2019-2020年高考数学复习 第64课时 第八章 圆锥曲线方程-直线与圆锥的位置关系(1)名师精品教案

合集下载

高考数学圆锥曲线专题复习

高考数学圆锥曲线专题复习

圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。

2020年高考“圆锥曲线与方程”专题命题分析

2020年高考“圆锥曲线与方程”专题命题分析

圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若为椭圆上任意一点,则有。

椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。

注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。

例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。

(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

同理令得,即,是椭圆与轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。

当且仅当时,两焦点重合,图形变为圆,方程为。

2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。

注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。

数学高考复习名师精品教案:第64课时:第八章 圆锥曲线方程-直线与圆锥的位置关系(1)

数学高考复习名师精品教案:第64课时:第八章 圆锥曲线方程-直线与圆锥的位置关系(1)

数学高考复习名师精品教案第64课时:第八章圆锥曲线方程——直线与圆锥的位置关系(1)课题:直线与圆锥的位置关系(1)一.复习目标:1.掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题;2.会利用直线与圆锥曲线的方程所组成的方程组消去一个变量,将交点问题问题转化为一元二次方程根的问题,结合根与系数关系及判别式解决问题.二.知识要点:1.直线与圆锥曲线的位置关系的判定方法:直线l:(,)0f x y=和曲线的公共:(,)0C g x y=点坐标是方程组(,)0(,)0f x yg x y=⎧⎨=⎩的解,l和C的公共点的个数等于方程组不同解的个数.这样就将l和C的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式∆,若能数形结合,借助图形的几何性质则较为简便.2.弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).三.课前预习:1.直线y x b =+与抛物线22y x =,当b ∈ 时,有且只有一个公共点;当b ∈ 时,有两个不同的公共点;当b ∈ 时,无公共点.2.若直线1y kx =+和椭圆22125x y m+=恒有公共点,则实数m 的取值范围为 .3.抛物线2y ax =与直线y kx b =+(0)k ≠交于,A B 两点,且此两点的横坐标分别为1x ,2x ,直线与x 轴的交点的横坐标是3x ,则恒有( )()A 312x x x =+()B 121323x x x x x x =+()C 3120x x x ++=()D 1213230x x x x x x ++=4.椭圆122=+ny mx 与直线1=+y x 交于,M N 两点,MN 的中点为P ,且OP 的斜率为22,则n m 的值为( ) ()A 22 ()B 322 ()C 229 ()D 2732 5.已知双曲线22:14y C x -= ,过点(1,1)P 作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )()A 1 条 ()B 2条 ()C 3条 ()D 4条四.例题分析:例1.过点(1,6)--的直线l 与抛物线24y x =交于,A B 两点,若9(,0)2P ,||||AP BP =,求l 的斜率.例2.直线:1l y kx =+与双曲线22:21C x y -=的右支交于不同的两点,A B , (I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 例3.已知直线l 和圆M :2220x y x ++=相切于点T ,且与双曲线22:1C x y -=相交于,A B 两点,若T 是AB 的中点,求直线l 的方程.五.课后作业:1.以点(1,1)-为中点的抛物线28y x =的弦所在的直线方程为( )()A 430x y --= ()B 430x y ++= ()C 430x y +-= ()D 430x y ++=2.斜率为3的直线交椭圆221259x y +=于,A B 两点,则线段AB 的中点M 的坐标满足方程( )()A 325y x = ()B 325y x =- ()C 253y x = ()D 253y x =- 3.过点(0,1)与抛物线22(0)y px p =>只有一个公共点的直线的条数是( )()A 0 ()B 1 ()C 2 ()D 34.已知双曲线2290x y kx y -+--=与直线1y kx =+的两个交点关于y 轴对称,则这两个交点的坐标为 .5.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 .6.已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点,F Q 的直线l 与y 轴交于点M ,若||2||MQ QF = ,求直线l 的斜率. 7.一个正三角形的三个顶点都在双曲线221x ay -=的右支上,其中一个顶点是双曲线的右顶点,求实数a 的取值范围.8.已知直线1y kx =+与双曲线2231x y -=相交于,A B 两点.是否存在实数k ,使,A B 两点关于直线20x y -=对称?若存在,求出k 值,若不存在,说明理由.。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

(同步讲解)圆锥曲线知识点总结

(同步讲解)圆锥曲线知识点总结

圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视圆锥曲线性质与数列的有机结合。

(3).重视解析几何与立体几何的有机结合。

高考再现:2011年(文22)在平面直角坐标系x O y中,已知椭圆C:+ y2 = 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x = -3于点D(-3,m).(1)求m2 + k2的最小值;(2)若∣OG∣2 =∣OD∣·∣OE∣, ①求证:直线l过定点;②试问点B、G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+ = 1相交于P(x1,y1),Q(x2,y 2)两个不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(1)证明:+和+均为定值;(2)设线段PQ 的中点为M ,求∣OM ∣·∣PQ ∣的最大值;(3)椭圆C 上是否存在三点D, E, G ,使得S △ODE = S △ODG = S △OEG =?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009年山东卷)设m ∈R,在平面直角坐标系中,已知向量a =(mx,y+1),向量b =(x,y-1),a⊥b ,动点M(x,y)的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA⊥OB(O 为坐标原点),并求出该圆的方程; (3)已知m=1/4,设直线l 与圆C:x 2+y 2=R 2(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值. 一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于)的点的轨迹叫做椭圆。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

2019人教A版 高中数学知识点梳理 ---- 第八章 解析几何(直线、圆、圆锥曲线)

2019人教A版  高中数学知识点梳理 ---- 第八章  解析几何(直线、圆、圆锥曲线)

第八章 解析几何【知识网络】【知识点梳理】 一、直线和圆1.倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,我们规定它的倾斜角为_________. (3)范围:直线倾斜角的取值范围是 .斜率:(1)倾斜角α=90°时,斜率__________;α≠90°时,斜率k =tanα .(2)在右侧作出简图:正切函数k =tanα,α∈[0,π2)∪(π2,π) 此函数的增区间为___________________(3)直线的方向向量坐标:若P 1(x 1,y 1),P 2(x 2,y 2),则直线P 1P 2的方向向量P 1P 2→的坐标为________________. 若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则k = ,特别地,(1, )是l 的一个方向向量. 故斜率k =y 2−y 1x 2−x 1(x 1≠x 2).2. 斜率与倾斜角的对应关系图示倾斜角(范围) α=0°斜率(范围)k =0例1. 直线(a +1)x −y +1=0的倾斜角的范围为_______________ 3.直线五种方程:名称 方程的形式常数的几何意义适用范围点斜式 (x 0,y 0)是直线上一定点,k 为斜率斜截式k 为_____,b 是直线的_______“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.(2)求直线方程时要防止由于零截距和无斜率造成丢解;例2.过点()4,3−,且在两坐标轴上的截距相等的直线的方程_______________ 4.两直线平行和垂直①若斜率存在l 1:y=k 1x +b 1 ,l 2:y=k 2x +b 2,则l 1∥l 2⇔k 1=k 2,且b 1≠b 2; l 1⊥l 2⇔______________ ②若l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔_______________; 两直线平行,⇔____________________③与l :Ax +By +C=0平行的直线可设为________________,垂直的直线可设为___________________例3.已知两条直线(3)453,2(5)8m x y m x m y ++=−++=,当两条直线平行时______________________;当两条直线相交时______________________ 当两条直线垂直时______________________5.距离问题:已知1122(,),(,)A x y B x y ,AB =__________________,,A B 中点的坐标________ l:Ax +By +C =0,则A 到l 的距离为_________________ 两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =_______________. 6.对称性问题:点(a ,b )关于直线Ax +By +C =0对称点问题:如:点(1,2)关于直线x +3y +1=0对称点为_____________ 【对称常用结论】(1)点(x 0,y 0)关于直线y =x 的对称点为_____________,关于直线y =-x 的对称点为_____________. (2)点(x 0,y 0)关于直线x =a 的对称点为_____________,关于直线y =b 的对称点为_____________. (3)点(x 0,y 0)关于点(a ,b)的对称点为_____________. (4)点(x 0,y 0)关于直线y =x +m 的对称点是______________ (5)点(x 0,y 0)关于直线y =−x +m 的对称点是______________ 7.常见直线系方程:(1)过定点(x 1,y 1)的直线系方程:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系方程:_________________________. (3)垂直于直线Ax +By +C =0的直线系方程:_________________________.(4)过两条直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系方程:_________________________.8.圆的方程(1)圆的定义:平面上到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径. (2)圆的标准方程:我们把方程____________________称为圆心为(a ,b ),半径为r 的圆的标准方程.当a =b =0时,方程为___________________,表示以原点O 为圆心,r 为半径的圆.(3)圆的一般方程:对于方程x 2+y 2+Dx +Ey +F =0,配方得到:______________________________.①当____________________时,该方程表示以______________为圆心,_______________为半径的圆,该方程叫做圆的一般方程.②当________________ 时,该方程表示_______________________; ③当_________________时,该方程不表示任何图形.注:Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示圆⇔A=C ≠0且B=0且D 2+E 2-4AF>0;(4)已知A (11,y x )B (22,y x )以AB 为直径的圆的方程是_________________________________ (5)圆心为(a ,b ),半径为r 的圆的参数方程为(三角换元):{x =___________________y =___________________;例4.(1)052422=+−++m y mx y x 表示圆的充要条件是(2)对于任意实数k ,方程222(2)20x y kx k y k +++−−=所表示的曲线恒过两定点,则这两定点的坐标9. 点与圆的位置关系已知圆(x -a )2+(y -b )2=r 2(r >0),点P (x 0,y 0),设d =|PC |=(x 0-a )2+(y 0-b )2.位置关系 d 与r 的大小关系图示 点P 的坐标特点 点在圆外(x 0-a )2+(y 0-b )2>r 2点在圆上点在圆内10. 直线与圆的位置关系:设圆的半径为r (r >0),圆心到直线的距离为d ,则直线与圆的位置关系如下表所示. 位置 关系 图示 公共点 个数 几何 特征 直线、圆的方程组成的方程组的解 相离相切1 d =r两组相同 实数解相交例5.(1)若直线1ax by +=与圆221x y +=相交,则点(,)P a b 与圆的位置关系___________(2)求过原点且与圆22(1)(2)1x y −+−=相切的直线方程________________________ 例6.(1)已知圆)0()5(:222>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共点,则r的取值范围是______________________11. 圆与圆的位置关系位置 关系 图示(R >r )公共点 个数 几何特征(O 1O 2=d )两个圆的方程组成的方程组的解外离外切1 d =R +r两组相同 实数解 相交两组不同 实数解 内切两组相同 实数解 内含例7.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是___________ .12.相交弦直线方程:把两圆x 2+y 2+D 1x +E 1y +C 1=0与x 2+y 2+D 2x +E 2y +C 2=0方程相减即得相交弦所在直线方程_____________________________________;过两曲线交点的曲线系方程为f 1(x,y)+λf 2(x,y)=0例8.两圆2210x y +=和22(1)(3)20x y −+−=相交于,A B 两点,直线AB 方程__________________.13.圆上动点到某条直线(或某点)的距离的最大、最小值的求法(过圆心)例9.已知圆:,过圆外一点作圆的切线(为切点),当点在直线上运动时,则四边形P AOB 的面积的最小值为 .O 922=+y x P PB PA ,B A ,P 0102=+−y x14. 【常用结论】与切线、切点弦有关结论:二、圆锥曲线 (一)椭圆:1、椭圆的定义:平面内到定点21,F F 的_________________为定值(定值______||21F F )的点的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学复习第64课时第八章圆锥曲线方程-直线与圆
锥的位置关系(1)名师精品教案
课题:直线与圆锥的位置关系(1)
一.复习目标:
1.掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题;
2.会利用直线与圆锥曲线的方程所组成的方程组消去一个变量,将交点问题问题转化为一元二次方程根的问题,结合根与系数关系及判别式解决问题.
二.知识要点:
1.直线与圆锥曲线的位置关系的判定方法:
直线:和曲线的公共点坐标是方程组的解,
和的公共点的个数等于方程组不同解的个数.这样就将和的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式,若能数形结合,借助图形的几何性质则较为简便.
2.弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).三.课前预习:
1.直线与抛物线,当时,有且只有一个公共点;当时,有两个不同的公共点;当时,无公共点.
2.若直线和椭圆恒有公共点,则实数的取值范围为.
3.抛物线与直线交于两点,且此两点的横坐标分别为,,直线与轴的交点的横坐标是,则恒有()
4.椭圆与直线交于两点,的中点为,且的斜率为,则的值为()
5.已知双曲线,过点作直线,使与有且只有一个公共点,则满足上述条件的直线共有()条条条条
四.例题分析:
例1.过点的直线与抛物线交于两点,若,,求的斜率.
例2.直线与双曲线的右支交于不同的两点,
(I)求实数的取值范围;(II)是否存在实数,使得以线段为直径的圆经过双曲线的右焦点?若存在,求出的值;若不存在,说明理由.
例3.已知直线和圆:相切于点,且与双曲线相交于两点,若是的中点,求直线的方程.五.课后作业:
1.以点为中点的抛物线的弦所在的直线方程为()
2.斜率为的直线交椭圆于两点,则线段的中点的坐标满足方程()
3.过点与抛物线只有一个公共点的直线的条数是()
4.已知双曲线与直线的两个交点关于轴对称,则这两个交点的坐标为.5.与直线的平行的抛物线的切线方程是.
6.已知椭圆的中心在原点,离心率为,一个焦点是(是大于0的常数).
(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上的一点,且过点的直线与轴交于点,若,求直线的斜率.
7.一个正三角形的三个顶点都在双曲线的右支上,其中一个顶点是双曲线的右顶点,求实数的取值范围.
8.已知直线与双曲线相交于两点.是否存在实数,使两点关于直线对称?若存在,求出值,若不存在,说明理由.。

相关文档
最新文档