】解:设一件的标价为x 元,则另一件为y 元,根据题意可得:{x +y =3150.8x +0.9y =266, 解得:{x =175y =140.23.【答案】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.【解答】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000,解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台. 24.【答案】每辆大卡车装60吨,每辆小货车装5吨.【解答】解:设每辆大卡车装货x 吨,每辆小货车装货y 吨,则{5x +12y =3607x +16y =500, 解得:{x =60y =5.25.【答案】甲、乙、丙三种零件各应生产15天、12天、3天.【解答】解:设甲生产了x 天,乙生产了y 天,丙生产了z 天,由题意得:{x +y +z =30120x =200z ×3100y =200z ×2∴ x =5z ,y =4z ,代入第一个方程得:5z +4z +z =30,解得z =3,∴ x =5z =15,y =4z =12,∴ {x =15y =12z =3.26.【答案】①④⑥;(2)2x +5y =7的整数解为:{x =1y =1. (3)选①④组成方程组得:{2x +5y =72(x +y)−(x −y)=8解得:{x =−19y =9. 【解答】解:(1)方程中,属于二元一次方程的是①④⑥.(2)2x +5y =7的整数解为:{x =1y =1. (3)选①④组成方程组得:{2x +5y =72(x +y)−(x −y)=8解得:{x =−19y =9.。

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册:第五章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知下列各式:①1x +y =2;②2x-3y =5;③12x +xy =2;④x+y =z -1;⑤x +12=2x -13.其中二元一次方程的个数是( A ) A .1 B .2 C .3 D .42.方程5x +2y =-9与下列方程构成方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-4 5.若(x +y -5)2+|2x -3y -10|=0,则代数式xy 的值是( C ) A .6 B .-6 C .0 D .56.已知一个等腰三角形的两边长x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或47.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A.⎩⎪⎨⎪⎧3x -4y =6,3x -2y =0B.⎩⎪⎨⎪⎧3x -4y =6,3x +2y =0C.⎩⎪⎨⎪⎧3x -4y =-6,3x -2y =0D.⎩⎪⎨⎪⎧-3x +4y =6,3x +2y =0 8.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 9.小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +⊗y =3,3x -⊗y =1时,得到了正确结果⎩⎪⎨⎪⎧x =⊕,y =1.后来发现“⊗”和“⊕”处被墨水污损了,请你帮他找出“⊗”和“⊕”处的值分别是( B )A .⊗=1,⊕=1B .⊗=2,⊕=1C .⊗=1,⊕=2D .⊗=2,⊕=210.(2016·黔东南州)小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表:A .64元B .65元C .66元D .67元 二、填空题(每小题3分,共24分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组__⎩⎪⎨⎪⎧x +y =3,x -y =-1(答案不唯一)__.12.若x3m -2-2yn -1=3是二元一次方程,则m =__1__,n =__2__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.已知⎩⎪⎨⎪⎧x =-2,y =0和⎩⎪⎨⎪⎧x =1,y =3是方程x 2-ay 2-bx =0的两组解,那么a =__13__,b =__-2__.15.如果⎩⎪⎨⎪⎧x +2y =2 015,y +2z =2 016,z +2x =2 017,那么x +y +z =__2_016__.16.某工厂在规定天数内生产一批抽水机支援抗旱,如果每天生产25台,那么差50台不能完成任务;如果每天生产28台,那么可以超额40台完成任务,则这批抽水机有__800__台,规定__30__天完成任务.17.如图,在同一平面直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数y =2x -2的图象与y 轴的交点是(-2,0);②方程组⎩⎪⎨⎪⎧2y -x =2,2x -y =2的解是⎩⎪⎨⎪⎧x =2,y =2;③函数y =12x +1和y =2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为3.其中正确的有__②④__.(填序号),(第17题图)) ,(第18题图))18.(2016·重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第__120__秒.三、解答题(共66分)19.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =2,y =-1. 解:⎩⎪⎨⎪⎧x =9,y =6. 解:⎩⎪⎨⎪⎧x =1,y =1. 解:⎩⎪⎨⎪⎧x =1,y =-2,z =-1.20.(8分)直线l 与直线y =2x +1的交点的横坐标为2,与直线y =-x +2的交点的纵坐标为1,求直线l 对应的函数表达式.解:设直线l 与直线y =2x +1的交点坐标为A (x 1,y 1),与直线y =-x +2的交点为B (x 2,y 2),因为x 1=2,代入y =2x +1,得y 1=5,即A 点坐标为(2,5).因为y 2=1,代入y =-x +2,得x 2=1,即B 点坐标为(1,1).设直线l 的表达式为y =kx +b ,把A ,B 两点坐标代入,得⎩⎪⎨⎪⎧2k +b =5,k +b =1,解得⎩⎪⎨⎪⎧k =4,b =-3.故直线l 对应的函数表达式为y =4x -3.21.(8分)观察下列方程组,解答问题:①⎩⎪⎨⎪⎧x -y =2,2x +y =1;②⎩⎪⎨⎪⎧x -2y =6,3x +2y =2;③⎩⎪⎨⎪⎧x -3y =12,4x +3y =3;… (1)在以上3个方程组的解中,你发现x 与y 有什么数量关系?(不必说明理由) 解:在以上3个方程组的解中,发现x +y =0.(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.解:第④个方程组为⎩⎪⎨⎪⎧x -4y =20①,5x +4y =4②,①+②,得6x =24,即x =4,把x =4代入①,得y =-4,则x +y =4-4=0.22.(9分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上用了x 小时,在坡路上用了y 小时,由题意得⎩⎪⎨⎪⎧x +y =6.5,60x =13×(60x +30y ),解得⎩⎪⎨⎪⎧x =1.3,y =5.2.答:汽车在平路上用了1.3小时,在坡路上用了5.2小时.23.(9分)某班将举行知识竞赛活动,班长安排小明购买奖品,图①,图②是小明买回奖品时与班长的对话情境:根据上面的信息解决问题:(1)计算两种笔记本各买多少本.解:设买5元、8元的笔记本分别是x 本,y 本,依题意,得⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68+13,解得⎩⎪⎨⎪⎧x =25,y =15,即买5元、8元的笔记本分别是25本,15本.(2)小明为什么不可能找回68元? 解:若小明找回68元,则⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68,此方程组无整数解,故小明找回的钱不可能是68元.24.(12分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎪⎨⎪⎧b =300,30k 2+b =600,解得⎩⎪⎨⎪⎧k 2=10,b =300.所以y 2=10x+300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA 表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD 对应的函数表达式; 解:y =110x -195.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?解:先求出线段OA 对应的函数表达式为y =60x ,由题意联立方程得⎩⎪⎨⎪⎧y =60x ,y =110x -195,解得⎩⎪⎨⎪⎧x =3.9,y =234,则货车从甲地出发3.9小时被轿车追上,此时离甲地234千米.(3)轿车到达乙地后,货车距乙地多少千米?解:60×(5-4.5)=30(千米).。

2021-2022学年北师大版八年级数学上册《第5章二元一次方程组》自主达标测评(附答案)

2021-2022学年北师大版八年级数学上册《第5章二元一次方程组》自主达标测评(附答案)

2021-2022学年北师大版八年级数学上册《第5章二元一次方程组》自主达标测评(附答案)一.选择题(共8小题,满分32分)1.若方程mx+ny=6有两个解和,则m+n的值为()A.12B.﹣12C.6D.﹣62.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.23.把方程2x﹣y=1写成用含x的代数式表示y的形式是()A.y=2x+1B.y=2x﹣1C.x=D.x=4.方程2x+y=9在正整数范围内的解有()A.1个B.2 个C.3个D.4个5.已知关于x,y的二元一次方程2x﹣3y=t,其取值如下表,则p的值为()x m m+2y n n﹣3t5pA.16B.17C.18D.196.若,是方程ax+by=6的两组解,则a、b的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣47.能使二元一次方程3m+2n=16和3m﹣n=1同时成立的m,n的值是()A.m=5,n=B.m=2,n=5C.m=1,n=2D.m=3,n=8.把一根17米的钢管截成3m长和2m长两种规格的钢管,怎样截不造成浪费?共有()种不同的截法.A.1B.2C.3D.无数二.填空题(共8小题,满分32分)9.将方程7x﹣y=5变形成用含x的代数式表示y,则y=.10.若是方程x+ay=0的一个解,则a的值是.11.二元一次方程x+2y=5的所有非负整数解为.12.已知一个正数a的两个平方根恰好是方程2x﹣y=12的一组解,则a的值为.13.已知x =1,y =3是二元一次方程kx +2y =5的一个解,则k = . 14.若方程x +2y =5,3x ﹣4y =﹣5与kx ﹣y =2有公共解,则k = . 15.已知二元一次方程=1,则它的正整数解是 .16.若是方程x ﹣2y =0的解,则3a ﹣6b +2= .三.解答题(共10小题,满分56分)17.已知关于x 、y 的二元一次方程y =kx +b (k 、b 为常数)的部分解如下表所示:y =kx +bx ﹣1.5 0 3 y85﹣1(1)求k 和b 的值;(2)求出此二元一次方程的所有正整数解(x ,y 都是正整数). 18.甲、乙两位同学在解方程组时,甲把字母a 看错了得到了方程组的解为;乙把字母b 看错了得到方程组的解为.(1)求3a ﹣b 2的值; (2)求原方程组的解. 19.已知关于x ,y 的方程组的解满足x +y =2k ,求k 的值.20.(1);(2).21.阅读下列解方程组的方法,然后解答问题: 解方程组时,由于x ,y 的系数及常数项的数值较大,如果用常规的代入法,加减法来解,计算量大,且易出现运算错误,而采用下面的解法则比较简单: ②﹣①得3x +3y =3,∴x +y =1③, ③×14得14x +14y =14④, ①﹣④得y =2,从而得x =﹣1, ∴原方程组的解是.(1)请你运用上述方法解方程组{①202320222021②202620252024=+=+y x y x ;(2)请你直接写出方程组的解是.(3)猜测关于x,y的方程组的解是什么,并用方程组的解加以验证(m≠n≠0).22.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.23.对于实数x、y规定一种运算“x△y=ax﹣by(a、b是常数)”,已知2△3=4,5△(﹣3)=3.(1)求a、b的值;(2)求(﹣1)△3.24.某文具店用13600元购进了一批篮球和排球,共计500个,它们的成本价和销售价如表所示:单价(元/个)成本价销售价篮球3248排球2436(1)购进的这批篮球和排球各多少个?(2)该店销售完这批篮球和排球后可获利多少元?25.我国古代算术名著(算法统宗》中有这样一道题,原文如下:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?大意为:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?请列方程(或方程组)解答上述问题.26.茜茜数码专卖店销售容量分别为1G、2G、4G、8G和16G的五种移动U盘,2020年10月1日的销售情况如下表:U盘容量(G)124816销售数量(只)563(1)由于不小心,表中销售数量中,2G和4G销售数量被污染,但知道4G的销售数量比2G的销售数量的2倍少2只,且5种U盘的销售总量是30只.求2G和4G的销售数量.(2)若移动U盘的容量每增加1G,其销售单价增加10元,已知2020年10月1日当天销售这五种U盘的营业额是2730元,求容量为4G的移动U盘的销售单价是多少元?参考答案一.选择题(共8小题,满分32分)1.解:由题意,①×2+②×3,得5m=30,解得m=6,把m=6代入①,得﹣12+3n=6,解得n=6,所以m+n=12.故选:A.2.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.3.解:方程2x﹣y=1,解得:y=2x﹣1;故选:B.4.解:由题意,得x=,要使x,y都是正整数,则合适的y的值只能是y=1,3,5,7,相应的x的值为x=4,3,2,1.答案是4个.故选:D.5.解:由题意可知:,∴p=2m﹣3n+13=5+13=18,故选:C.6.解:把,代入方程得:,①+②得:3a=12,解得:a=4,把a=4代入①得:4+b=6,解得:b=2.故选:A.7.解:A、把m=5,n=代入3m﹣n=1,得左边15﹣=≠右边,即m=5,n=不是方程3m﹣n=1的解,故本选项不符合题意.B、把m=2,n=5分别代入3m+2n=16和3m﹣n=1,均满足题意,故本选项符合题意.C、把m=1,n=2代入3m+2n=16,得左边3+4=7≠右边,即m=1,n=2不是方程3m+2n=16的解,故本选项不符合题意.D、把m=3,n=分别代入3m+2n=16和3m﹣n=1,均不满足题意,故本选项不符合题意.故选:B.8.解:设可以截成x段3m长,y段2m长的钢管,依题意得:3x+2y=17,∴y=.又∵x,y均为非负整数,∴或或,∴共有3种不同的截法.故选:C.二.填空题(共8小题,满分32分)9.解:7x﹣y=5,7x﹣5=y,即y=7x﹣5.故答案为:7x﹣5.10.解:把代入方程x+ay=0,得2﹣a=0,解得a=2.故答案为:2.11.解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数,∴y=0,1,2,相应的x=5,3,1.∴二元一次方程x+2y=5的所有非负整数解为,,.故答案为:,,.12.解:根据题意,得x+y=0,又因为2x﹣y=12,所以,解得,因此a=42=16.故答案为:16.13.解:把x=1,y=3代入二元一次方程kx+2y=5得:k+6=5,得:k=﹣1,故答案为:﹣1.14.解:∵方程组的解为,把代入方程kx﹣y=2得:k﹣2=2.解得k=4.故答案为:4.15.解:∵=1,∴y=2×(1﹣)=2﹣,正整数解为.故答案为:.16.解:把代入方程x﹣2y=0,可得:a﹣2b=0,所以3a﹣6b+2=3(a﹣2b)+2=2.故答案为:2.三.解答题(共10小题,满分56分)17.解:(1)根据表格中的数据,把(0,5)和(3,﹣1)代入y=kx+b得:,解得:;(2)此二元一次方程为y=﹣2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解为,.18.解:(1)根据题意可知:将x=2,y=﹣代入方程②,得2b+7=1,解得b=﹣3,将x=2,y=﹣1代入方程①,得2a﹣3=1,解得a=2,∴3a﹣b2=3×2﹣(﹣3)2=6﹣9=﹣3;(2)由(1)知方程组为:,①×3+②×2,得y=5,把y=5代入①得,x=﹣7,∴原方程组的解为.19.解:②+①,得5x+5y=6k+4,∴5(x+y)=6k+4,∴x+y=,∵关于x,y的方程组的解满足x+y=2k,∴2k=,∴5×2k=6k+4,解得k=1.20.解:(1),①×2+②得,11x =33, 解得,x =3,将x =3代入①得,y =3, 故原方程组的解为:.(2)原方程组可化为,,②×2﹣①得, y =1,将y =1代入②得,x =﹣3, 故原方程组的解为:. 21.解:{①202320222021②202620252024=+=+y x y x ,②﹣①得:3x +3y =3, ∴x +y =1③,③×2021得:2021x +2021y =2021④, ①﹣④得:y =2,把y =2代入③得:x +2=1, 解得:x =﹣1, 所以原方程组的解是:.(2),②﹣①得,9000x +9000y =9000, ∴x +y =1③,③×998得,998x +998y =998④, ①﹣④得,y =2,将y =2代入③得,x =﹣1, 所以原方程组的解是:.,当x=﹣1,y=2时,第一个方程:左边=﹣m+(m+1)×2=﹣m+2m+2=m+2=右边;第二个方程:左边=﹣n+(n+1)×2=﹣n+2n+2=n+2=右边,∴是原方程组的解.22.解:(1)设1辆A型车装满货物一次可运货x吨,1辆B型车装满货物一次可运货y吨,依题意得:,解得:.答:1辆A型车装满货物一次可运货3吨,1辆B型车装满货物一次可运货4吨.(2)依题意得:3a+4b=31,∴a=.∵a,b均为非负整数,∴或或,∴共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车.方案1所需租金为100×9+120×1=1020(元);方案2所需租金为100×5+120×4=980(元);方案3所需租金为100×1+120×7=940(元).∵1020>980>940,∴方案3最省钱,此时最少租车费为940元.23.解:(1)由题意可知,2△3=2a﹣3b=4,5△(﹣3)=5a+3b=3,即,解得.(2)由(1)知,x△y=x+y,∴(﹣1)△3=﹣1+×3=﹣1+2=1.24.解:(1)设购进篮球x个,排球y个,依题意得:,解得:.答:购进篮球200个,排球300个.(2)(48﹣32)×200+(36﹣24)×300=6800(元).答:该店销售完这批篮球和排球后可获利6800元.25.解:设大和尚有x人,小和尚有y人,依题意得:,解得:.答:大和尚有25人,小和尚有75人.26.解:(1)设容量为2G的移动U盘的销售数量为x只,容量为4G的移动U盘的销售数量为y只,依题意得:,解得:.答:容量为2G的移动U盘的销售数量为6只,容量为4G的移动U盘的销售数量为10只.(2)设容量为4G的移动U盘的销售单价是m元,则容量为1G的移动U盘的销售单价是(m﹣30)元,容量为2G的移动U盘的销售单价是(m﹣20)元,容量为8G的移动U盘的销售单价是(m+40)元,容量为16G的移动U盘的销售单价是(m+120)元,依题意得:5(m﹣30)+6(m﹣20)+10m+6(m+40)+3(m+120)=2730,解得:m=80.答:容量为4G的移动U盘的销售单价是80元.。

北师大版八年级上册数学第五章二元一次方程组测试题(全章)

北师大版八年级上册数学第五章二元一次方程组测试题(全章)
14.三角形的两边长分别为3和6,第三边的长是方程 -6x+8=0的解,则此三角形的第三边长是_____
15.两个相似多边形 一组对应边分别为3cm和4.5cm.如果它们的面积和为78cm2,那么较大多边形的面积为_____cm2.
16.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为_____.
李晓波:阿姨,您好!
售货员:同学,你好,想买点什么?
李晓波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
24、某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示.
8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴,y轴的负半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x<0)的图象上,若AB=1,则k的值为( )
A. 1B.﹣1C. D.
9.在一个不透明的袋子里装有 个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸 次,其中 次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )

八年级数学上册第五章二元一次方程组检测题新版北师大版

八年级数学上册第五章二元一次方程组检测题新版北师大版

第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有多数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组各个方程的公共解叫做这个方程组的解2.如图,数轴上A ,B ,C ,D 四点对应的数都是整数,若点A 对应的数为a ,点B 对应的数为b 且b -2a =7,则数轴上原点应是( C )A .点AB .点BC .点CD .点D3.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在平面直角坐标系中位于( A )A .第一象限B .其次象限C .第三象限D .第四象限4.将三元一次方程组⎩⎪⎨⎪⎧5x +4y +z =0,①3x +y -4z =11,②x +y +z =-2.③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( A )A.⎩⎪⎨⎪⎧4x +3y =27x +5y =3B.⎩⎪⎨⎪⎧4x +3y =223x +17y =11C.⎩⎪⎨⎪⎧3x +4y =223x +17y =11D.⎩⎪⎨⎪⎧3x +4y =27x +5y =11 5.(2024·枝江模拟)若⎩⎪⎨⎪⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( B )A .y =2x +7B .y =7-2xC .y =-2x -5D .y =2x -56.假如方程组⎩⎪⎨⎪⎧3x +4y =2,2x -y =5,的解也是方程3x -my =8的一个解,则m 的值是( D )A .-2B .-1C .1D .27.已知⎩⎪⎨⎪⎧x =2k ,y =-3k 是二元一次方程2x -y =14的解,则k 的值是( A )A .2B .-2C .3D .-38.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样支配生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( C )A.⎩⎪⎨⎪⎧x +y =30200x =100yB.⎩⎪⎨⎪⎧x +y =30100x =200yC.⎩⎪⎨⎪⎧x +y =302×200x =100yD.⎩⎪⎨⎪⎧x +y =302×100x =200y 9.(2024·石家庄一模)关于x ,y 的方程组⎩⎪⎨⎪⎧x +py =0,x +y =3的解是⎩⎪⎨⎪⎧x =1,y =▲,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( A )A .-12 B.12 C .-14 D.1410.已知直线y =2x 与y =-x +b 的交点为(-1,a),则方程组⎩⎪⎨⎪⎧y -2x =0,y +x -b =0的解为( D )A.⎩⎪⎨⎪⎧x =1y =2B.⎩⎪⎨⎪⎧x =-1y =2C.⎩⎪⎨⎪⎧x =1y =-2D.⎩⎪⎨⎪⎧x =-1y =-2 二、填空题(每小题3分,共18分)11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__.12.若-2x m -n y 2与3x 4y 2m +n是同类项,则m -3n 的立方根是__2__.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为__(2,2)__.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =__1__.15.假如实数x ,y 是方程组⎩⎪⎨⎪⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场改变,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,依据题意可列方程组为__⎩⎪⎨⎪⎧x +y =1000.9x +1.4y =100×1.2__. 三、解答题(共72分) 17.(8分)解方程组:(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12; (2)⎩⎪⎨⎪⎧3x +2y =5x +2,x +y =-3. 解:(1)⎩⎪⎨⎪⎧x =5y =-3 (2)⎩⎪⎨⎪⎧x =-2y =-118.(7分)若等式(2x -4)2+|y -12|=0中的x ,y 满意方程组⎩⎪⎨⎪⎧mx +4y =8,5x +16y =n ,求2m 2-n+14mn 的值. 解:依题意得⎩⎪⎨⎪⎧2x -4=0,y -12=0,∴⎩⎪⎨⎪⎧x =2,y =12,将⎩⎪⎨⎪⎧x =2,y =12代入方程组得⎩⎪⎨⎪⎧m =3,n =18,∴原式=27219.(7分)已知|x +2y -9|+(3x -y +1)2=0,求xy 的平方根.解:由非负数的性质得⎩⎪⎨⎪⎧x +2y -9=0,①3x -y +1=0.②由①得x =9-2y③,将③代入②得3(9-2y )-y +1=0,解得y =4,把y =4代入③得x =1.所以xy =4,则xy 的平方根是±220.(7分)在某地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收,下边是小明爸爸、妈妈的一段对话.请你用学过的学问帮助小明算出他们家今年菠萝的收入.(收入-投资=净赚) 解:设小明家去年种植菠萝的收入为x 元,投资y 元,∴⎩⎪⎨⎪⎧x -y =8000,(1+35%)x -(1+10%)y =11800,解得⎩⎪⎨⎪⎧x =12000,y =4000.∴收入为(1+35%)x =16200(元) 21.(8分)直线a 与直线y =2x +1交点的横坐标是2,与直线y =-x +2交点的纵坐标是1,求直线a 对应的表达式.解:把x =2代入y =2x +1,得y =5,∴两直线交点坐标为(2,5),把y =1代入y =-x +2,得x =1,∴交点坐标为(1,1).设直线a 的表达式为y =kx +b (k≠0).代入(2,5),(1,1)得⎩⎪⎨⎪⎧2k +b =5,k +b =1,∴⎩⎪⎨⎪⎧k =4,b =-3,∴直线a 的表达式为y =4x -322.(8分)如图,小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进,已知两人在上午8时同时动身,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A ,B 两地间的路程.解:设小李的速度为x 千米/时,小明的速度为y 千米/时,A ,B 两地间的路程为m 千米,由题意得⎩⎪⎨⎪⎧2(x +y )=m -36,4(x +y )=m +36,两式相减得2(x +y )=72,又2(x +y )=m -36,故m -36=72,所以m =108,答:A ,B 两地间的路程为108千米23.(8分)已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于点A ,点A 横坐标为-1,且直线l 1与x 轴交于点B ,与y 轴交于点D ,直线l 2与y 轴交于点C.(1)求出点A 坐标及直线l 2的表达式; (2)连接BC ,求出S △ABC .解:(1)A (-1,1),l 2:y 2=-2x -1 (2)S △ABC =S △BCD -S △ACD =124.(9分)某超市支配购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)假如购进甲种玩具有实惠,实惠方法是:购进甲种玩具超过20件,超出部分可以享受7折实惠,若购进x(x>0)件甲种玩具须要花费y 元,请你求出y 与x 的函数关系式.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141,解得⎩⎪⎨⎪⎧x =30,y =27,答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元 (2)当0<x≤20时,y =30x ;当x>20时,y =20×30+(x -20)×30×0.7=21x +18025.(10分)如图,已知直线l 1:y =3x +1与y 轴交于点A ,且和直线l 2:y =mx +n 交于点P(-2,a),依据以上信息解答下列问题:(1)求a 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =3x +1,y =mx +n ,请你干脆写出它的解;(3)若直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3,求直线l 2的函数表达式.解:(1)∵(-2,a )在直线y =3x +1上,∴当x =-2时,a =-5(2)解为⎩⎪⎨⎪⎧x =-2y =-5 (3)∵直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3,∴直线l 2过点(3,0),又∵直线l 2过点P (-2,-5),∴⎩⎪⎨⎪⎧3m +n =0,-2m +n =-5,解得⎩⎪⎨⎪⎧m =1,n =-3,∴直线l 2的函数表达式为y =x -3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册第五章《二元一次方程组》单元检测题
24分)
、已知x+y=5,且x-y=1,则xy=_________。

、已知⎩⎨
⎧==5
,3y x 是方程ax -2y =2的一个解,那么a 的值是 . 、已知2x -3y =1,用含x 的代数式表示y ,则y = .
、已知y =kx +b .如果x =4时,y =15;x =7时,y =24,则k = ;b = .
、已知二元一次方程组45ax by bx ay +=⎧⎨+=⎩ 的解是2
1
x y =⎧⎨=⎩,则a+b 的值为________。

、若532+y x b a 与x y b a 2425-是同类项,则x= ,y= . 、如右图,已知函数y ax b =+和y kx =的图象交于
点P ,则根据图象可得,关于y ax b
y kx
=+⎧⎨=⎩的二元
一次方程组的解是 .
、一次函数y=x-1 与 y=2x-1的交点坐标是 . 24分)
、已知二元一次方程组22
5
x y x y +=⎧⎨-+=⎩的解是( )
16x y =⎧⎨=⎩ B.14x y =-⎧⎨=⎩ C.32x y =-⎧⎨=⎩ D.32x y =⎧⎨=⎩
、如右图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )
A .9015x y x y +=⎧⎨=-⎩
B .90
215x y x y +=⎧⎨=-⎩
C .90152x y x y +=⎧⎨=-⎩
D .290
215
x x y =⎧⎨=-⎩
、无论m 为何实数,直线y=2x+m 与y=-x+4的交点不可能在 ( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
、下列方程组的解中是二元一次方程组22
5x y x y +=⎧⎨-+=⎩
的解是( )
16x y =⎧⎨=⎩ B.14x y =-⎧⎨=⎩ C.32x y =-⎧⎨=⎩ D.32
x y =⎧⎨=⎩
、若2,
1x y =⎧⎨=-⎩
是下列某二元一次方程组的解,则这个方程组为( )
、35,1x y x y +=⎧⎨+=⎩ B 、3,25
x y y x =-⎧⎨+=⎩ C 、2,31x y x y =⎧⎨=+⎩ D 、25,1x y x y -=⎧⎨+=⎩
14、我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )
A
D
B
C


A 、⎩⎨⎧=++=x y x y 5837
B 、⎩⎨⎧=-+=x y x y 5837
C 、⎩⎨⎧+=-=5837x y x y
D 、⎩⎨⎧+=+=5
837x y x y
15、以方程组2
1y x y x =-+⎧⎨=-⎩
的解为坐标的点(,)x y 在平面直角坐标系中的位置是
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 16、某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( ) A、20kg B、25kg C、28kg D、30kg
三、解答题(52分) 17、(8分)用指定的方法解下列方程组: (1) ⎩⎨⎧=+=-524y x y x (代入法) (2) ⎩⎨⎧-=--=-.
2354,42y x y x
18、(6分)某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.大、小宿舍各有多少间?
19、(6分)在某校举办的足球比赛中规定:胜一场得3分, 平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场?平几场? 20、(8分)甲、乙两相距36千米两地相向而行,如果甲比乙先走2时,那么他
们在乙出发2.5时后相遇;如果乙比甲先走2时,那么他们在甲出发3时后相遇,甲、乙两人每时各走多少千米?
21、(8分)用作图象的方法解方程组
⎩⎨⎧=-=+.
52,
02y x y x
22、(8分)某山区有23名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如
(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中。

(不需写出计算过程)
23、(8分)某景点的门票价格规定如下表
人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元. (1)两班各有多少名学生?
(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?。

相关文档
最新文档