第13章胶体与大分子溶液
兰州大学物理化学课件 第十三章 胶体分散体系

一般以比表面积的大小来表示分散体系分散程度 的大小 分散度(比表面积:单位体积的物质具 有的表面积)
S S0 V
显然,分散程度越高,比表面积越大
4 3 分散相呈球体 V r S 4 r 2 3
通过大量观察,得出结论:粒子越小,布朗运动 越激烈。其运动激烈的程度不随时间而改变,但随温 度的升高而增加
1905年和1906年爱因斯坦(Einstein)和斯莫鲁霍 夫斯基(Smoluchowski)分别阐述了Brown运动的本质。
Brown运动是分散介质分子以不同大小和不同方向 的力对胶体粒子不断撞击而产生的,由于受到的力不 平衡,所以连续以不同方向、不同速度作不规则运动。 随着粒子增大,撞击的次数增多,而作用力抵消的可 能性亦大
用这两种方法直接制出的粒子称为原级粒 子。视具体制备条件不同,这些粒子又可以聚 集成较大的次级粒子 通常所制备的溶胶中粒子的大小不是均一的, 是一个多级分散体系
分散法
(1)研磨法: 用机械粉碎的方法(球磨机,胶体磨等)将固体磨细 这种方法适用于脆而 易碎的物质,对于柔韧性 的物质必须先硬化后再粉 碎。例如,将废轮胎粉碎, 先用液氮处理,硬化后再 研磨
布朗运动的存在是胶体能够稳定存在的原因。因 胶粒不会安定的停留在某一位置上,胶粒就不会因 重力而聚沉。但布朗运动也有可能使胶粒相互碰撞 而聚集 二.扩散 胶粒也有热运动,因此也具有扩散和渗透压。 只是溶胶的浓度较稀,这种现象很不显著 由于分子的热运动和胶粒的布朗运动,可 以观察到胶粒从高浓区向低浓区迁移的现象, 这就是胶粒的扩散作用
2.亲液溶胶(分散相与分散介质之间有亲和力的溶胶) 如高分子化合物溶液,分子半径落在胶体粒 子范围内的大分子溶解在合适的溶剂中,形成分 子分散的真溶液。一旦将溶剂蒸发,大分子化合 物凝聚,再加入溶剂,又可形成溶胶,亲液溶胶 是热力学上稳定、可逆的体系
胶体

紧密层
0热力学电势差:
固体表面与溶液本体间的电势差
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但 当分散相粒子和液体介质相对运动时,就会产生电位差, 这种电位差叫电动电势。 胶粒是带电的,由于静电引力使反粒子在表面周围,
又由于分子热运动,使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几
1869年,发现了Tyndall效应,可区别溶胶及溶液;
1903年,德国科学家Zsigmondy发明了超显微镜, 肯定溶胶的一个根本问题—体系的多相性,从而明确了 胶体化学是界面化学。
1907年,德国化学家Ostwald创办《胶体化学和工
业杂志》—胶体化学正式成为一门独立的学科。 1941年,前苏联的德查金(Derjaguin B V)和朗道 (Landau L D)以及1948年荷兰的维韦(Werwey E J W)和 奥佛比克(Overbeek J T G)胶体稳定性的DLWO理论。从 70年代起,对高分子稳定胶体的研究逐渐成为热点,其中
φ0
+ + + + + + + + + + + +
δ
φ0
+ + + + + + + + + + + + +
-
A B x -
平板双电层模型
扩散双电层模型
质 点 表面+ + + + + + + + + +
表面与胶体习题答案

第十三章 界面现象§13.1 表面张力及表面吉布斯自由能一、表面张力 在两相(特别是气-液)界面上,处处存在着一种张力,它垂直与表面的边界,指向液体方向并与表面相切。
把作用于单位边界线上的这种力称为表面张力,用γ 表示,单位是N ·m -1。
二、表面功与表面自由能温度、压力和组成恒定时,可逆使表面积增加dA 所需要对体系作的功,称为表面功。
用公式表示为:s W dA γ∂=,式中γ为比例系数,它在数值上等于当T ,p 及组成恒定的条件下,增加单位表面积时所必须对体系做的可逆非膨胀功。
B B B B ,,,,,,,,()()()()S V n S P n T V n T P n U H A G A A A Aγ∂∂∂∂====∂∂∂∂ ( 广义的表面自由能) 表面自由能考虑了表面功,热力学基本公式中应相应增加s dA γ一项,即由此可得:B BBB BBB BB B BBd d d d d d d d dA d d d d d d d s s s s U T S P V A dn H T S V P A dn S T P V A dn G S T V P A dn γμγμγμγμ=-++=+++=--++=-+++∑∑∑∑狭义的表面自由能定义:B ,,()p T n G Aγ∂=∂,表面吉布斯(Gibbs )自由能,单位:J ·m -2。
三、界面张力与温度的关系,,,,S B B A V n s T V n S A T γ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭,,,,S B BA P n s T P n S A T γ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 四、溶液的表面张力与浓度的关系对于纯液体,当温度、压力一定时,其表面张力一定。
但对于溶液,由于溶质的加入形成了溶液,表面张力发生变化。
这种变化大致有三种情况:A.表面张力随溶质浓度增大而升高如:NaCl 、KOH 、NH 4Cl 、KNO 3等无机盐类;B.表面张力随浓度增大而降低,通常开始降低较快而后减慢,如醇类、酸类、醛类、酮类等极性有机物;C.一开始表面张力急剧下降,到一定浓度后几乎不再变化,如含8个碳以上的有机酸盐、有机胺盐、磺酸盐等。
胶体与大分子溶液试题

胶体与大分子溶液试题一、填空题1.胶体是高分散的多组分相热力学体系,动力学体系。
2.高分子溶液是多组分相热力学体系。
3.胶体体系中,分散相的粒子大小界于米,而粗分散体系粒子大小米。
4.丁达尔现象是光的所引起的,其强度I与入射光波长λ。
5.是胶体稳定性原因之一。
6.胶粒是胶体稳定性主要原因。
7.通电后,胶粒在电场中运动的现象称为,而分散介质在电场中运动的现象称为。
二、单项选择题1.雾的形成过程中,分散相(1)和分散介质(2)的相态分别为:( )A、(1)气,(2)气;B、(1)液,(2)液;C、(1)液,(2)气;D、(1)气,(2)液。
2.对胶体分散体系,分散相的颗粒大小范围一般为:( )A、10-7~10-5m;B、10-9~10-7m;C、10-3~10-5m;D、10-1~10-9m。
3.下列体系哪一种是胶体溶液:( )A、墨汁;B、肥皂溶液;C、牛奶;D、30 %甲醛溶液。
4.乳状液是由哪个分散体系组成? ( )A、两种互不相溶的液体;B、固体加液体;C、两种互溶的液体;D、多种互溶的液体。
5.下列物质中哪一种属于胶体:( )A、空气;B、蔗糖水;C、石英;D、红宝石。
6.烟的形成过程中,分散相(1)和分散介质(2)的相态分别为:( )A、(1)气,(2)气;(B) (1)固,(2)液;(C) (1)固,(2)气;(D) (1)气,(2)液。
7.当一束光线透过悬浊液、溶胶、真溶液时,它们分别发生光的:( )A、反射、散射、透射;B、反射、折射、散射;C、折射、反射、散射;D、反射、散射、强散射8.在晴朗的白昼,天空呈蔚蓝色的原因是: ( )A、蓝光波长短, 透射作用显著;B、蓝光波长短, 散射作用显著;C、红光波长长, 透射作用显著;D、红光波长长, 散射作用显著。
9.在As2S3溶胶中加入等体积等当量浓度的下列不同电解质溶液,则使溶胶聚沉最快的是:( )A、LiCl;B、NaCl;C、CaCl2;D、AlCl3。
大分子溶液

大分子溶液 小分子溶液 1~100nm 慢 单分子 单相 不能 是 弱 大 大 不太敏感 可逆 <1nm 快 单分子 单相 能 是 无 小 小 不敏感 可逆
多相 不能 是否热力学稳定体系 不是 丁达尔效应 强 粘度 小,与介质相似 渗透压 小 对外加电解质 敏感 形成过程是否可逆 不可逆
三、大分子溶液的黏度与分子质量的 测定
一)黏度的表示方法
二)黏度法测定大分子的平均摩尔质量 Huggins和Kraemer根据实验得到了稀溶液 中线型大分子的增比黏度、相对黏度与 浓度的关系式:
sp
C
C
k1 c
2
r 2
ln c k
2
以ηsp/c对c作图,得一条直线,以 lnηr/c 对c作图得另一条直线。将两条直线外推 至浓度c → 0,得到特性黏度[η]。
大分子化合物的分类
平均摩尔质量大于10 kgmol-1的物质 天然大分子 淀粉、蛋白质 、纤维
素、核酸、各种生物大分子。
合成大分子 合成橡胶、树脂、纤维。
功能大分子
光敏大分子、导电大分
子、医用大分子、 大分子膜。
大分子溶液其他溶液性质的比较
溶液类型 性质 分散相大小 扩散速度 分散相存在单元 体系 能否透过半透膜 憎液溶胶 1~100nm 慢
大分子的浓度涨落
Debye根据涨落理论导出的大分子溶液散 射光强Iθ,r计算公式为
I , r 2π n n cRT 1 cos2 I0 L r c c
2 2 0 4 2 2
L为Avogadro常数,n0为溶剂折射率,c为溶液浓度,∂n/∂c为折 射率随浓度的变化率,λ为入射光的波长, r为观测散射光的距 离,θ为观测散射光与入射光的夹角,∂Π/∂c为渗透压随浓度的 变化率,I0为入射光强。 适用于入射光的波长大于大分子的情况。
胶体与大分子溶液7要点

上一内容
下一内容
回主目录
返回
2020/10/1
上一内容
下一内容
回主目录
返回
2020/10/1
14.8 大分子概说
三种分散体系性质的比较 大分子分类
上一内容
下一内容
回主目录
返回
2020/10/1
一. 三种分散体系性质的比较
r /0
sp
0 0
r
1
sp
/
c
1 c
0 •
0
[] clim0csp
lim
c0
r
c
上一内容
下一内容
回主目录
返回
2020/10/1
三. 用粘度法测定摩尔质量
当温度、聚合物和溶剂体系选定后,大分子溶液的粘度仅与浓度 和聚合物分子的大小有关。
特性粘度是几种粘度中最能反映溶质分子本性的一种物理量,由于
溶液类型 性质
憎液溶胶
胶粒大小
1~100nm
分散相存在单元 多分子组成的胶
粒
能否透过半透膜
不能
是否热力学稳定体 系
不是
丁铎尔效应
强
粘度
小,与介质相似
对外加电解质
敏感
聚沉后再加分散介 质
不可逆
大分子溶 液
1~100nm
单分子
不能
是
微弱 大 不太敏感
可逆
小分子溶液
<1nm 单分子
能 是 微弱 小 不敏感 可逆
数均摩尔质量
质均摩尔质量
Z均摩尔质量
粘均摩尔质量
上一内容
傅献彩物理化学选择题———第一章 热力学第一定律及其应用 物化试卷(一)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一)第二章热力学第二定律物化试卷(二)第三章统计热力学基础第四章溶液物化试卷(一)第四章溶液物化试卷(二)第五章相平衡物化试卷(一)第五章相平衡物化试卷(二)第六章化学平衡物化试卷(一)第六章化学平衡物化试卷(二)第七章电解质溶液物化试卷(一)第七章电解质溶液物化试卷(二)第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用第十章化学动力学基础(一)物化试卷(一)第十章化学动力学基础(一)物化试卷(二)第十一章化学动力学基础(二) 物化试卷(一)第十一章化学动力学基础(二) 物化试卷(二)第十二章界面现象物化试卷(一)第十二章界面现象物化试卷(二)第十三章胶体与大分子溶液物化试卷(一)第十三章胶体与大分子溶液物化试卷(二)参考答案1.物质的量为n的纯理想气体,该气体在如下的哪一组物理量确定之后,其它状态函数方有定值。
( )(A) p (B) V (C) T,U (D) T, p2. 下述说法哪一个正确? ( )(A) 热是体系中微观粒子平均平动能的量度(B) 温度是体系所储存热量的量度(C) 温度是体系中微观粒子平均能量的量度(D)温度是体系中微观粒子平均平动能的量度3. 有一高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外压力相等时关闭活塞,此时筒内温度将:( )(A)不变(B)升高(C)降低(D)无法判定4. 1 mol 373 K,标准压力下的水经下列两个不同过程变成373 K,标准压力下的水气,(1) 等温等压可逆蒸发,(2)真空蒸发这两个过程中功和热的关系为:( )(A) |W1|> |W2| Q1> Q2(B)|W1|< |W2| Q1< Q2(C) |W1|= |W2| Q1= Q2(D)|W1|> |W2| Q1< Q25. 恒容下,一定量的理想气体,当温度升高时热力学能将:( )(A)降低(B)增加(C)不变(D)增加、减少不能确定6. 在体系温度恒定的变化中,体系与环境之间: ( )(A) 一定产生热交换(B)一定不产生热交换(C) 不一定产生热交换(D)温度恒定与热交换无关7. 一可逆热机与另一不可逆热机在其他条件都相同时,燃烧等量的燃料,则可逆热机拖动的列车运行的速度:( )(A) 较快(B) 较慢(C) 一样(D) 不一定8. 始态完全相同(p1,V1,T1)的一个理想气体体系,和另一个范德华气体体系,分别进行绝热恒外压(p0)膨胀。
第十三章 胶体与大分子

二、胶体的分类
1. 以结构、稳定性分类 1)憎液溶胶(简称:溶胶) 胶粒由许多分子组成,体系的相界
面大,界面能高,所以极易被破坏 而聚沉,并且不能恢复溶胶原态。
例如:将Au金溶胶沉淀出来后,再将沉 淀物悬浮于水中,不能再得到胶状金。
憎液溶胶是热力学不稳定体系和聚沉不 可逆体系。
胶粒与液体介质之间的亲合性弱,所以 叫憎液溶胶。
1)由于离子溶剂化,胶粒和胶团也是溶剂化的。 2)胶团的结构表达(横式)须掌握。
§13.2 溶胶的制备及提纯
一、溶胶的制备
胶体的分散相具有特有的分散度:10-9~10-7m, 制备溶胶有两类方法:
1.分散法:大颗粒分割成胶体粒子; 2.凝聚法:使小的分子(离子)颗粒聚集成胶
体粒子。
1.分散法
1)研磨法:机械粉碎法,适用于脆而易碎的分 散相,最细到 1m 的颗粒;
a)悬浮于液体中的质点的平均动能和小分 子一样,皆为 (3/2) kBT。Brown 运动是不断 热运动的液体分子对微粒冲击的结果。这一 理论可以解释以上两个实验观测结果。
b)在实验中不必苛求质点运动的实际路 径或实际速度 (也没有法测得),只需测 定一定时间间隔 ( t ) 内质点 ( 在 x 轴上 )
胶体的扩散系数系数: 10-10 ~ 10-12 m2 / s 小分子物质的扩散系数:~10-9 m2 / s
一些典型的扩散系数值(20C水中)
物质
蔗糖 胶态金 纤维蛋白质 胶态硒
分子量
342 = 1.3 nm
330,000 = 56 nm
D (×10-10 m2/s)
4.586 1.63 0.197 0.038
一、扩散现象
当存在浓差时,胶粒由高浓区域自发地 移向低浓区域,此即扩散现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一内容 下一内容 回主目录
返回
2020/4/14
(2)按分散相和介质聚集状态分类
1.液溶胶 将液体作为分散介质所形成的溶胶。当分散
相为不同状态时,则形成不同的液溶胶:
A.液-固溶胶 如油漆,AgI溶胶 B.液-液溶胶 如牛奶,石油原油等乳状液 C.液-气溶胶 如泡沫
上一内容 下一内容 回主目录
返回
2020/4/14
14.1 胶体分散体系及其基本特性
胶体化学的发展
在1861年英国科学家格雷厄姆(Graham)就提出了“胶体”的 概念,他将物质按扩散能力分为两类:一类易扩散,如蔗糖、 食盐、硫酸镁及其他无机盐类,并在溶液中能透过半透膜;另一 类难扩散,如蛋白质、Al(OH)3、Fe(OH)3及其他大分子化合物, 在溶液中不能透过半透膜。当蒸去水份后,前类物质析出晶 体,而后类物质得到胶状物。因此他认为可以把物质区分为晶 体和胶体两类。
上一内容 下一内容 回主目录
返回
2020/4/14
(3)按胶体溶液的稳定性分类
2.亲液溶胶 半径落在胶体粒子范围内的大分子溶解在
合适的溶剂中,一旦将溶剂蒸发,大分子化合物凝 聚,再加入溶剂,又可形成溶胶,亲液溶胶是热力 学上稳定、可逆的体系。
上一内容 下确的。后来的学者如俄国科学家维
伊曼(在1905年)对多种化合物进行试验,结果证明任何典 型
的晶体物质都可以用降低其溶解度或选用适当分散介质而制
成溶胶。如把NaCl分散在苯中就可以形成溶胶。
上一内容 下一内容 回主目录
返回
2020/4/14
胶体化学发展史
这样人们认识到胶体只是物质以一定分散 程度而存在的一种状态,而不是一种特殊类型的 物质的固有状态。
物理化学—Chapter 14 Colloid Chemistry
上一内容 下一内容 回主目录
返回
2020/4/14
第14章 胶体分散体系和大分子溶液
14.1 胶体及其基本特性 14.2 溶胶的制备与净化 14.3 溶胶的动力性质 14.4 溶胶的光学性质 14.5 溶胶的电学性质 14.6 溶胶的稳定性和聚沉作用 14.7 大分子概说 14.8 大分子的相对摩尔质量 14.9 Donnan平衡
1.分子分散体系
分散相与分散介质以分子或离子形式彼此混溶, 没有界面,是均匀的单相,分子半径大小在10-9 m以 下 。通常把这种体系称为真溶液,如CuSO4溶液。 2.胶体分散体系
分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 3.粗分散体系
自从1903年Zsigmondy和Siedentopf发明了超 倍显微镜,第一次成功的观察到溶胶中粒子的运 动,证明了溶胶的超微不均匀性。认识到溶胶中 存在相界面的重大意义。也认识到胶体化学和表 面化学之间的密切联系。
上一内容 下一内容 回主目录
返回
2020/4/14
胶体化学的应用
胶体化学是物理化学的一个重要分支。 它所研究的领域是化学、物理学、材料科学、 生物化学等诸学科的交叉和重叠,是这些学科 的重要基础。胶体化学与工农业生产、日常生 活密切相关,胶体及其研究方法对于浮选、冶 金、材料、食品加工、水质的净化、废水处 理、石油化工等有着重要意义。
返回
2020/4/14
(2)按分散相和介质聚集状态分类
3.气溶胶
将气体作为分散介质所形成的溶胶。当分散相为 固体或液体时,形成气-固或气-液溶胶,但没有 气-气溶胶,因为不同的气体混合后是单相均一 体系,不属于胶体分散体系范围.
A.气-固溶胶 如烟,含尘的空气
B.气-液溶胶 如雾,云
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2020/4/14
分散体系及其基本特性
胶体化学所研究的对象是高度分散的多相系统。
人们每天总要接触各种分散系统,如盐水、糖 水等各种溶液就是常见的分散系统,
另外,水滴分散在空气中形成的云雾、颜料分 散在油中形成油漆、气体分散在液体中形成泡 胶沫 分粒以散的及系结固统构体。颗粒分散在空气中形成烟尘等都是
返回
2020/4/14
(3)按胶体溶液的稳定性分类
1.憎液溶胶 半径在1 nm~100 nm之间的难溶物固体粒子 分散在液体介质中,有很大的相界面,易聚沉,是 热力学上的不稳定体系。 一旦将介质蒸发掉,再加入介质就无法再形成 溶胶,是一个不可逆体系,如氢氧化铁溶胶、碘 化银溶胶等。 这是胶体分散体系中主要研究的内容。
上一内容 下一内容 回主目录
返回
2020/4/14
分散相与分散介质
把一种或几种物 质分散在另一种物质 中就构成分散体系。 其中,被分散的物质 称为分散相 (dispersed phase), 另一种物质称为分散 介质(dispersing medium)。
上一内容 下一内容 回主目录
例如:云,牛奶,珍珠
返回
2020/4/14
分散体系分类
分散体系通常有三种分类方法:
按分散相粒子的大小分类:
•分子分散体系 •胶体分散体系 •粗分散体系
•液溶胶 按分散相和介质的聚集状态分类: •固溶胶
•气溶胶
•憎液溶胶 按胶体溶液的稳定性分类: •亲液溶胶
上一内容 下一内容 回主目录
返回
2020/4/14
(1)按分散相粒子的大小分类
上一内容 下一内容 回主目录
返回
2020/4/14
胶体化学发展史
在胶体的制备过程中,他发现有许多通常不溶解的物质
在适当的条件下可以分散在溶剂中形成貌似均匀的溶液,从
其外表上看和通常的真溶液无什么差别,但从其扩散速率、
渗透能力等来看则属于胶体物质的范围,因此它称之为溶胶。
格雷厄姆虽然首次认识到物质的胶体性质,但他把物质
上一内容 下一内容 回主目录
返回
2020/4/14
(2)按分散相和介质聚集状态分类
2.固溶胶 将固体作为分散介质所形成的溶胶。当分散相为
不同状态时,则形成不同的固溶胶:
A.固-固溶胶 如有色玻璃,不完全互溶的合金
B.固-液溶胶 C.固-气溶胶
如珍珠,某些宝石 如泡沫塑料,沸石分子筛
上一内容 下一内容 回主目录