The winter effect on formation of PCDD_Fs in Guangzhou by vehicles_ A tunnel study

合集下载

福清核电厂厂址区域龙卷风设计基准参数的估算

福清核电厂厂址区域龙卷风设计基准参数的估算

蔡秀华, 吕文忠, 陈龙泉. 2021. 福清核电厂厂址区域龙卷风设计基准参数的估算[J]. 气候与环境研究, 26(3): 351−358. CAI Xiuhua, LÜWenzhong, CHEN Longquan. 2021. Estimation of Design Basis Tornado Parameters for the Zone around the Fuqing Nuclear Power Plant [J]. Climatic and Environmental Research (in Chinese), 26 (3): 351−358. doi:10.3878/j.issn.1006-9585.2020.20088福清核电厂厂址区域龙卷风设计基准参数的估算蔡秀华 1 吕文忠 2 陈龙泉31 中国气象科学研究院,北京 1000812 中国气象局气象干部培训学院,北京 1000813 中国辐射防护研究院,太原 030006摘 要 基于1959~2017年福清核电厂区龙卷风的调查资料,采用Rankine 涡模型估算该区域超过某一特定风速的概率分布,通过概率值导出设计基准龙卷风和基准设计风速,按照压降模型计算出龙卷风的压降,研究结果表明:福清核电评价区域龙卷风的总压降为4.29 kPa ;平移速度13.8 m/s ,最大旋转风速57.6 m/s ,最大压降速率为1.18 kPa/s ,基准设计风速为71.4 m/s ,属于F3级别的龙卷风;在125 kg 下落的穿甲弹类和2.5 cm 实心钢球两种不同情景下计算出的龙卷风产生的飞射物的最大水平碰撞速度均为24.99 m/s 、碰撞动量依次为3123.75 kg m s −1和1.615 kg m s −1。

这些计算结果,从龙卷风的角度,为政府相关部门在规划和建设福清核电厂时提供了可靠的理论依据。

关键词 龙卷风 核电厂 基准设计参数 碰撞动量文章编号 1006-9585(2021)03-0351-08 中图分类号 X321 文献标识码 A doi:10.3878/j.issn.1006-9585.2020.20088Estimation of Design Basis Tornado Parameters for the Zonearound the Fuqing Nuclear Power PlantCAI Xiuhua 1, LÜ Wenzhong 2, and CHEN Longquan31 Chinese Academy of Meteorological Sciences , Beijing 1000812 China Meteorological Administration Training Centre , Beijing 1000813 China Institute for Radiation Protection , Taiyuan 030006Abstract Based on the investigation data of tornadoes in the Fuqing Nuclear Power Plant area from 1959 to 2017, the probability distribution of exceeding a specific wind speed is calculated using the Rankine model. The design basis tornado wind speeds are derived from the probability values, and the pressure drop of tornadoes is calculated using the pressure drop model. Results show that the design basis wind speed of an F3 category tornado is 71.4 m/s, with a probability of 1 × 10−8. Moreover, the total pressure drop of an F3 category tornado is 4.29 kPa, the translation speed is 13.8 m/s, the maximum rotating wind speed is 57.6 m/s, and the maximum pressure drop rate is 1.18 kPa/s. Furthermore,the collision velocity and momentum of the projectile produced by the tornado in two different scenarios are calculated.These two scenarios involve an air penetrator with a weight of 125 kg and a solid steel ball with a radius of 2.5 cm. The maximum horizontal collision velocity of the projectile caused by the tornado is 24.99 m/s in both scenarios. The collision momentum is 3123.75 kg m s −1 in the air penetrator with a weight of 125 kg and 1.615 kg m s −1 in the solid steel ball with收稿日期 2020-07-20;网络预出版日期 2020-10-16作者简介 蔡秀华,女,1963年出生,高工,主要从事环境评价、极端气象和工程气象的研究。

纸浆氯漂白过程中二恶英的来源及生成机制研究进展_夏科学

纸浆氯漂白过程中二恶英的来源及生成机制研究进展_夏科学

PAPRICAN ) 等对纸厂进行了大量详细的调研 . 与此同时对机理的研究也逐渐进行 , 首先是 Allen 等发现 2 , 3 , 7 , 8TCDD 2 , 3 , 7 , 8TCDF , 添加油基消泡剂的未漂浆氯化产生更多的 和 提出油基消泡剂可能是漂 3, 7, 8TCDD 和 2 , 3, 7, 8TCDF 的间接来源 白车间中生成 2 ,
[25 ]

由于油基消泡剂中的 DBD 含量极低, 索氏提取液中又存在大量共萃取组分干扰 DBD 的检测, 当时 还未能准确确认 DBD 的存在, 对于 DBD 作为二 英的前体物质的证据不如 DBF 充分. 但随后 NCASI [27 ] Vanness 等[28] 采用水蒸汽蒸馏检测出了未漂浆中的 DBD , 氧化铝柱前处理消除了共萃取组分的干
Sources and formation mechanisms of polychlorinated dibenzopdioxins and polychlorinated dibenzofurans in the process of pulp bleaching with chlorine
XIA Kexue NI Yuwen ZHANG Haijun CHEN Jiping **
2016 年 1 月 27 日收稿( Received: January 27 , 2016 ) . * 国家自然科学基金( 21577140 ) 资助. Surpported by the National Natural Science Foundation of China( 21577140 ) . Tel: 041184379562 ,E- mail: chenjp@ dicp. ac. cn **通讯联系人, Corresponding author,Tel: 041184379562 ,Email: chenjp@ dicp. ac. cn

CALPHAD软件介绍

CALPHAD软件介绍

Abstract
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. c 2007 Elsevier Ltd. All rights reserved.

黄冶唐三彩窑遗址赋存环境适宜温湿度参数研究

黄冶唐三彩窑遗址赋存环境适宜温湿度参数研究

温湿度进行了研究。

张志军[2]依据现已公认的博物馆环境标准,提出秦俑坑内的温度范围为5~25 ℃,相对湿度40%~70%。

张楠[3]借鉴其他类型博物馆温湿度研究成果提出顺天门遗址保护区适宜温度范围为(14±5)℃。

吴士杰 [4]利用聚类分析法,根据国内多个土遗址博物馆温湿度样本的最大频率范围,分别提出了封闭式以及开敞式遗址博物馆内的适宜温湿度范围。

从上述仅有的研究可知,其所得出的各种土遗址保存适宜温湿度主要是通过借鉴其他类型博物馆的研究成果或以遗址博物馆最高频率温湿度波动范围得出的经验值,没有从土遗址本体出发来研究适宜土遗址长久保存的温湿度标准。

针对上述研究不足,本文以黄冶唐三彩窑址为研究对象,从窑址本体材质性质出发,根据黄冶唐三彩窑址本体材质性质测试预测窑址最易发生的病害种类为温度剥蚀、裂隙、盐析酥碱、微生物损害,并对这四种病害发育与温湿度参数的定量关系进行研究,综合提出黄冶唐三彩窑址保存的适宜温湿度参数范围。

2黄冶唐三彩窑址病害预测分析2.1黄冶唐三彩窑遗址概况巩义黄冶窑遗址位于河南省巩义市的大黄冶村、小黄冶村,是我国发现最早的一处唐三彩窑址[5],现处于回填保护状态,并计划建立遗址博物馆进行展示保护。

根据发掘报告[5],黄冶窑址中主体遗迹如水井、灰坑、作坊、窑炉、陈腐池、淘洗池等材质均为土壤。

2.2黄冶唐三彩窑址土壤性质测试为预测黄冶唐三彩窑址可能发生的病害种类,通过现场取样实验对遗址本体土壤性质进行分析。

黄冶唐三彩窑址土样的含水率及颗粒组成、矿物成分、可溶盐成分分别见表1、表2、表3。

摘要 本文以巩义黄冶唐三彩窑遗址为研究对象,通过对窑址土体的物性的测试分析,预测提出温度剥蚀、裂隙、盐析酥碱、微生物损害为最易发生的病害种类,并依据这四种病害与温湿度参数的定量关系综合提出黄冶唐三彩窑址文物保存温度建议为13.5~18.9℃,相对湿度为78%~80%。

研究结果可为黄土地区土遗址文物保存适宜环境研究提供参考。

废物焚烧过程中产生二噁英的控制方法

废物焚烧过程中产生二噁英的控制方法

废物焚烧过程中产生二噁英的控制方法张丽军;陈扬;陈岚【摘要】本文针对垃圾焚烧过程中面临的二噁英污染问题,主要介绍垃圾焚烧过程中二噁英特征、产生的途径,综述了近年来以催化氧化法、吸附法、生物法、等离子体技术为主的处理垃圾焚烧过程中产生二噁英的研究进展.根据这些技术的研究现状,指出未来等离子体技术应用在处理二噁英方面有着巨大的潜力.【期刊名称】《化学工程师》【年(卷),期】2016(000)012【总页数】4页(P50-53)【关键词】垃圾焚烧;二噁英;方法;降解【作者】张丽军;陈扬;陈岚【作者单位】华北电力大学环境科学与工程学院,河北保定071003;中国科学院北京综合研究中心,北京100083;中国科学院北京综合研究中心,北京100083;华北电力大学环境科学与工程学院,河北保定071003【正文语种】中文【中图分类】X701(1.华北电力大学环境科学与工程学院,河北保定071003;2.中国科学院北京综合研究中心,北京100083)二噁英(PCDD/Fs)作为持续性有机污染物(persistentorganic pollution,POPS)具有环境持久性、生物蓄积性、长距离迁移能力和生物危害性,被列为《POPS公约》的首批控制名单[1]。

它包括75种多氯二苯并二噁英(polychlorinated dibenzo-p-dioxin, PCDDs)和135种多氯二苯并呋喃(polychlorinated dibenzofuran,PCDFs),通常伴随着废弃物焚烧等热处置过程而产生[2,3]。

美国环境保护协会在1994年6月发表报告,指出二噁英是一种严重威胁公众健康的物质,它会极大损害人体免疫、生殖、内分泌等系统,具有致癌、致畸、致突变作用。

此外,二噁英属于持续性有机污染物的一种,一旦形成便能在生态系统中残留数年,甚至更久。

我国在2014年7月1日实施了新的《生活垃圾焚烧污染控制标准》(GB18485-2014)将二噁英的排放限值从原来的1ngTEQ/Nm3下调至0.1ngTEQ/Nm3,和欧盟的排放标准相持平[4]。

植物低温响应的分子机制研究进展

植物低温响应的分子机制研究进展

低温影响植物的生长发育与地理纬度分布,低温灾害是造成作物减产的主要逆境之一。

随着全球气候变化加剧,低温冷冻等极端气候将会更为频繁发生。

因此,研究植物如何响应低温胁迫对于保障经济作物生产与粮食安全等重大问题有着重要的理论与实践价值,植物低温响应分子机制研究一直是植物研究领域中的热点话题。

本文将根据相关研究现状,围绕已知信号途径从植物对外界信号的感知、细胞内的信号传递、信号通路中的信号转导以及植物激素等与低温信号的交叉反应进行论述。

1植物的低温响应1.1植物对低温的生理响应根据低温程度的不同,低温胁迫可以划分为冷害(0~20℃)和冻害(<0℃)[1~2]。

在热带和亚热带气候区,冷害是主要的低温胁迫,影响着水稻、玉米等作物的生产;在温带气候区,冻害是主要的DOI:10.16605/ki.1007-7847.2020.08.0239植物低温响应的分子机制研究进展收稿日期:2020-08-20;修回日期:2020-10-03;网络首发日期:2021-07-23基金项目:国家自然科学基金资助项目(3117117);湖南省自然科学基金项目(2018JJ3036)作者简介:吴丹(1997—),女,湖南浏阳人,硕士研究生;*通信作者:赵小英(1973—),女,湖南慈利人,博士,湖南大学教授,主要从事植物功能基因组学研究,Tel:*************,E-mail:*****************.cn 。

吴丹1,2,毛东海2,赵小英1*(1.湖南大学生物学院植物功能基因组学与发育调控湖南省重点实验室,中国湖南长沙410082;2.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室,中国湖南长沙410125)摘要:低温是限制植物生长发育与植被分布的重要环境因子,植物在长期的环境适应过程中获得了冷驯化机制。

关于低温响应机制的解析,目前研究最为清楚的信号通路是模式植物拟南芥CBF /DREB 1(C-repeat binding transcription factor /dehydrate responsive element binding factor )依赖型低温响应信号通路。

植物抗低温机理的分子生物学研究进展

植物抗低温机理的分子生物学研究进展

植物抗低温机理的分子生物学研究进展摘要:笔者从不同的方面综述了植物低温抗性的分子生物学研究进展,对低温抗性的机理做了阐释,并且给出以后的研究方向和重点。

关键词:低温抗性细胞膜透性不饱和脂肪酸丙二醛保护酶系统脱落酸钙调素低温诱导蛋白温度在植物营养生长、生殖生长的过程中都具有重要的作用。

对于温度的调控是改善植物生长环境,调节植物生长状态的一项重要措施。

在自然环境下,植物对于低温的抗性,体现了植物在温度方面的适应性,体现植物物种、品种的生态位的广度。

也影响着植物产品的质量和产量。

植物的低温胁迫根据温度的不同范围分为两种类型:冷害,是指零上低温对于植物生理机制的影响所造成的伤害;冻害,是指零下低温对于植物生理机制的影响所造成的伤害。

目前,对于植物影响较大的是冷害。

【1~4】冷害的影响程度不仅取决于温度低的程度,也取决于植物受低温影响的时间的长度。

温度越低,时间越长则冷害对于植物的影响越大。

由于温度这一自然因素存在于植物体的整个生命周期中,因此,对于温度的调控,抗低温机制的研究就显得至关重要。

以往的研究中,有对于低温敏感植物和低温驯化植物的对比研究,说明了对植物的低温驯化可以在一定程度上提高植物的抗低温能力。

也有从水分的平衡,蛋白质,碳水化合物,氨基酸,核酸水平上的研究;还有从细胞壁的特性,细胞膜的结构的研究以及生长调节物质的影响。

前面的这些的研究,都说明了植物对于低温的反应和这些条件对于植物抗低温机制的一些影响。

然而所有这些因素都不是某一种因素的单独作用,而是多种因素共同作用,相互影响的结果,不同因素之间存在着互作、制约等的作用。

上面的这些研究也只是停留在膜保护系统、冷调节蛋白的生理调节的水平。

随着生物分子工程、基因工程方面的研究水平的不断提高,给植物抗低温的研究有提出了一个新的方向。

特别是低温信号转导的研究,分子标记的应用,将进一步揭示低温适应性的调控机理。

1、通过影响植物细胞膜透性影响植物低温抗性20世纪70年代,Lyons等提出细胞膜是低温冷害的首要部位,在低温条件下,植物细胞膜由液晶态转变为凝胶态,膜收缩,导致细胞膜透性改变,膜酶和膜功能系统代谢改变,功能紊乱。

苯为前驱物形成二噁英的反应机理

苯为前驱物形成二噁英的反应机理

苯为前驱物形成二噁英的反应机理高正阳;韩文涛;丁艺;孙尧;李明晖【摘要】苯作为垃圾中普遍存在的成分是形成多氯二苯并对二噁英/呋喃(PCDD/Fs)的重要前驱物之一.应用密度泛函理论(DFT)在B3LYP/6-311+G(d,p)水平上研究了苯生成PCDD/Fs的两阶段气相反应机理,获得相关基元反应的势垒与反应热.采用隧道效应校正的变分过渡态理论(VTST)对300~1300K的各基元反应进行速率常数计算.结果表明:苯的氯化过程在合成PCDD/Fs各基元反应中势垒最高,是整个过程的控速步骤;氯酚更有可能被HO·进攻氯苯发生亲核反应后经分子内脱氢形成;邻位Cl能提高芳香烃H的抽取势垒,降低分子反应活性;苯氧自由基经碳碳或碳氧耦合二聚化过程形成不同PCDD/Fs存在竞争机制.相关计算结果可以用于在总二噁英产量基础上评估由苯产生的PCDD/Fs贡献率.%Benzene was one of the important precursors for the formation of polychlorinated dibenzo-p-dioxins (PCDD/Fs) which widespreadly present in waste. The two stage gas-phase formation mechanisms of PCDD/Fs by benzene were studied by density functional theory (DFT) at the B3LYP/6-311+G (d, p) level, the corresponding potential barriers and reaction heats were calculated. The variational transition state theory (VTST) was used to calculate the rate constants of the elementary reactions in the 300~1300K temperature range. The chlorination process of benzene was the determining step of the whole synthesis process of PCDD/Fs with the highest barrier; Chlorophenol was more likely formed via the intramolecular dehydrogenation of chlorobenzene which attacked by HO· radicals; Ortho Cl can raise the extraction barrier of aromatic hydrocarbon H and reducethe molecular reactivity; competition mechanism existed in the formation of PCDD/Fs which was formed by phenoxy radicals via coupling of carbon-carbon or carbon-oxygen. The calculation results could be applied to evaluate the contribution of PCDD/Fs formed by benzene on the basis of total dioxin production.【期刊名称】《中国环境科学》【年(卷),期】2018(038)001【总页数】8页(P59-66)【关键词】密度泛函;苯;二噁英;反应机理;速率常数【作者】高正阳;韩文涛;丁艺;孙尧;李明晖【作者单位】华北电力大学能源动力与机械工程学院,河北保定 071003;华北电力大学能源动力与机械工程学院,河北保定 071003;华北电力大学能源动力与机械工程学院,河北保定 071003;华北电力大学能源动力与机械工程学院,河北保定071003;华北电力大学能源动力与机械工程学院,河北保定 071003【正文语种】中文【中图分类】X13氯代二噁英(PCDD/Fs)一直深受人们关注,垃圾焚烧是生成二噁英类物质的主要途径,在垃圾燃烧以及热解过程中PCDD/Fs形成主要经由两种方式[1]:一种为denovo合成反应,该反应发生的条件为存在无定型碳或者石墨退化层,必须有氧源以及氯源,需要 CuCl2或者过渡金属物质的催化,反应主要发生在 200~400℃[2],这是一种高温下的非均相反应.另一种为氯化前驱物均相气态合成,其化学反应温度范围主要处于 400~800℃之间,后者的反应生成速率远远大于前者[3-4].形成二噁英的前驱物种类多样,包括脂肪族化合物、苯、带官能团的单环芳香族化合物、氯代的芳香族化合物以及蒽醌的衍生物等[5].在前驱物合成PCDD/Fs机理研究中,氯酚为最直接的典型前驱物,因此相关研究主要以氯酚为主,其次为对氯苯的研究,对于其他前驱物机理反应报道较少.这其中Ghorishi等[6]与 Stieglitz等[7]分别研究了氯代芳香烃类物质1,2-二氯苯、2,4-二氯酚以及 1,2,4,5-四氯苯生成二噁英的化学反应特性,发现氯酚的催化反应活性远高于氯苯,前者二噁英生成量远大于后者;相同条件下,氯苯类前驱物生成PCDDs的反应速率比PCDFs高约 2个数量级,且大部分的二噁英均以气态形式存在. Ryan等[8]与Schoonenboom等[1,9]探索以甲苯与苯为代表的非氯代芳香烃在飞灰、CuCl2/Al2O3催化条件下的反应产物,均检测到了氯代二噁英以及氯代呋喃的存在.由于二噁英产生过程的复杂性,实验方法很难检测到反应过程中的中间产物及过渡态等物质,而量子化学克服了实验上的缺陷,从本质上揭示化学反应机理,因此很多学者采用量化计算的研究手段对不同类型二噁英前驱物的反应机理进行探究[10-12].但是目前为止还鲜见以苯为前驱物形成PCDD/Fs的相关理论研究报道,为此本文应用量子化学方法研究了苯为前驱物二噁英气相反应机理,研究其氯化、氧化反应,生成2,3-二氯苯酚及 3,4-二氯苯酚过程,进一步以二氯苯酚为前驱物交叉反应生成PCDD/Fs的气相反应机理,并对反应涉及的基元过程做出相关动力学分析.1 研究方法基于前人实验结果推测PCDD/Fs很有可能经由两步反应机制,第1步是苯在催化作用下发生亲电芳香取代过程,第2步是氯化碳基的氧化分解,并进一步环化生成最终产物.采用密度泛函理论[13-14]在 B3LYP[15]/6-311+G(d,p)水平下计算获得反应路径中涉及到的反应物、过渡态、中间体、产物等各个驻点的空间结构参数.对涉及到的所有驻点结构进行了频率分析,确保反应物、中间体、产物不出现虚频,保证结构的稳定性;过渡态有且仅有一个虚频,保证过渡态结构的唯一性.过渡态是在初猜结构的基础上采用 TS算法定位并优化得到,对每个过渡态在同一方法基组水平下做内禀反应坐标(IRC)计算,验证该过渡态结构与该基元反应的反应物与产物相关联. 在 B3LYP[15]/6-311+G(d,p)水平下对各驻点结构进行了自由能以及热化学焓的计算,并考虑了零点能的校正,进一步计算得到各基元反应的反应势垒及反应热.变分过渡态理论 VTST在温度越高、势垒越低的情况下优势明显[16],本文计算采用变分过渡态理论对于关键基元反应进行化学反应速率常数的计算,并考虑隧道效应,对计算结果进行了校正,在此基础上拟合得到阿伦尼乌兹(Arrhenius)方程.计算方法与基组的稳定性、可靠性已经得到 Dar等[17]在三氯硫酚生成硫代二噁英的研究中验证.所有计算均应用Gaussian09软件包[18]在型号为 ServMaxPSC-201GAMAX 服务器完成.2 结果与讨论2.1 苯的氯化、氧化及生成苯氧自由基2.1.1 苯的氯化、氧化途径在当前工业苯酚的制备过程中,采用O2、H2O2等氧化剂可以将苯直接氧化成苯酚[19-20].主要的机理为:H2O2在催化剂作用下形成的HO·会进攻苯环,通过形成中间体羟基环己二烯自由基进而形成苯酚[21].O2的催化反应路径主要有2条,路径1为O2在催化剂作用下发生氧化还原反应生成 H2O2,进一步以H2O2为氧化剂催化制取苯酚;路径2为O2直接在催化剂条件下与苯反应而不经过形成中间反应物H2O2形成苯酚[21].基于苯酚的制取,推测在复杂的垃圾焚烧过程中,苯到氯酚的反应途径亦有可能有相似的反应路径,如图1所示,各基元反应中涉及到的过渡态结构见支持信息图 1.以Cl2为氯源提供Cl·取代基取代苯分子上 H,发生两次取代反应依次越过两个较高的势垒形成 1,2-二氯苯(o-DCB),可以发现芳香烃的二氯取代比一氯取代反应势垒高度更大,而放出的反应热降低.o-DCB可能被高温条件下氧化性强的单线态O2直接氧化形成中间体IM1,再经H2还原形成中间体IM2,IM2经分子内H质子的迁移重排、脱水形成产物.同时o-DCB也可能被高能HO·进攻形成IM3或IM4,之后经H⋅、Cl⋅或HO·抽提中间体羟基位H形成2,3-二氯苯酚或 3,4-二氯苯酚,该基元反应为强放热反应.前一种反应路径基元反应普遍势垒高度远高于后一种路径,因此在竞争反应形成最终产物上存在明显劣势.2.1.2 二氯苯酚形成苯氧自由基氯代苯酚分子结构相对稳定,之前的研究结果表明PCDD/Fs可以经过自由基-自由基、自由基-分子、氯酚分子之间反应形成[22].其中苯氧自由基之间的反应是占主导地位,氯代苯氧自由基由于自身不易分解,毒性强,被归类于持久性有机污染物,同时它与其他物质反应活性尤其是氧气反应活性比较低,因此可以进一步作为生成PCDD/Fs的前驱物[23].生成苯氧自由基(XPRs)是均相反应生成PCDD/Fs的重要步骤之一[22].在高温热解条件下,二氯苯酚最有可能通过热分解反应发生以下反应[24-25]:图1 由苯形成2,3-二氯酚及3,4-二氯酚的反应机理Fig.1 Formation of 2,3-dichlorophenol and 3,4-dichlorophenol through the benzene E*:势垒,kcal/mol;△H:反应热,kcal/molXu等[26]在1070~1150K下对于苯酚的动力学模型做了单分子热解模拟,由于苯酚中羟基O-H键作用力弱于芳香环C-H键,因此苯酚分子中H-X最有可能是H-O 键分解,化学反应速率常数为k = 2 .67× 1 016 e(-44700K/T)s-1.Ritter(phenol)等[27]在 1070~1028K温度范围下拟合氯苯脱除Cl原子化学反应速率常数为 k (chlorobenzene)=3.0× 1015 e(-48100K/T)s-1.Cl脱离芳香环的化学反应速率低于苯酚形成苯氧自由基 H-O键断裂的化学反应速率1个数量级以上,因此氯代苯酚的热分解反应最有可能发生的是苯氧基的 O-H键断裂形成苯氧自由基的过程.在高温以及垃圾焚烧复杂的环境下,苯氧自由基可能经过单分子、双分子或其他形式的基元反应形成,其中单分子反应指酚羟基 O-H键断裂,双分子反应包括复杂环境中高能 H⋅、HO·以及 Cl⋅的进攻等[28].在温度高于900K时,苯氧自由基的形成更倾向于单分子解离;而在温度低于900K时,其他高能原子及自由基团的进攻更容易脱除苯氧基上的H[29].表1 2,3-DCP及3,4-DCP形成2,3-DCPR及3,4-DCPR的势垒与反应热Table 1 The potential barriers E* and reaction heats △H for the formation of the 2,3-DCPR and 3,4-DCPR from 2,3-DCP and 3,4-DCP through various processess注:-为无势垒反应.基元反应势垒(kcal/mol) 反应热(kcal/mol)2,3-DCP→2,3DCPR·+H· - 82.08 2,3-DCP+H·→2,3DCPR·+H2 8.23 -22.47 2,3-DCP+Cl·→2,3DCPR·+HCl - -18.04 2,3-DCP+HO·→2,3DCPR·+H2O 1.37 -32.77 3,4-DCP→3,4DCPR·+H· - 82.66 3,4-DCP+H·→3,4DCPR·+H2 8.94 -21.89 3,4-DCP+Cl·→3,4DCPR·+HCl - -17.47 3,4-DCP+HO·→3,4DCPR·+H2O 1.32 -32.19研究发现C-H键的直接断裂是一个强吸热反应;使用HO·提取二氯酚酚羟基上H的势垒要远小于H·提取,但放出的反应热较高;尤其说明的是使用Cl·抽提获得的经零点能校正的过渡态总能量,要低于2,3-DCP及3,4-DCP与Cl反应的总能量,因此该反应为无势垒反应.这一计算结果与 Zhang等[10]在 MPWB1K/6-311+G(3df,2p)对Cl提取2,4,6-TCP及2,4-DCP羟基上的H生成2,4,6-TCPR及2,4-DCPR的结论一致.相关反应势垒及反应热见表1.2.2 由2,3DCPR及3,4DCPR形成PCDD/Fs的过程分析2.2.1 由2,3-DCPR与3,4-DCPR形成1,2,8,9-TCDD及1,2,7,8-TCDD的机理基于2,3-DCPR与3,4-DCPR形成1,2,8,9-TCDD及1,2,7,8-TCDD过程主要的基元反应包括:二氯代苯氧自由基之间发生的碳氧耦合二聚化反应、H提取反应、环闭合反应、以及最后分子内H消除反应.其形成机理见图 2,相关过渡态结构见支持信息图3.图2 以2,3-DCPR与3,4-DCPR为前驱物形成1,2,8,9-TCDD及1,2,7,8-TCDD的机理Fig.2 1,2,8,9-TCDD and 1,2,7,8-TCDD formation routes from the 2,3-dichlorophenol and 3,4-dichlorophenol precursor E*:势垒,kcal/mol;△H:反应热,kcal/mol图3 以2,3-DCPR与3,4-DCPR为前驱物形成2,3,6,7-TCDF 及1,2,6,7-TCDF的气相机理Fig.3 2,3,6,7-TCDF and 1,2,6,7-TCDF formation routes from the2,3-dichlorophenol and 3,4-dichlorophenol precursor E*:势垒,kcal/mol;△H:反应热,kcal/mol在1,2,8,9-TCDD形成过程的基元反应中,2,3-DCPR与3,4-DCPR的碳氧二聚化耦合反应为无势垒放热反应,反应热为13.73kcal/mol.利用高能H·去提取中间体IM5上H,脱除H2的过程,比HO·自由基去提取H脱除H2O需跨越的势垒高度大,但基元反应放热量少.从中间体IM6经过环闭合反应需要跨越较大的势垒同时吸收一定反应热生成中间体IM7.与上一基元反应相比,从中间体IM7到最终产物1,2,8,9-TCDD需要跨越更高的势垒,达30.51kcal/mol,同时吸收更多的反应热,为本反应形成过程的决速步.1,2,7,8-TCDD与1,2,8,9-TCDD形成过程的基元反应基本相同,只是在最初的碳氧耦合反应时不同碳原子之间发生二聚化反应,形成同分异构中间体IM8,该步基元反应放热量高于1,2,8,9-TCDD基元反应放热.对IM8与IM5的空间结构进行几何结构优化发现,两分子结构芳香环碳氧耦合处 IM8分子C-H键键级为 0.283,IM5分子 C-H键键级为0.209,因此IM8分子C-H键共价键力要强于后者,C-H键更稳定,因此在H提取过程中需要放出更多的热量;同时我们也发现,提取IM8分子中H跨越的势垒高度要高于IM5分子,最可能的原因是邻位卤素原子Cl提高了H提取的活化能,增大了H·提取的难度.从中间体 IM10至最终产物1,2,7,8-TCDD也是本反应过程的决速步骤,该基元反应需要跨越的势垒以及需要消耗的反应热略小于 1,2,8,9-TCDD 的形成过程,因此在形成1,2,7,8-TCDD时有一定的优势,理论上 1,2,7,8-TCDD的产率要略高于1,2,8,9-TCDD.同时由于两基元反应的势垒与反应热差值较小,因此二者在形成过程中可能存在竞争机制.2.2.2 由 2,3-DCPR与 3,4-DCPR形成 1,2,6,7-TCDF及2,3,6,7-TCDF的机理Werber等[30]研究显示,基于氯代苯氧自由基邻位C-C原子的耦合形成中间体二氯代二氧代联苯是多氯联苯并呋喃形成的关键基元反应.由 2,3-DCPR与3,4-DCPR形成1,2,6,7-TCDF及2,3,6,7- TCDF的过程主要包含的基元反应包括:不同苯氧自由基邻位碳原子耦合二聚化反应,H的抽提,单原子或双原子H的迁移重排,环闭合反应,OH消去反应.如图 3所示,1,2,6,7-TCDF的形成过程中,IM11的进一步可能的基元反应包括H的抽提或者双 H 迁移重排,因此有两条反应路径.利用H·以及HO·抽提IM11上的H需要跨越的势垒均远小于双 H 的迁移重排,因此IM11→IM12比IM11→IM13更加容易发生.从IM13→IM14发生羟基中H的抽提,势垒高度要大于IM11→IM12,但反应热约为后者的一半,说明 IM13中羟基中H 提取难度大于IM11中C-H,且H-O键能小于C-H.从IM14→IM15在反应路径中势垒最高达27.50kcal/mol,同时吸收 13.87kcal/mol反应热,为本过程的控速步骤.IM15→1,2,6,7-TCDF为最终OH消去反应,同样需要吸收反应热.2,3,6,7-TCDF的形成过程与 1,2,6,7-TCDF相同(图 3,图 4).由 2,3-DCPR 与 3,4-DCPR 经C-C耦合二聚化生成的IM16与IM11互为同分异构体,前者的反应热略高于后者.基元反应IM16→IM17、IM16→IM18、IM18→IM19 跨越的势垒以及反应热与同过程1,2,6,7-TCDF无明显数值差异.IM17→IM19基元反应势垒比IM12→IM14大5.18kcal/mol,可能的原因是IM12苯氧基同侧邻位Cl提高了生成羟基的势垒,但反应热无明显变化.环闭合反应IM19→IM20也是本反应的决速步骤,势垒高度为27.19kcal/mol,吸收反应热 13.52kcal/mol.最后中间体经过 OH脱除形成2,3,6,7-TCDF.2.3 速率常数计算表2 300~1300K温度范围内苯形成苯氧自由基涉及基元反应的Arrhenius方程Table 2 Arrhenius formulas in the formation of phenoxy radical from the benzene over the temperature range of 300~1300K注:单双分子基元反应单位分别为为 s-1, cm3/(mol·s).基元反应阿伦尼乌兹方程C6H6+Cl2→C6H5Cl+HCl k(T)=(2.01×10-06)e(-34356.93/T)C6H5Cl+Cl2→C6H4Cl2+HCl k(T)=(6.10×10-12)e(-34294.15/T)C6H4Cl2+O2→IM1 k(T)=(8.26×10-14)e(-20273.73/T)IM1+H2→IM2 k(T)=(1.99×10-12)e(-26468.60/T)IM2→2,3-DCP+H2O k(T)=(5.41×1013)e(-44301.88/T)IM2→3,4-DCP+H2Ok(T)=(2.74×1014)e(-36260.34/T)C6H4Cl2+HO·→IM3 k(T)=(2.08×10-12)e(-4945.05/T)IM3+H·→2,3-DCP+H2 k(T)=(1.24×10-12)e(-11956.51/T)C6H4Cl2+HO·→IM4 k(T)=(2.02×10-12)e(-4790.94/T)IM4+H·→3,4-DCP+H2 k(T)=(1.70×10-12)e(-12270.89/T)2,3-DCP+H·→2,3-DCPR+H2 k(T)=(2.70×10-11)e(-4098.74/T)2,3-DCP+HO·→2,3-DCPR+H2O k(T)=(1.49×10-12)e(-1310.82/T)3,4-DCP+H·→3,4-DCPR+H2 k(T)=(5.24×10-11)e(-4473.76/T)3,4-DCP+HO·→3,4-DCPR+H2O k(T)=(1.33×10-12)e(-1252.06/T)环境监督与风险决策分析通过建立数学模型研究污染物释放到环境中的潜在结果,PCDD/Fs形成过程中各基元反应阿伦尼乌斯公式中的指前因子、活化能、速率常数是数学模型建立过程中重要的参数[29].为此,基于变分过渡态理论VTST拟合了300~1300K温度范围内的TST速率常数的速率-温度关系式,该温度范围已经涵盖了垃圾焚烧过程中可能涉及到的形成温度.得到各相关过渡态基元反应的阿伦尼乌斯公式,到目前为止,相关文献缺乏直接的相关实验值与理论值.为验证本文拟合公式的准确性,与Gao 等[31]及 Zhang 等[10]在 MPWB1K/ 6-311+G(3df,2p)水平下计算得到的类似基元反应的数据进行对比,并分析在 CVT/SCT拟合的化学反应速率常数,发现相似基元反应的数量级处于同等水平.例如,本文计算得到 2,3-DCP+ H·→2,3-DCPR+H2指前因子为2.70×10-11s-1, Zhang等[10]获得 2,4-DCP+H→2,4-DCPR+H2的指前因子为5.01×10-11s-1.形成 1,2, 8,9-TCDD 环闭合反应IM7→1,2,8,9-TCDD+H·指前因子为4.05×1013s-1,Zhang等拟合获得2个2,3-DCPR分子形成1,3,6,8-TCDD、1,3,7,9-TCDD各基元反应,相同闭环反应的指前因子分别为3.17×1013s, 2.96×1013s-1,因此本文计算数据可靠.由苯两阶段生成PCDD/Fs涉及的基元反应并拟合获得的阿伦尼乌斯公式如表2,表3所示. 表3 300~1300K温度范围内2,3-DCPR和3,4-DCPR为前驱物形成PCDD/Fs涉及基元反应的Arrhenius方程Table 3 Arrhenius formulas in the formation of PCDD/Fs from the 2,3-DCPR and 3,4-DCPR precursor over the temperature range of 300~1300K基元反应阿伦尼乌兹方程IM5+H·→IM6+H2k(T)=(5.18×10-09)e(-5058.68/T)IM1+HO·→IM6+H2O k(T)=(1.25×10-12)e(-4089.24/T)IM6→IM7 k(T)=(8.33×1011)e(-12165.86/T)IM7→1,2,8,9-TCDD+H· k(T)=(4.05×1013)e(-15866.91/T)IM8+H·→IM9+H2k(T)=(1.22×10-10)e(-3305.23/T)IM8+HO·→IM9+H2O k(T)=(2.53×10-12)e(-2688.27/T)IM9→IM10 k(T)=(3.88×1011)e(-12336.58/T)IM10→1,2,7,8-TCDD+H· k(T)=(5.12×1013)e(-15778.00/T)IM11+H·→IM12+H2k(T)=(4.62×10-11)e(-3980.51/T)IM11+HO·→IM12+H2O k(T)=(1.09×10-12)e(-2596.36/T)IM11→IM13 k(T)=(1.88×1012)e(-9136.73/T)IM13+H→IM14+H2 k(T)=(1.08×10-11)e(-5709.59/T)IM12→IM14k(T)=(4.51×1012)e(-7714.56/T)IM14→IM15 k(T)=(3.13×1012)e(-14010.49/T)IM15→1,2,6,7-TCDF k(T)=(4.91×1013)e(-7847.38/T)IM16+H·→IM17+H2 k(T)=(6.97×10-11)e(-3796.36/T)IM16+HO·→IM17+H2O k(T)=(1.63×10-12)e(-2729.08/T)续表3注:单双分子基元反应单位分别为为 s-1, cm3/(mol·s).基元反应阿伦尼乌兹方程IM16→IM18 k(T)=(8.29×1011)e(-9594.25/T)IM18+H·→IM19+H2k(T)=(2.36×10-11)e(-5435.61/T)IM17→IM19 k(T)=(1.43×1012)e(-10273.46/T)IM19→IM20 k(T)=(1.76×1012)e(-13753.87/T)IM20→2,3,6,7-TCDF k(T)=(5.16×1013)e(-7911.31/T)3 结论3.1 基于密度泛函理论研究了以苯为前驱物分两阶段形成PCDD/Fs的均相反应机理.在第一阶段苯的氯化、氧化各基元反应中,氯化取代反应势垒较高,羟基自由基进攻二氯苯进而形成二氯酚过程势垒明显低于氧气直接氧化氯苯经加氢分子内脱水反应.3.2 苯氧自由基的之间的碳氧耦合二聚化反应比碳碳耦合二聚化释放的反应热多.邻位Cl能够提高芳香烃环H的抽取势垒,也会增加邻位羟基反应势垒,降低了分子反应活性.3.3 环闭合基元反应在第二阶段的反应中需要越过的势垒最大,是形成 1,2,7,8-TCDD、1,2,8,9-TCDD、1,2,6,7-TCDF、2,3,6,7-TCDF的决速步.3.4 苯为反应活性较低的二噁英前驱物,以苯为前驱物生成PCDD/Fs化学反应速率的快慢主要取决于苯的氯化基元反应.参考文献:[1]Schoonenboom M H, Tromp P C, Olie K. The formation of coplanar PCBs, PCDDs and PCDFs in a fly ash model system [J].Chemosphere, 1995,30(7):1341-1349.[2]Huang H, Buekens A. On the mechanisms of dioxin formation in combustion processes [J]. Chemosphere, 1995,31(9):4099-4117.[3]Addink R, Olie K. Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Heterogeneous Systems [J]. Environmental Science &Technology, 1995,29(6):1425-1435. [4]Shi X, Zhang R, Zhang H, et al. Influence of water on the homogeneous gas-phase formation mechanism of polyhalogenated dioxins/furans from chlorinated/brominated phenols as precursors [J]. Chemosphere, 2015,137:142-148.[5]陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究 [D]. 杭州:浙江大学, 2006.[6]Ghorishi S B, Altwicker E R. Rapid formation of polychlorinateddioxins/furans during the heterogeneous combustion of 1,2-dichlorobenzene and 2, 4-dichlorophenol [J]. Chemosphere,1996,32(1):133-144.[7]Altwicker E R. Formation of PCDDF in municipal solid waste incinerators:laboratory and modeling studies [J]. Journal of Hazardous Materials, 1996,47(1-3):137-161.[8]Ryan S P, Altwicker E R. The formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon model mixtures containing ferrous chloride. [J]. Chemosphere, 2000,40(9-11):1009-1014.[9]Schoonenboom M H, Baints E, Olie K, et al. The formation of chlorinated compounds from benzene in a fly ash model system [J].Toxicological &Environmental Chemistry, 1995,52(52):1-11.[10]Zhang Q, Yu W, Zhang R, et al. Quantum chemical and kinetic study on dioxin formation from the 2,4,6-TCP and 2,4-DCP precursors [J]. Environmental Science & Technology, 2010,44(9):3395-3403.[11]Dharmarathne N K, Mackie J C, Kennedy E M, et al. Gas phase pyrolysis of endosulfan and formation of dioxin precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F)[J]. Proceedings of the Combustion Institute, 2016,36(1):1119-1127.[12]Saeed A, Altarawneh M, Dlugogorski B Z. Formation of mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs)[J].Chemosphere, 2015,137:149-156.[13]Yang X, Liu H, Hou H, et al. Studies of thermodynamic properties and relative stability of a series of polyfluorinated dibenzo-p-dioxins by density functional theory. [J]. Journal of Hazardous Materials, 2010,181(1-3):969.[14]Qu R, Liu H, Zhang Q, et al. The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory [J].Thermochimica Acta,2012,527(2):99-111.[15]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B Condens. Matter, 1988,37(2):785-789.[16]Truhlar D G, Garrett B C, Hipes P G, et al. Test of variational transition state theory against accurate quantal results for a reaction with very large reaction-path curvature and a low barrier[J]. Journal of Chemical Physics,1984,81(8):3542-3545.[17]Dar T, Shah K, Moghtaderi B, et al. Formation of persistent organic pollutants from 2,4,5-trichlorothiophenol combustion: a density functional theory investigation [J]. Journal of Molecular Modeling,2016,22(6):1471-1475.[18]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09,Revision A. 1. Wallingford, CT: Gaussian [Z]. Inc, 2009.[19]Yamanaka H, Hamada R, Nibuta H, et al. Gas-phase catalytic oxidationof benzene over Cu-supported ZSM-5catalysts: an attempt of one-step production of phenol [J]. Journal of Molecular Catalysis A: Chemical, 2002,178(1):89-95.[20]Kato C N, Hasegawa M, Sato T, et al. Microporous dinuclear copper (II) trans-1, 4-cyclohexanedicarboxylate: heterogeneous oxidation catalysis with hydrogen peroxide and X-ray powder structure of peroxo copper (II) intermediate [J]. Journal of Catalysis, 2005,230(1):226-236.[21]王伟涛,姚敏,马养民,等.氧气直接氧化苯制备苯酚[J]. 化学进展, 2014,26(10):1665-1672.[22]Dar T, Altarawneh M, Dlugogorski B Z. Theoretical study in the dimerisation of 2-chlrothiophenol/2-chlorothiophenoxy:Precursors to PCDT/TA [J]. Organohalogen Compounds, 2012,74:657-660.[23]Ritter E R, Bozzelli J W, Dean A M. Kinetic study on thermal decomposition of chlorobenzene diluted in hydrogen [J].Cheminform, 1990,21(27):2493-2504.[24]Evans C S, Dellinger B. Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-chlorophenol [J].Environmental Science & Technology, 2003,37(7):1325-1330.[25]Altarawneh M, Dlugogorski B Z, Kennedy E M, et al.Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) [J]. Progress in Energy and Combustion Science, 2009,35(3):245-274.[26]Xu Z F, Lin M C. Ab initio kinetics for the unimolecular reactionC6H5OH→CO+C5H6 [J]. The Journal of Physical Chemistry A,2006,110(4):1672-1677.[27]Ritter E R, Bozzelli J W, Dean A M. Kinetic study on thermal decomposition of chlorobenzene diluted in hydrogen [J].Cheminform, 1990,21(27):2493-2504.[28]Evans C S, Dellinger B. Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol. [J].Environmental Science & Technology, 2005,39(1):122-127.[29]郁万妮.以卤代苯酚为前体物的二噁英气相形成机理研究 [D].济南:山东大学, 2013.[30]Weber R, Hagenmaier H. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions [J]. Chemosphere, 1999,38(3):529-549.[31]Gao R, Xu F, Li S, et al. Formation of bromophenoxy radicals from complete series reactions of bromophenols with H and OH radicals. [J]. Chemosphere, 2013,92(4):382-390.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The winter effect on formation of PCDD/Fs in Guangzhou by vehicles:A tunnel studyYunyun Deng a ,b ,Pingan Peng a ,*,Man Ren a ,Jianzhong Song a ,Weilin Huang caState Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China bShanghai Academy of Public Measurement,Shanghai 201203,China cDepartment of Environmental Sciences,Rutgers,The State University of New Jersey,14College Farm Road,New Brunswick,NJ 08901,USAa r t i c l e i n f oArticle history:Received 26August 2010Received in revised form 10February 2011Accepted 10February 2011Keywords:PCDDs/Fs VehicleWinter effect Emission factora b s t r a c tPrior studies showed that the polychlorinated dibenzo-p -dioxin and dibenzofuran (PCDD/F)concentra-tions in the atmosphere are much higher in the winter than in the summer.This so called winter effect was explained via meteorology-dependent factors such as dispersion,mixing and photo chemical degradation or home heating related formation of PCDDs/Fs.In this study,we took vehicle emission as an example to investigate winter effect on PCDD/Fs formation by fossil fuel combustion.We hypothesized that vehicle emission of PCDDs/Fs may be elevated in the winter season due to the promoted supplies of Cl À(via particular matter)in winter.We collected particulate and gaseous samples from the Pearl River Tunnel and its adjacent open air during spring/summer and winter seasons.Chemical analyses of the tunnel samples showed that the PCDD/F concentrations in the tunnel ranged from 18.6to 20.4pg m À3(1.28e 1.39pg I-TEQ m À3)in the winter,which were 3e 5times higher than in the spring/summer.In the open atmosphere adjacent to the tunnel,the PCDD/F concentrations were much lower than in the tunnel;e.g.,approximately one fifth of the tunnel air concentrations during the winter.The emission factors (EFs)calculated based on the tunnel data were 3440(or 230I-TEQ)and 1580(or 27.8I-TEQ)pg km À1vehicle À1in winter and spring/summer season,respectively.The much higher PCDD/F concentrations in the tunnel air and much greater EF value during the winter are likely related to higher content of Cl Àassociated with small size particulates.This suggests that the winter effect observed in the open atmosphere is not only caused by meteorology-dependent factors and home heating,but also may partly results from much greater PCDD/F formation rates during the combustion processes of fossil fuels such as gasoline-and diesel-fuel in the winter.Ó2011Elsevier Ltd.All rights reserved.1.IntroductionPolychlorinated dibenzo-p -dioxins and dibenzofurans (PCDDs/Fs)are mainly generated as unintended by-products during combustion processes.It is estimated that 96%of PCDDs/Fs in the environment is emitted firstly to the atmosphere (Smit et al.,2004).Municipal solid waste incineration (MSWI)and fossil fuel burning have long been regarded as major emission sources of PCDDs/Fs (Yu et al.,2006).Recent research suggested that emission from MSWI has gradually lessened due to the advancement of better controlled combustion technologies (Yu et al.,2006).Instead,automobiles may become an important emitter of PCDDs/Fs.Ballschmiter et al.(1986)detected PCDDs/Fs in used motor oil and thus provided the first evidence that PCDDs/Fs might be emitted by the combustion processes in gasoline-and diesel-fueled engines.Fuster et al.(2001)reported that,in Tar-ragona Province of Spain,the PCDD/F emission from MSWI may contribute about 0.04%whereas the emission from diesel motors accounted for 18%of the total PCDD/F emissions.Several prior studies showed that the PCDD/F concentrations in the atmosphere are much higher in the winter than in the summer,which is often called winter effect.Hovmand et al.(2007)measured combined PCDD/F concentration from 12-m high tower in one Danish rural forest sites.The ratio between winter (October e March)and summer (April e September)mean values of atmospheric I-TEQ concentrations was 3.90,calculated for the period 2002e 2004.Coutinho et al.(2007)found the average ratio of the combined PCDD/F concentrations between winter (October e March)and summer (April e September)was 3.30at most.Sin et al.(2002)measured 27ambient air samples in Hong Kong.The combined PCDD/F concentrations ranged from 0.03to 0.43pg I-TEQ m À3in winter months (January and March),and 0.018to 0.025pg I-TEQ m À3in the summer months (July and August).When compared*Corresponding author.E-mail address:pinganp@ (P.Peng).Contents lists available at ScienceDirectAtmospheric Environmentjournal homep age:www.elsevi/locate/atmosenv1352-2310/$e see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.atmosenv.2011.02.022Atmospheric Environment 45(2011)2541e 2548with the same sampling location,the ratio of the combined concentrations in the winter to summer ranged from1.10to20.4.The observed winter effect is often explained via seasonally-controlled dominant factors for the emission and degradation of PCDDs/Fs and/or seasonal change in air mass movement(Hippelein et al.,1996;Duarte et al.,1997;Lee et al.,1999;Lohmann et al., 1999).The former generally refers to higher emission of home heating in the winter and faster PCDD/F degradation rates in the summer.The latter is related to the seasonal variation of the atmospheric boundary layer generally referred to as the mixing layer(Coutinho et al.,2007).In a typical region of mid latitude,the heights of the convective mixing layer are very different between summer and winter.During summer as more heating of daytime than cooling during shortened nights,the convective mixing layer starts shallow in the morning,but rapidly grows to its full extent in early afternoon.On the contrary,during winter as more cooling at night than heating during the shortened daytime,the convective mixing layer remains relatively stable(Coutinho et al.,2007). Hence,local emissions to the atmosphere will be less welldispersed during winter.This process is particularly effective for emissions that occur near ground level because a reduced height of the well-mixed atmosphere favors an accumulation of pollutants and result in increasing ambient concentrations.In this study,we hypothesized that formation of PCDDs/Fs may be elevated in the winter season due to the promoted supplies of ClÀ(via particular matter),hence contributing partly to the often observed winter effect.We took vehicles as an example and initi-ated a systematic study to quantify the emission factor of PCDDs/Fs for vehicles in the Pearl River Delta area using a tunnel method.The major focus of the work was to quantify seasonal changes of PCDD/F concentrations in both open atmosphere and the tunnel air.The results presented here are consistent with our hypothesis,indi-cating that the formation of PCDD/Fs in the winter of Guangzhou by vehicles is higher,which provides an alternative explanation for winter effect.2.Materials and methods2.1.Sampling sitesGuangzhou,the capital of Guangdong province,is a subtropical city with an area of7430km2and a population over6.40million.It was estimated that1890thousand tons of gasoline and2720 thousand tons of diesel oil were consumed in2005and about1.77 million cars are running on the roads of Guangzhou according to the Statistical Bureau of Guangzhou(2006).Recent studies con-ducted by our research group(Yu et al.,2006;Ren et al.,2007) indicated that the atmospheric depositionfluxes of total2,3,7,8-substituted PCDD/F congeners ranged from2.10to41.0(mean20) pg WHO-TEQ mÀ2dayÀ1in Guangzhou,and that the particle-bound PCDDs/Fs in the atmosphere of Guangzhou ranged from0.105to 0.769pg I-TEQ mÀ3.It is expected that the sources of PCDDs/Fs are very diverse as rapid industrialization in this region may have brought in a spectrum of emitters of PCDDs/Fs.As fast growing of privately owned vehicles may have outpaced any other emitters, quantification of the contribution of vehicles to the total emissions is urgent for source control of PCDDs/Fs in this region.This study targeted the Pearl River tunnel located in the central city of Guangzhou which connects Fangchun District and Liwan District(Fig.1).It has a length of1240m and height of8.10m with two lanes per bore.Each day approximately120,000vehicles pass the tunnel at an average speed40.0km hÀ1(Guangzhou Transport Planning Research Institute,2006,Annual Report of Transportation Development in Guangzhou).Four sampling sites were selected in this study(Fig.1).Site A and Site B are located respectively in the midpoint and the southbound exit of the tunnel.They were selected for sampling the gaseous and particulate-bound PCDD/F pollutants in the atmosphere influenced directly by the traffic within the tunnel.Site C and Site D are located in Liwan district in the vicinity of the tunnel.They were selected for monitoring background air quality in the central city of Guangzhou.Site C is near the Tunnel Management Station,which is located200m away from the tunnel exit(Site B).The samples taken from this site should represent a mixture of the background atmosphere in central city and the atmosphere exit from the tunnel.Site D is located in Shamian Park(north side of the tunnel)situated on an island of the Pearl River.The samples taken from the park likely represented background atmosphere within the central city.The geographical locations of the four sampling sites are shown sche-matically in Fig.1.2.2.Air sampling in tunnel and ambient atmosphereTwo samples for each site were taken in the spring(April 11e12th),summer(July10e12th)and winter(December10e12th) of2006respectively.Both gaseous and particulate samples were simultaneously collected with a high-volume air sampler(Tian-hong Intelligent Instrument Co,Wuhan).The gaseous samples were collected with polyurethane foam(PUF,90mmÂ65mm i.d.). Whatman glassfiberfilters(GFF,20.3cmÂ25.4cm)were pre-treated at450 C for6h before being used for collecting the total suspended particulates(TSP).The airflow rate passing through the sampler was calibrated before and after the sampling.After sampling,thesefilters and polyurethane foams were removed from the sampler and wrapped with aluminum foil.Thefilters were weighed after equilibrated for24h at25 C and50%relative humidity.At both Site A and B,the speed of airflow within the tunnel was monitored with an anemometer.The vehicleflux was counted on a video tape kindly provided by the Pearl River tunnel administration station.The recorded data are summarized in Table1.We checked PCDD/F concentrations in the two samples collected for each site and season.The discrepancy was minor; therefore,only one set of concentration data was reported in this paper.To investigate the influence of particle-bound ClÀand Cu on the formation of PCDDs/Fs,six particle sizes of aerosols(<0.49m m, 0.49e0.95m m,0.95e1.5m m,1.5e3.0m m,3.0e7.2m m,and7.2e10m m) in Site D were further collected in the summer and winter of2009. Particulates were collected with an Andersen sampler(modelSA235)Fig.1.Locations of the sampling sites.Y.Deng et al./Atmospheric Environment45(2011)2541e2548 2542at an airflow of1.13m3minÀ1.Quartzfilters(Environmental Tisch TE-230QZ)were used as impaction substrates(slotted14.3Â13.7cm)for the collection of thefive size fractions and rectangular backup quartzfilters(20.3Â13.7cm)for thefinest size fraction.The quartzfiberfilters were pretreated at450 C for5h before use.2.3.Sample analysis2.3.1.Reference standards and chemicals for cleanupAll13C12-labeled PCDD/F standards were purchased from Cam-bridge Isotope Laboratories Inc.(Boston,USA).All solvents and reagents used in this study were all pesticide grades or higher purchased from Merck,Germany.These solvents included meth-anol,acetone,dichloromethane(DCM),toluene,and n-hexane. Silica gel(70e230mesh)and basic alumina used in cleanup procedure were purchased from Merck,Germany.2.3.2.Clean-up procedureThe US EPA Method1613was followed for the analysis of PCDDs/Fs.The detailed procedure can be found in Ren et al.(2007). In brief,thefilters or foams were spiked with a stock solution (10m l)of13C12-PCDD/F internal standards,which includedfifteen PCDD/F compounds.Thefilters and foams were Soxhlet extracted with toluene(250ml)for48h.The extracts were cleaned sequentially with acid silica gel bed,multi-layer silica gel column and basic alumina column following the procedures briefed below. Each sample extract wasfirst cleaned in aflask containing20g of 40%H2SO4/silica gel and100ml of hexane.After stirred for2h,the content of theflask wasfiltered through a funnelfilled with glass wool and10g of Na2SO4.Hexane(100ml)was used to rinse the flask and the slurry.The hexanefiltrates were further cleaned on a multi-layer silica gel column eluted successively with20ml of hexane(discarded)and100ml of3%dichloromethane/hexane (retained).The later solvent mixture was loaded on a10-g basic alumina column,which was eluted sequentially with20ml of hexane(discarded),80ml of2%dichloromethane/hexane(dis-carded)and100ml of dichloromethane e hexane mixture (v:v50:50)(retained).The last solvent mixture was concentrated to 1ml on a rotary evaporator,which was then transferred to a1.5-ml teardrop vial.Before analysis,injection standards(10m l)consisted of13C12-labled1,2,3,4-TCDD and13C12-labled1,2,3,7,8,9-HxCDD were added into the vial and thefinal volume was reduced to 20m l on an N2blower.Cu contents in the samples were determined using the following procedures.A part of quartzfilter charged in a platinum crucible was completely dissolved in a mixture of HNO3,HF and HClO4.After dryness,the residue was dissolved with8M HNO3(2ml)and finally diluted to100ml with pure water for subsequent Cu determination using ICP-MS.ClÀcontents in the samples were determined by rinsing quartz filter with Milli-Q ultra pure water and then analysis with ion chromatography.2.3.3.Instrumental analysisPCDDs/Fs were identified and quantified using high-resolution gas chromatography coupled with high-resolution mass spec-trometry(HRGC/HRMS)(Trace GC2000and Thermo Electron Fin-nigan MAT95XP;GC column:J&W Scientific,CA,60mÂ0.25mm i.d.Â0.25mmfilm thickness).Helium was used as the carrier gas at aflow rate of0.8ml minÀ1.The sample(1m l)was injected with a splitless injection mode.The temperature of GC was programmed to increase to90 C,stayed for1min,then increased to200 C at 76 C minÀ1and stayed at200 C for7min,then to275 C at 1.2 C minÀ1andfinally to300 C at 1.7 C minÀ1.The injector temperature was kept at250 C and the HRGC/HRMS interface temperature was held at250 C.The HRMS was operated in the EI positive(electric impact ionization)and LOCK MID mode with a mass resolution of10,000(313.9839,perfluorotributylamine).The electron impact ionization energy was55eV with a source temperature of250 C.Cu measurement was performed using an Elan6000ICP-MS spectrometer(Perkin e Elmer,USA).Instrumental conditions are listed as the following.Rf power,1050W;Plasma gasflow rate, 15l minÀ1;Intermediate gasflow rate,1.2l minÀ1;Nebulizer gas flow,0.83l minÀ1;Auto lens,On;Measurement mode,Peak hopping;Sweeps/reading,8;Reading/replicate,1;Dwell time, 100ms.The identification and quantification of chlorine ions were performed by a Dionex ICS900IC(Dionex,Sunnyvale,CA,USA), equipped with a RFIC IonPacAS19analytical column(250mmÂ4mm id),a RFIC IonPacAG19guard column(50mmÂ4mm id)and a conductivity detector.The mobile phase,containing20mM KOH was pumped at aflow rate of1.0ml minÀ1.The injection volume was200m l.Quantification of ClÀwas performed by external calibration.2.3.4.Quality assurance and quality control(QA/QC)Standard procedures were employed during sampling,extrac-tion and quantification of target contaminants for QA/QC purpose. Before sampling,all glassfiberfilters were heated at450 C for6h to remove possible background organic contaminants.The poly-urethane foams were Soxhlet extracted sequentially with methanol, DCM,toluene,and acetone for4Â24h,vacuum dried,and kept in pre-cleaned amber glass jars.The air samplers were calibrated in thefield before and after each sampling event.During extraction and chemical analysis in the lab,afield blank and a method blank were used for every batch of twelve samples.During extraction,all samples and blanks were spiked with15kinds of internal13C12-labeled PCDD/F standards to trace the recovery efficiency of theTable1Background information of the four sampling sites.Sampling date Sampling time(min)Sampling volume(m3)Temperature( C)Vehicle volume(vehicles duringthe sampling)TSP(mg mÀ3)Site A(Middle of tunnel)2006-4-1141384.252216,726 1.72 2006-7-11259102.953111,204 1.172006-12-1142396.871919,466 1.48Site B(Outlet of tunnel)2006-4-1127252.872011,016 1.89 2006-7-1125886.993211,164 2.592006-12-1141589.11918,837 1.93Site C2006-7-11720201.6330.295 2006-12-11664183.26200.49Site D2006-7-11630155.82310.225 2006-12-11600128.82190.228Y.Deng et al./Atmospheric Environment45(2011)2541e25482543method.According to the surrogate standards run in parallel to the samples,the recovery ef ficiency ranged from 63to 97%,which meets the limit of 32e 123%given in US EPA Method 1613.The detection limits of the method were ca.0.1pg for 2,3,7,8-TCDF,0.2pg for 2,3,7,8-TCDD,and 0.8pg for OCDD.3.Results and discussion3.1.PCDD/F concentrations in the Pearl River TunnelTable 1lists the background data of the gaseous and particulate samples taken inside and outside of the tunnel.Table 2summarizes the concentrations of individual 2,3,7,8-substituted PCDD/F congeners in both gaseous and particulate samples taken at Site A and B of the tunnel.As shown in Table 1,the average concentrations of the particulate materials in the tunnel were 1.81,1.88and 1.71mg m À3in spring,summer and winter,respectively.These total particulate concentrations remained fairly constant for the three sampling times,but they were 4e 6times higher than those from the atmosphere outside the tunnel,which were collected on the same day.Note that relative constant meteorological condition and single vehicle emission source may have resulted in similar concentrations of particulates in the tunnel air.One striking feature of the data listed in Table 2is that,for the two sampling sites within the tunnel,the particulate-bound PCDD/F concentrations were approximately 1e 10times higher in the winter than in the spring and summer,suggesting an strong winter effect on the overall concentration of the particulate-bound PCDDs/Fs.As shown in Table 2,the particulate-bound PCDD/F concentrations ranged widely from 2.25to 19.6pg m À3(or 0.114e 1.30pg I-TEQ m À3),and there is no appreciable difference between the spring and summer,which had the average concentrations of 3.05and 3.40pg m À3(or 0.217and 0.127pg I-TEQ m À3)respectively.The particulate-bound PCDD/F average concentrations in the winter were 18.4pg m À3(or 1.24pg I-TEQ m À3).Such a winter effect was much less for the gaseous PCDD/F concentrations,which ranged narrowly from 0.715to 1.54pg m À3(or 0.091e 0.22pg I-TEQ m À3)for all the three sampling times at the two tunnel sites.Table 1also showed no signi ficant difference of the total suspended particulate (TSP)concentrations between spring/summer and winter.Therefore,it is unlikely that the observed winter effect is related to the concentrations of particulate materials in the air.To our knowledge,no prior publications reported the winter effect from the tunnel studies.Wevers et al.(1992)reported that the combined (gas þparticulate)PCDD/F concentrations in a Belgium tunnel were approximately 0.0803pg I-TEQ m À3.Geueke et al.(1999)conducted PCDD/F sampling of diesel engine at a constant load rate with about 30%of its nominal power.The emission concentrations were from 0.21to 58.0pg I-TEQ m À3.Chang et al.(2004)reported the total PCDD/F concentrations of 0.0473(outlet)and 0.0571(midpoint)pg I-TEQ m À3for a tunnel of northeastern Taipei,Taiwan.All these published data are in general comparable to our data summarized in Table 2.Further inspection of the data in Table 2indicated that,for the same sampling trip,the PCDD/F concentrations measured at Site B (exit)(4.55e 20.4pg m À3or 0.218e 1.39pg I-TEQ m À3)were slightly higher than those at Site A (midpoint of the tunnel)(3.79e 18.6pg m À3or 0.207e 1.27pg I-TEQ m À3).The higher concentra-tions measured at the exit of the tunnel were likely due to the so called piston effect,referring to the forced air flow inside a tunnel caused by moving vehicles.The air pollutants were pushed out of the tunnel by the cars,leading the higher concentrations at the exit (Chang et al.,2004).Table 3presents the PCDD/F concentrations of open atmosphere (Site C and D)in the summer and winter;they were collected on the same days as the samples from the tunnel.The combined partic-ulate-bound and gaseous PCDD/F concentrations measured at Site C were 3.59pg m À3(0.186pg I-TEQ m À3)and 16.1pg m À3(1.17pg I-TEQ m À3)respectively in July and December.The combined concentrations measured at Site D were 3.08pg m À3(0.186pg I-TEQ m À3)and 9.23pg m À3(0.247pg I-TEQ m À3)respectively in July and December.These values were all lower than those within the tunnel.Note that the difference of the combined I-TEQ concentra-tions between inside and outside the tunnel was insigni ficant in summer,but signi ficant in winter.The combined I-TEQ concentra-tions within the tunnel (Site A and B)were 1.14times higher than the background I-TEQ concentrations (Site D)in the summer,but they were 7.16times as high as the background I-TEQ concentra-tions (Site D)in the winter.Meanwhile,the ratios of the combined concentrations between the samples of 11th December and 11th July were 1.33at Site D,but the ratios increased to 6inside theTable 2Concentrations (pg m À3)of 2,3,7,8-substituted congeners.CongenersTunnel Site A (Middle of tunnel)Tunnel Site B (Outlet of tunnel)2006-4-112006-7-112006-12-112006-4-112006-7-112006-12-11ParticulateGaseous Particulate Gaseous Particulate Gaseous Particulate Gaseous Particulate Gaseous Particulate Gaseous 2378-TCDF 8.40E-02 5.79E-01 1.92E-02 2.51E-01 1.45E þ00 1.87E-01 1.88E-01 4.67E-029.12E-027.09E-02 1.45E þ00 6.37E-0212378-PeCDF 1.40E-01 4.36E-01 5.97E-02 1.05E-01 2.06E þ00 5.87E-02 2.57E-01 3.82E-02 5.76E-027.39E-02 2.17E þ00 6.72E-0223478-PeCDF 1.77E-01 1.84E-01 1.09E-019.27E-028.53E-01 6.22E-02 3.06E-01 4.80E-02 1.40E-018.30E-029.50E-017.68E-02123478-HxCDF 6.39E-02 3.40E-02 1.01E-01 3.00E-02 1.58E þ008.59E-02 1.00E-01 4.98E-02 4.28E-02 2.12E-02 1.99E þ00 5.84E-02123678-HxCDF 4.53E-02 3.92E-027.77E-02 2.68E-027.97E-01 3.52E-02 1.02E-01 6.66E-02 2.60E-02 1.30E-029.57E-01 5.15E-02234678-HxCDF 1.11E-01 1.06E-02 1.17E-01 1.45E-02 6.56E-01 6.17E-02 2.44E-01 3.18E-02 1.11E-01 3.54E-027.58E-01 4.33E-02123789-HxCDF 5.10E-03 3.68E-03 4.25E-02 3.69E-03 4.19E-01 1.34E-02 1.12E-02 4.35E-03 6.78E-03 1.22E-02 4.90E-01 2.41E-021234678-HpCDF 3.00E-01 5.38E-02 3.83E-017.64E-02 2.33E þ00 1.66E-01 4.97E-018.42E-02 5.04E-01 4.64E-02 2.66E þ00 1.19E-011234789-HpCDF 6.45E-02 2.97E-03 4.82E-02 3.11E-03 5.27E-01 1.44E-02 4.88E-028.51E-03 2.77E-02 4.71E-03 6.09E-018.64E-03OCDF1.60E-01 1.28E-022.11E-013.05E-02 2.05E þ004.94E-02 2.54E-01 3.01E-02 2.95E-01 2.05E-02 2.34E þ00 3.77E-022378-TCDD 2.73E-03 2.52E-02 1.12E-03 2.17E-038.52E-037.19E-038.51E-03 3.22E-03 1.06E-02 1.22E-027.52E-03 1.17E-0212378-PeCDD 2.55E-02 2.31E-027.23E-03 1.09E-02 1.50E-01 2.02E-025.92E-02 1.06E-01 2.97E-02 4.83E-03 1.13E-01 1.48E-02123478-HxCDD 5.58E-03 3.32E-03 1.84E-020.00E þ00 5.97E-02 1.37E-029.46E-03 2.27E-030.00E þ000.00E þ00 1.12E-01 1.26E-02123678-HxCDD 9.50E-038.19E-03 2.45E-02 2.33E-03 1.17E-016.04E-02 1.17E-02 1.08E-02 2.47E-02 1.46E-02 1.57E-01 1.28E-02123789-HxCDD 8.66E-037.10E-04 2.48E-02 1.23E-039.11E-02 1.92E-02 2.67E-027.00E-03 1.15E-03 3.91E-03 1.46E-01 1.45E-021234678-HpCDD 1.91E-01 4.93E-02 3.05E-01 2.42E-028.49E-01 1.70E-01 3.40E-01 4.79E-02 3.66E-01 3.59E-029.50E-01 6.16E-02OCDD 8.57E-017.37E-02 1.40E þ00 1.17E-01 3.10E þ00 4.77E-01 1.37E þ00 1.30E-01 2.21E þ00 2.94E-01 3.76E þ008.60E-02TEQ(pg I-TEQ m À3) 1.51E-01 2.20E-01 1.14E-019.34E-02 1.17E þ00 1.03E-01 2.84E-01 1.06E-01 1.40E-017.81E-02 1.30E þ009.09E-02Total PCDDs/Fs2.25E þ001.54E þ002.95E þ007.92E-011.71E þ011.50E þ003.83E þ007.15E-013.94E þ007.47E-011.96E þ017.65E-01Y.Deng et al./Atmospheric Environment 45(2011)2541e 25482544tunnel (Site A and B).These ratios were consistent with other studies summarized in the Introduction Section.3.2.Homolog and congener pro filesFig.2illustrates the relative contributions of different homolog compounds to the combined gaseous and particulate phase PCDDs/Fs for the samples taken within the tunnel.It indicates that the greater is the degree of chlorination of the compounds,the higher is the combined PCDD concentration.However,the combined PCDF concentrations were not correlated well with the degree of their chlorination,which was different from the negative correlation revealed in a previous study by Lohmann and Jones (1998).Fig.2shows slightly different homolog distribution of the PCDDs/Fs between the winter and the spring e summer of the combined PCDD/F concentrations within the tunnel.In the spring e summer,the predominant homolog was OCDD,which constituted approximately 37.9%of the combined PCDD/F concen-trations.This is consistent with an EPA report of PCDDs/Fs for the total emissions from various combustion processes including unleaded gasoline combustion and diesel-fuel combustion (US EPA,2006).Other major homologs included PeCDF,HpCDF and HxCDF,which accounted respectively for 14.1,12.8and 9.61%of the combined PCDD/F concentrations.In the winter,however,HxCDF was the predominant compound which accounted for 20.5%of the total 2,3,7,8-substituted PCDD/F homologs.Other major homologs were OCDD,HpCDF and PeCDF,which accounted respectively for 19.1,16.5and 16.2%of the total 2,3,7,8-substituted PCDD/F concentrations.Congener pro files of the combined PCDD/F concentrations shown in Fig.3for the spring and summer samples indicated that OCDD was the largest contributor to the total PCDDs/Fs,accounting for 37.9%on average,whereas 1,2,3,4,6,7,8-HpCDF,2,3,7,8-TCDF,and 1,2,3,4,6,7,8-HpCDD were also found as the major congeners,accounting for 11.5,8.33and 8.06%of the total TCDDs/Fs,respec-tively.Meanwhile,the total PCDD contributions were slightly greater than the total PCDF concentrations.Our spring and summer data were consistent with the studies of Rappe et al.(1988),Wevers et al.(1992)and Gertler et al.(1998),both showing that OCDD,1,2,3,4,6,7,8-HpCDD,OCDF,and 1,2,3,4,6,7,8-HpCDF were the dominant congeners.During the winter,the congener pro files were slightly different.The dominant congeners were OCDD (19.1%),1,2,3,4,6,7,8-HpCDF (13.5%),OCDF (11.5%)and 1,2,3,7,8-PeCDF (11.2%),and theTable 3Concentrations (pg m À3)of 2,3,7,8-substituted congeners of open atmospheric samples in Shameen Park.Tunnel Management Station Site C Shameen Park Site D 2006-7-112006-12-112006-7-112006-12-11ParticulateGaseous Particulate Gaseous Particulate Gaseous Particulate Gaseous 2378-TCDF 1.90E-02 1.35E-01 1.32E þ00 1.04E-01 4.31E-02 1.24E-01 5.39E-02 6.29E-0212378-PeCDF 4.33E-02 1.04E-01 2.03E þ00 2.75E-02 3.52E-02 1.13E-018.64E-02 4.40E-0223478-PeCDF 6.25E-02 1.02E-018.08E-01 3.28E-02 5.76E-02 1.16E-01 1.18E-01 5.76E-02123478-HxCDF 1.18E-01 3.54E-02 1.71E þ00 1.77E-02 3.96E-02 1.37E-02 1.39E-01 2.78E-02123678-HxCDF 1.14E-01 4.35E-027.49E-01 2.27E-02 5.30E-02 1.35E-02 1.62E-01 4.97E-02234678-HxCDF 1.50E-01 1.97E-02 6.05E-01 1.57E-02 3.47E-02 1.78E-02 1.71E-01 4.47E-02123789-HxCDF 1.30E-02 2.33E-03 4.34E-01 4.72E-03 1.19E-027.57E-03 4.26E-02 1.40E-021234678-HpCDF 4.42E-01 2.94E-02 2.31E þ00 3.14E-02 4.61E-01 5.47E-02 6.62E-019.79E-021234789-HpCDF 4.75E-02 1.84E-03 5.49E-01 2.33E-03 2.07E-02 1.29E-028.27E-02 1.86E-02OCDF2.37E-01 6.20E-03 2.26E þ009.88E-03 2.14E-019.43E-03 4.52E-013.91E-022378-TCDD 1.29E-03 2.48E-039.17E-03 5.70E-03 6.29E-039.75E-03 1.81E-03 1.93E-0212378-PeCDD 1.07E-02 1.46E-02 1.39E-01 6.35E-03 1.62E-02 2.77E-02 2.89E-029.05E-03123478-HxCDD 1.09E-02 2.13E-037.34E-02 1.36E-03 2.60E-02 5.20E-03 2.41E-028.98E-03123678-HxCDD 2.40E-02 2.33E-03 1.09E-01 6.24E-039.11E-03 5.26E-034.90E-02 1.85E-02123789-HxCDD 1.24E-02 2.43E-039.94E-02 4.23E-03 1.75E-02 2.25E-03 4.05E-028.03E-031234678-HpCDD 2.66E-01 4.86E-037.12E-01 2.27E-02 3.41E-015.19E-02 5.95E-018.48E-02OCDD1.46E þ00 4.70E-02 1.87E þ00 1.44E-02 1.04E þ00 5.93E-02 5.75E þ00 1.64E-01TEQ(pg I-TEQ m 3)9.54E-029.05E-02 1.13E þ00 4.49E-027.79E-02 1.08E-01 1.67E-018.04E-02Total PCDD/DFs3.03E þ005.55E-011.58E þ013.29E-012.43E þ006.45E-018.46E þ007.69E-01Fig. 2.Relative abundance of 2,3,7,8-PCDD/F homologs of the different sites and seasons in tunnel.Y.Deng et al./Atmospheric Environment 45(2011)2541e 25482545。

相关文档
最新文档