2015重庆数学中考填空题分类练习

合集下载

2015重庆中考数学发布会

2015重庆中考数学发布会

2015重庆初三中考数学考试说明会实录2015-03-20老渝、居夷第一部分2014中考数学情况分析一、基本情况:及格分数段统计情况二、试卷结构分析1.知识结构全卷数与式约占79分,图形与几何约占55分,统计与概率约占16分,与初中数学教材相应部分的课时比例基本相当。

2题型结构题目总数不变,但题目类型分配有一定改变,选择题由10个增加到12个,,每小题4分,共48分,填空题个数不变,6个小题,每小题4分,共24分,解答题个数由10个减少到8个,第三大题2个小题,每小题7分共14分,第四大题4个小题,每小题10分,共40分;第五大题2个小题,每小题12分,共24分。

全卷满分150分。

三、试卷解答情况分析四、试题解答中的主要问题分析函数图像的选择题;图形找规律题目;19题:运算顺序,粗心,符号问题20题:三角函数概念不清楚,勾股定理掌握不好21题:粗心为主22题:解题规范问题(概率统计)23题:建模与解方程能力不足24题:几何语言不规范,辅助线的叙述,逻辑推理不强(跳步),基本知识掌握不好25题:审题不仔细,左右上下等易忽略的条件,必要的步骤没有26题:计算失分和分析思路不清晰第二部分关于2015年的考试的设想以学生的发展为本,试题严格遵循《数学课程标准(2011)》和《考试说明》的要求,努力体现新课程的基本理念,重视对基础知识、基本技能、基本数学思想、基本数学活动经验的考查。

注意试题的层次性,起点低,由易到难。

试卷既要关注大部分学生的学业水平,让他们有成功的体验,同时又体现一定的区分度,较难试题给数学学习能力较强、数学思维较好的学生创造展示自我的空间。

在试题的设计上充分重视原创,体现能力立意,不考试死记硬背。

在解题方法上重视对数学通性通法的考查。

重视对数学知识应用的考查和基本数学思想、基本活动经验的考查,试题背景设计公平且贴近现实生活,以引导学生关注社会、关注时事。

关注基础,直接考查核心内容实数的概念,数与式的计算,方程与不等式的建立与求解,函数的意义及关系式的建立等知识,是“数与代数”中最基础、最重要的内容;基本图形的基本性质、三角形相关知识是“空间与图形”中的核心知识;而统计的基本方法与概率的计算和相关知识的应用是“统计与概率”中最重要的内容。

“异”料之外 情理之中——评析近年重庆市中考数学填空压轴题

“异”料之外 情理之中——评析近年重庆市中考数学填空压轴题

某步 行街 摆 放有 若 干盆 甲 、 设 步行 街 分 别 摆 放 甲 、 乙、 丙 三种 造型 的盆景 . 甲种 乙 、 丙 三 种 造 型 的盆 景 盆景 由1 5 朵红花 、 2 4 朵 黄 花 和 盆 、 盆、 盆_ 由题 意 得 2 5 朵紫花搭 配而成 ,乙种盆 f 1 5 x + l O y + l O z = 2 0 0 9 , ①
确性等学 生在学 习过程 中见得少 用得更少 的一些 知识 、 技能, 所以, 对此题 , 很多学生在 解答时都 处于无 限纠结
中, 最后 只有望 “ 卷” 兴 叹.
综 观近年全 国各 地 中考试题 ,从 这些 角度去命制 的 试题应 该说数量是 比较 少的. 这样 说来 , 此题 的确 是有几 分“ 异” , 有点儿 出乎大 家的意料 , 甚 至还有“ 竞赛 题 ” 中的
规定每人最多两种取法 , 甲每次取4 张或 ( 4 一 k ) 张, 乙每次 取6 张或( 6 一 k ) 张( 是常数 , 0 < < 4 ) . 经 统计 , 甲共 取 了1 5
次, 乙共取 了1 7 次, 并且 乙至少取 了一次6 张牌 , 最终两人 所取牌 的总张数恰好相等 , 那 么纸牌最少有— — 张 作为一个“ 数与代数” 填空题 , 此题貌似有点“ 异” :
2 0 1 3 年3 月
新颖 试 题
“ 异” 料之外
— —
情理之中
廖 帝 学 杨 建 国
评析 近年 重庆 市中考数 学填 空压轴题
⑩ 重庆 市 中学 数 学 陶 兴 模 名 师 工 作 室 ⑧重 庆 市 大 渡 口 区 第 九 十 五 中 学
重庆 市 自2 0 0 9 年起将 填 空题 的题数 由以前 的 1 0 道

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。

重庆中考数学17题不等式组与分式方程综合整理填空题

重庆中考数学17题不等式组与分式方程综合整理填空题

不等式组与分式方程综合一、不等式有解类型1、关于x 的分式方程34642-=-+--x x ax 的解为正数,且关于x 的不等式组⎪⎩⎪⎨⎧-≥+>2721x x a x 有解,则满足上述要求的所有整数a 的绝对值之和为_________.2、如果整数a 使得关于x 的不等式组⎩⎨⎧-≥-≤-432a x a x 有解,且使得关于x 的分式方程3333-=---xx ax 有正整数解,则满足条件的所有整数a 之和为_________.3、若整数a 使关于x 的分式方程()12422=---xx ax 的解为整数,且使关于y 的不等式组()⎩⎨⎧>->--y y a y 26022有解,则符合条件的所有整数a 的和为_________.4、使得关于x 的不等式组⎩⎨⎧≥->+a x a x 425012有解,且关于x 的方程()2421-=--x x x a 的解为整数的所有整数a 的和为_________.6、使得关于x 的不等式组⎩⎨⎧-≥+-->14122m x m x 有解,且使分式方程2221=----x xm x 有非负整数解的所有的m 的和是_________.7、已知关于x 的方程24442=+-+x x a 的解为负数,且关于x 的不等式组⎩⎨⎧-≥≤+ax x 3352有解,则满足上述条件的a 的所有整数之和是_________.8、使得关于x 的不等式组⎩⎨⎧-≥+-->84429m x m x 有解,且使分式方程2221=----x xm x 有非负整数解的所有的m 的和是_________.9、若关于y 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k y ky 有解,且关于x 的分式方程x x x kx -++=-22322有非负整数解,则符合条件的所有整数k 的和为_________.二、不等式无解类型1、若关于x 的方程111-+=++x a x x a 的解为负数,且关于x 的不等式组()⎪⎪⎩⎪⎪⎨⎧-≥->--3121021x x a x 无解.则所有满足条件的整数a 的值之积是_________.2、若关于x 的不等式组⎩⎨⎧≥-≤-1022k x k x 无解,且关于y 的分式方程34236+-=+-y y y ky 非正整数解,则符合条件的所有整数k 的值之和为_________.3、若实数a 使关于x 的方程x x x a --=--3213有正数解,并且使不等式组⎩⎨⎧-<-<-4)2(232x a x 无解,则所有符合条件的整数a 的和是_________.4、如果关于x 的分式方程34232-=+-+x x ax 有正整数解,且关于y 的不等式组()⎩⎨⎧≥>-a y y y 433无解,那么符合条件的所有整数a 的和是_________.5、若数a 使关于x 的不等式组⎩⎨⎧-<->-232a x a x 无解,且使关于x 的分式方程3555-=---x x ax 有正整数解,则满足条件的a 的值之积为_________.6、关于x 的方程1211+=-+x x ax 的解为非正数,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤+33522x x a 无解,那么满足条件的所有整数a 的和是_________.7、若整数a 使关于x 的不等式组⎪⎩⎪⎨⎧>-≥+-03332)3(21x a x x 无解,且使关于x 的分式方程2333-=-+-x x ax 有整数解,那么所有满足条件的a 值的和是_________.8、如果关于x 的分式方程1131+-=-+x x x a 有负数解,且关于y 的不等式组⎪⎩⎪⎨⎧+<+--≤-12434)(2y y y y a 无解,则符合条件的所有整数a 的和为_________.9、若数a 使关于x 的不等式组⎪⎩⎪⎨⎧≤+>-a a x x 22062无解,且使关于y 的方程1151=-+-y y ay 的解为正整数,则符合条件的所有整数a 的和为_________.三、不等式解集类型1、如果关于x 的不等式组⎪⎩⎪⎨⎧-<->-)2(3402x x m x 的解集为1>x ,且关于x 的分式方程3221=-+--x m x x 有非负整数解,则符合条件的所有整数m 取值的和为_________.的解集为2-<y ,则符合条件的所有整数a 的和为_________.3、如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为2-<x ,那么符合条件的所有整数a 的积是_________.4、如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-12434)(2x x x x a 的解集为2-<x ,那么符合条件的所有整数a 的和是_________.5、如果关于x 的不等式组⎪⎩⎪⎨⎧->-≤-236743x x m x 的解集为x <1,且关于x 的分式方程3112=-+-x mx x 有非负数解,则所有符合条件的整数m 的值之和是_________.6、若关于x 的不等式组⎪⎩⎪⎨⎧+≤+>-16250x x a x 的解集为x >a ,且关于x 的分式方程x x ax -=+-1131的解为整数,则符合所有条件整数a 值的和为_________.7、如果关于x 的不等式组⎩⎨⎧->≤+-24)(2x x x a 的解集为2->x ,且关于x 的分式方程3323=--+-xxx a 有正整数解,则所有符合条件的整数a 的和是_________.8、如果关于x 的不等式组()⎪⎩⎪⎨⎧-<->-32302x x mx 的解集为x >3,且关于x 的分式方程3221=-+--x m x x 有非负整数解,则符合条件的m 的值的和是_________.9、若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧-->--+>+12131433231x a x x 的解集为x >3,且关于x 的分式方程133=--++x ax a x 的解为非正数,则所有符合条件的整数的a 和为_________.10、若关于x 的一元一次不等式组⎪⎩⎪⎨⎧+≤≤223x x a x 的解集是a x ≤,且关于y 的分式方程12422=-----yy y a y 有非负整数解,则符合条件的所有整数a 的和为_________.11、若关于x 的不等式组⎪⎩⎪⎨⎧-≤-+-≤+xa x x x 6322131的解集为x ≤1,且使关于y 的分式方程yy y a +-=-+-1211的解为非正数,则符合条件的所有整数a 的和为_________.四、不等式整数解类型2、若关于x 的不等式组⎪⎩⎪⎨⎧+->-+≤+)35(613)21(2a a x x x 有三个整数解,且关于x 的分式方程1212-=-++-x a x x 有正数解,则所有满足条件的整数a 的值之和是_________.4、若实数a 使关于x 的不等式组⎪⎩⎪⎨⎧>--≤-032121131x a x x 有且只有4个整数解,且使关于x 的方程21512-=--+-x a x 的解为正数,则符合条件的所有整数a 的和为_________.5、若关于x 的不等式组⎩⎨⎧≥≤ax x 52有且只有三个整数解,且a 为整数,若关于x 的分式方程1212-=-+--xa x x 有解,则满足条件的所有a 的值的和为_________.6、若数a 使得关于x 的不等式组()⎪⎩⎪⎨⎧-≥+-<-x a x x x 2153223,有且仅有四个整数解,且使关于y 的分式方程123224=++-++y y y a 有整数解,则所有满足条件的整数a 的值之和是_________.7、若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧-<-≤-+ax x x x 1013222312有且仅有5个整数解,且关于y 的分式方程yy y a --+=-4234有正整数解,则满足条件的所有整数a 的个数为_________.8、如果关于x 的分式方程3212=-++-xm x x 有非负整数解,关于y 的不等式组()()⎪⎩⎪⎨⎧+-<-+≥+3153312m y y y y有且只有2个整数解,则所有符合条件的m 的和是_________.9、若数a 使关于x 的不等式组()⎪⎩⎪⎨⎧-≥---≥-21213223xx x a x 恰有3个整数解,且使关于y 的分式方程3112=-+-yay 的解为整数,则符合条件的所有整数a 的和为_________.10、若数a 使关于x 的不等式组⎪⎩⎪⎨⎧-≤--≤-)1(32)1(21131x a x x x ,有且仅有三个整数解,且使关于y 的分式方程121223=-++-ya y y 有整数解,则满足条件的所有a 的值之和是_________.变式1、如果关于x 的不等式组⎪⎩⎪⎨⎧->--≥+4641332a x x x 有且只有两个奇数解,且关于y 的分式方程121023=----ya y y 的解为非负整数,则符合条件的所有整数a 的和为_________.2、如果关于x 的不等式组⎪⎩⎪⎨⎧+<->-)21(321144x x x m 有且仅有三个奇数解,且关于x 的分式方程1323022=----x x mx 有非负数解,则符合条件的所有整数m 的和是_________.3、若关于x 的不等式组⎪⎩⎪⎨⎧≤++-≥-921)32(2312x m x 有且只有两个奇数解,且关于y 的分式方程yy y my ---=--223224有解,则所有满足条件的整数m 的和是_________.五、至少有几个整数解1、如果关于x 的不等式组⎪⎩⎪⎨⎧->->-)2(3202x x m x 至少有2个整数解,且关于x 的分式方程3221=-+--x mx x 有非负整数解,则符合条件的m 的所有值的和是_________.2、若整数a 使关于x 的分式方程1331=-+--x a x x 的解为非负数,且使不等式组⎪⎩⎪⎨⎧+-≥-+>+)4(3)2(23123a y y y y 至少有3个整数解,则符合条件的所有整数a 的和为_________.3、若关于x 的分式方程13132=----x m x x 的解为正数,且关于y 的不等式组⎪⎩⎪⎨⎧≤-+>+526221m y y y 至少两个整数解,则符合条件的所有整数m 的取值之和为_________.5、若整数a 既使得关于x 的分式方程32133-=+--x xx ax 有正整数解,又使得关于y 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+≥+-132121823y a y y 至少有3个整数解,则符合条件的所有a 之和为_________.6、使得关于x 的分式方程12216-+=--x ax x 有正整数解,且关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<-+≥-212434213x x x a x 至少有4个整数解,那么符合条件的所有整数a 的和为_________.7、如果关于x 的不等式组⎪⎩⎪⎨⎧≥-+≤+0511635x a x x 至少有3个整数解,且关于x 的分式方程53515----=-x xx a x ax 的解为整数,则满足条件的所有整数a 的取值之和为_________.11 六、最多有几个整数解(选讲)1、若m 使关于x 的不等式组⎪⎩⎪⎨⎧-≤->+223235m x x x 有整数解且整数解的个数不超过4个,同时使得关于x 的分式方程33534=-+-+xm x m x 的解为整数,则满足条件的所有整数m 的值的和是_________.2、若a 使关于x 的分式方程12524=-++-x a x x 的解为整数,且使关于y 的不等式组⎪⎩⎪⎨⎧->-≥-+ay y y 7301321有解且最多有3个整数解,则所有符合条件的整数a 的值之和是_________.3、若m 使关于x 的不等式组⎪⎩⎪⎨⎧-≤->+223235m x x x 有整数解且整数解的个数不超过5个,同时使得关于y 的分式方程332534=--+-+ym y m y 的解为正整数,则满足条件的所有m 的值之和是_________.4、已知关于x 的不等式组⎩⎨⎧->+-≤-34063x m x 的整数解个数不少于3个,但不多于5个,且关于y 的分式方程515-=--y m y y 的解为整数,则符合条件的所有整数m 的和为_________.5、若数a 使关于x 的方程x x ax --=+-+26224有整数解,且关于y 的不等式组⎪⎩⎪⎨⎧-≤-+-+<+)41(22334813y y y a y 最多只有3个整数解,则符合条件的所有整数a 的和为_________.。

重庆2015年数学中考试卷及答案

重庆2015年数学中考试卷及答案

重庆市2015年初中毕业暨高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1、 试题的答案书写在答题卡...上,不得在试卷上直接作答; 2、 作答前认真阅读答题卡...的注意事项; 3、 作图(包括做辅助线)请一律用黑色..签字笔完成; 4、 考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.-3的绝对值是 A .3B .-3C .13D.13-2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是A .B .C .D .3.下列调查中,最适宜采用全面调查方式(普查)的是 A .对重庆市中学生每天学习所用时间的调查 B .对全国中学生心理健康现状的调查C .对某班学生进行6月5日式“世界环境日”知晓情况的调查D .对重庆市初中学生课外阅读量的调查4.在平面直角坐标系中,若点P 的坐标为(-3,2),则点P 所在的象限是 A .第一象限 B .第二象限 C .第三象限D .第四象限5.计算 A .2B.3C6.某校为纪念世界反法西斯战争胜利70周年,矩形了主题为“让历史照亮未来”的演讲比赛,期中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是 A .9.7 B .9.5 C .9 D .8.8 7.若一个多边形的内角和是900°,则这个多边形是 A .五边形 B .六边形C .七边形D .八边形9题图8.已知一元二次方程22530x x -+=,则该方程根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根9.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 与点D 连接OD ,若∠BAC =55°,则∠COD 的大小为 A .70° B .60°C .55°D .35°10.下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的 个数是10题图图④图③图②图①A .32B .29C .28D .2611.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先不行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用时间x (分)之间的函数关系.下列说法中错误的是 A .小强从家到公共汽车站步行了2公里 B .小强在公共汽车站等小明用了10分钟 C .公共汽车的平均速度是30公里/小时 D .小强乘公共汽车用了20分钟11题图(分)x12题图A12.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是 利用三角函数求出D 点坐标:D(-6,A.B .-C .二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学计数法3n-116题图18题图E表示为____6.5×107___.14.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为___2:3_____.15.计算:02(3.14(3)+- =______10______.16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是__2π____(结果保留π)17.从-2,-1,0,1,2这5个树种,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩,有解,且使关于x 的一元一次方程32123x a x a -++= 的解为负数的概率为_____35___. 18.如图,AC 是矩形ABCD 的对角线,AB=2,BC=E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF时,___.18题解析:232xE如图作F G ⊥AC,易证△BCE ≌△GCF (AAS ),∴BE=GF,BC=CG ,∵在Rt △ABC 中tan 3AB ACB BC ∠===∴∠ACB=30°,∴AC=2AB=4,∠DAC=∠ACB=30°(内错角),∵FG ⊥AC ,∴AF=2GF, ∴AE+AF=AE+2BE=AB+BE, 设BE=x,在Rt △AFG 中=,4AC AG CG ∴=+=+=,解得2x = ∴AE+AF=AE+2BE=AB+BE=22+=三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.解二元一次方程组213 6.x y x y -=⎧⎨+=⎩,①②20题图AE解:②-①得 y = 1将y =1带入①得 x =3∴原方程组的解为:31x y =⎧⎨=⎩. 20.如图,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC=DE ,AB ∥EF.求证:BC=FD 证明:∵AB ∥EF ∴A E ∠=∠ AB BFA E AC ED =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD ∴BC=FD四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.化简下列各式:(1)22(1)(1)(12)a a a +++-;=(1)(2212)=3(1)33a a a a a +++-+=+解:原式 (2)22121121x x x x x x --⎛⎫-+÷⎪+++⎝⎭. 2222(21)(1)(1)=12(2)(1)12x x x x x x x x x x x x---++---+=+-=--解:原式22.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全类别“我最喜欢的课外活动”各类别人数条形统计图2018161412108642条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图“我最喜欢的课外活动”各类别人数条形统计图2018161412108642解:(1)七年级(1)班学生总人数为__48___人,扇形统计图中D 类所对应扇形的圆心角为_105_度,请补全条形统计图;,则可列下表: ∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=23.如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由; (2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x ≤≤,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. 解:⑴四位“和谐数”:1221,1331,1111,6666…(答案不唯一) 任意一个四位“和谐数”都能被11整数,理由如下: 设任意四位“和谐数”形式为:abcd ,则满足: 最高位到个位排列:,,,a b c d个位到最高位排列:,,,d c b a由题意,可得两组数据相同,则:,a d b c ==则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数 ∴ 四位“和谐数”abcd 能被11整数 又∵,,,a b c d 为任意自然数,∴任意四位“和谐数”都可以被11整除⑵设能被11整除的三位“和谐数”为:zyx ,则满足: 个位到最高位排列:,,x y z 最高位到个位排列:,,z y x由题意,两组数据相同,则:x z = 故10110zyx xyx x y ==+ 10110991122911111111zyx x y x y x y x yx y +++--===++为正整数 ∴2(14)y x x =≤≤24. 某水库大坝的横截面是如图所示的四边形BACD ,期中A B ∥CD.瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 在俯角45β=︒,已知NM 所在直线与PC 所在直线垂直,垂足为点E ,PE 长为30米. (1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH 的坡度为1:1.5i =,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米? (参考数据:tan 310.60,sin 310.52︒≈︒≈) 解:(1)在Rt △PEN 中,EN=PE=30m在Rt △PEM 中,50tan31PEME m ==︒∴20m MN EM EN =-=答:两渔船M 、N 之间的距离为20米(2)过点F 作FM ∥AD 交AH 于点M ,过点F 作FN ⊥AH 交直线AH 于点N 则四边形DFMA 为平行四边形,FM A DAB ∠=∠,DF=AM=3m由题意:tan tan 4FMA DAB ∠=∠=,2tan 3H ∠=在RT △FNH 中,24362tan 3FN NH H===∠m 在RT △FNM 中,246tan 4FN MN FMA ===∠m故HM=HN-MN=36-6=30m ∴AH=AM+HM=3+30=33m211()24(333)43222DAHF S DN DF AH m =⨯⨯+=⨯⨯+=梯形故需要填筑的土石方共343210043200V S L m =⨯=⨯=设原计划平均每天填筑3xm ,则原计划43200x 天完成;增加机械设备后,现在平均每天填筑332xm 4320012(1220) 1.543200x x x+--⨯= 解得:600x = 经检验:600x =是原分式方程的解,且满足实际意义答:该施工队原计划平均每天填筑6003m 的土石方24题图H五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上.25.在△ABC 中,AB=AC ,∠A=60°,点D 是线段BC 的中点,∠EDF=120°,DE 与线段AB 相交于点E ,DF 与线段AC (或AC 的延长线)相交于点F.(1)如图1,若DF ⊥AC ,垂足为F ,AB=4,求BE 的长;(2)如图2,将(1)中的∠EDF 绕点D 顺时针旋转一定的角度,DF 扔与线段AC 相交于点 F.求证:1CF 2BE AB +=;(3)如图3,将(2)中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN ⊥AC 于点N ,若DN=FN ,求证:)BE CF BE CF +-.25题图225题图113.解:⑴由四边形AEDF的内角和为360︒,可知DE⊥AB,故2BE=⑵取AB的中点G,连接DG易证:DG为△ABC的中位线,故DG=DC,60BGD C∠=∠=︒又四边形AEDF的对角互补,故GED DFC∠=∠∴△DEG≌△DFC故EG=CF∴BE+CF=BE+EG=BG=12AB⑶取AB的中点G,连接DG同⑵,易证△DEG≌△DFC故EG=CF故BE-CF=BE-EG=BG=12AB设CN x=在Rt△DCN中,CD=2x,在RT△DFN中,,故EG=CF=1)xBE=BG+EG=DC+CF=2x+1)x=1)x故BE+CF=1)1)x x+=)1)1)]BE CF x x--=故)BE CF BE CF+=-26.如图,抛物线223y x x=-++与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C. 点D 和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作F G⊥AD于点G,作FH平行于x轴交直线AD 于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.xxx26题备用图226题备用图126题图1解:⑴AD :1y x =+⑵过点F 作x 轴的垂线,交直线AD于点M ,易证△FGH ≌△FGM 故FGH FGM C C =△△ 设2(,23)F m m m -++则FM=2223(1)2m m m m m -++-+=-++则 C=212(1(1)2FM FM m +=+=--+⑶①若AP 为对角线如图,由△PMS ∽△MAR 可得9(0,)2P由点的平移可知1(2)2Q -,故Q 点关于直线AM 的对称点T 为1(0,)2-②若AQ 为对角线如图,同理可知P 1(0,)2-由点的平移可知Q 7(2,)2故Q 点关于直线AM 的对称点T 为9(0,)2。

2015年重庆中考数学真题卷含答案解析

2015年重庆中考数学真题卷含答案解析

2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简√12的结果是( )A.4√3B.2√3C.3√2D.2√64.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )A.65°B.55°C.45°D.35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( )A.40°B.50°C.60°D.20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )··A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐的图象经过A,B两点,则菱形ABCD的面积为( )标分别为3,1,反比例函数y=3xA.2B.4C.2√2D.4√2第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为.14.计算:20150-|2|= .15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4∶1,则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4√2.以A为圆心,AC长为半径作弧,交AB 于点D,则图中阴影部分的面积是.(结果保留π)的解, 17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组{2x+3<4,3x-1>-11又在函数y=1的自变量取值范围内的概率是.2x2+2x18.如图,在矩形ABCD中,AB=4√6,AD=10,连结BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组{y=2x-4,①3x+y=1.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). 21.计算:(1)y(2x-y)+(x+y)2;(2)(y -1-8y+1)÷y 2-6y+9y 2+y.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A 类(w<10),B 类(10≤w<20),C 类(20≤w<30),D 类(w ≥30),该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC 正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1∶1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC,垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2√3,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-√3x2+√3x+3√3交x轴于A,B两点(点A在点B的4左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P(9,0),现以P为顶点,2√3为边长在x轴上方作等边三角形QPG,2使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G',设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B√12=√4×3=2√3,故选B.4.A(a2b)3=(a2)3·b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C因为AB∥CD,所以∠2=∠BGE,因为∠BGE=180°-∠1=45°,所以∠2=45°,故选C.7.C把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.∠AOC=40°,∴∠ADB=90°-∠B=50°,故选9.B∵AE是☉O的切线,∴∠BAE=90°,∵∠B=12B.10.C从题图可看出A选项正确;小明休息前爬山的平均速度为2 800=70米/分钟,休息后爬40山的平均速度为3 800-2 800=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的100-60平均速度,B、D选项正确;从题图看出小明所走的总路程为3800米,所以C选项错误,故选C.11.B第①个图形中有2×3=6个小圆圈;第②个图形中有3×3=9个小圆圈;第③个图形中有3×4=12个小圆圈;……;第⑦个图形中有3×8=24个小圆圈,故选B.12.D由题意可得A(1,3),B(3,1),底边BC=AB=√(3-1)2+(1-3)2=2√2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4√2,故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 3.7×104解析37000=3.7×104.14.答案-1解析20150-|2|=1-2=-1.15.答案4∶1解析两个相似三角形对应边上的高之比等于相似比,所以答案是4∶1.16.答案8-2π解析 在Rt △ABC 中,BC=AC=AB ·cos 45°=4,所以阴影部分的面积为12×4×4-45π·42360=8-2π. 17.答案 25解析 解不等式组{2x +3<4,3x -1>-11,得-103<x<12①,函数y=12x 2+2x 的自变量的取值范围是x ≠0且x ≠-1②,从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是25. 18.答案 9817解析 过点F 作FH ∥BD 交BG 的延长线于点H,在矩形ABCD 中,BD=√(4√6)2+102=14,∵AD ∥BC,∴∠ADB=∠DBC,∵BE平分∠DBC,∴∠FBG=∠EBC=12∠DBC,∴∠FBG=12∠FDB,由题可得BF=FD,∴∠FBD=∠FDB,∴∠FBG=12∠FBD,∴∠FBG=∠GBD,∵FH ∥BD,∴∠H=∠GBD,∴∠H=∠F BG,∴FB=FH=FD,设FD=x(x>0),在Rt △ABF 中,由勾股定理得BF 2=AF 2+AB 2,即x 2=(10-x)2+(4√6)2,解得x=495,∴FB=FH=FD=495.∵FH ∥BD,∴△FHG ∽△DBG,∴FH BD =FGGD ,设GD=y(y>0),∴49514=495-y y,解得y=9817,∴GD=9817.评析 本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析 将①代入②,得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入①,得y=-2.(6分) 所以原方程组的解是{x =1,y =-2.(7分)20.证明 ∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分) 又∵AB=FE,∠B=∠E,∴△ABD ≌△FEC.(6分) ∴∠ADB=∠FCE.(7分)四、解答题21.解析 (1)原式=2xy-y 2+x 2+2xy+y 2(3分) =x 2+4xy.(5分)(2)原式=[(y+1)(y -1)y+1-8y+1]÷(y -3)2y(y+1)(8分)=(y+3)(y -3)y+1·y(y+1)(y -3)2(9分)=y 2+3yy -3.(10分)22.解析 (1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分)(2)记来自高新区的2个代表为A 1,A 2,来自开发区的2个代表为B 1,B 2,画树状图如下:(8分)或列表如下:第一个第二个A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P=212=16.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b 为自然数),则这个四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴2x -y 能被11整除.(8分) ∵1≤x ≤4,0≤y ≤9,∴2x -y=0.∴y 与x 的函数关系式为y=2x(1≤x ≤4且x 为自然数).(10分)24.解析 (1)由题意得,∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30米. 在Rt △PEN 中,PE=NE=30(米).(2分) 在Rt △PEM 中,tan 31°=PEME , ∴ME ≈300.60=50(米).(4分)∴MN=ME -NE=50-30=20(米).答:两渔船M,N 之间的距离约为20米.(5分) (2)过点D 作DG ⊥AB 于G,坝高DG=24米.∵背水坡AD 的坡度i=1∶0.25,∴DG∶AG=1∶0.25. ∴AG=6(米).∵加固后背水坡DH 的坡度i=1∶1.75,∴DG∶GH=1∶1.75, ∴GH=42(米).∴AH=GH -GA=42-6=36(米).(6分) ∴S △ADH =12AH ·DG=12×36×24=432(平方米).∴需要填筑土石方432×100=43 200(立方米).(7分) 设施工队原计划平均每天填筑土石方x 立方米, 根据题意,得10+43 200-10x =43 200-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析(1)∵点H是AC的中点,AC=2√3,∴AH=1AC=√3.(1分)2∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=4√3.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2.∴BD=√22+(4√3)2=2√13.(4分)(2)证明:连结AF,如图.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴DH=1AD.∠BAC=30°.∵AE平分∠BAC,∴∠CAE=12∴∠DAE=60°,∴∠ADE=30°.∴AE=1AD,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F 是BD 的中点,∴FG ∥DA,FG=12DA. ∴∠FGA=180°-∠DAG=90°, 又∵AE=12AD,∴AE=FG. 在Rt △ABC 中,∠ACB=90°, 点G 为AB 的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC 为等边三角形.(10分) ∴AC=CG,∠ACG=∠AGC=60°. ∴∠FGC=30°,∴∠FGC=∠EAC. ∴△FGC ≌△EAC(SAS).(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°. ∴△CEF 是等边三角形.(12分)26.解析 (1)∵-√34x 2+√3x+3√3=0的解为x 1=-2,x 2=6,∴抛物线y=-√34x 2+√3x+3√3与x 轴交于点A(-2,0),B(6,0).(1分)∵y=-√34x 2+√3x+3√3=-√34(x-2)2+4√3,∴顶点C(2,4√3).(2分)设直线BC 的解析式为y=kx+b(k ≠0),将点(6,0),(2,4√3)代入得,{6k +b =0,2k +b =4√3.解得{k =-√3,b =6√3.∴直线BC 的解析式为y=-√3x+6√3.(4分) (2)由已知得E'(m,-√34m 2+√3m +3√3),M(m,-√3m+6√3), F'(m +2,-√34(m +2)2+√3(m +2)+3√3),N(m+2,-√3(m+2)+6√3).ME'=-√34m 2+2√3m-3√3,NF'=-√34m 2+√3m.(5分)ME'+NF'=-√34m 2+2√3m-3√3-√34m 2+√3m=-√32(m-3)2+3√32(2<m<4). 当m=3时,ME'+NF'的值最大.(6分) 此时E'(3,15√34),F'(5,7√34),构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-√3x+27√34. 当R 是直线E'F'与y 轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度. 因此|RF'-RE'|的最大值为4,此时点R (0,27√34).(8分)(3)由题意得Q (32,√3),设平移时间为t 秒,∴Q'(32-t,√3),P'(92-t,0).如图①,过点Q'作Q'K ∥x 轴交AW 于K,Q'H ⊥AW 交AW 于H. ∵Q'到x 轴的距离为√3,∴点Q'到直线AW 的距离Q'H=√3. 又∵A(-2,0),W(0,3√3), ∴直线AW 的解析式为y=3√3x+3√3. ∴K (-43,√3).又∵点Q'可能在点K 的左边或右边, ∴KQ'=|3-t +4|=|17-t|.在Rt △WAO 中,∠WOA=90°,AO=2,WO=3√3,∴AW=√31. 由题意易证Rt △WAO ∽Rt △Q'KH,∴Q'H Q'K =WOAW , 即√3|176-t |=√331,∴t 1=17-2√316,t 2=17+2√316.(10分)∵0≤t 1≤132,0≤t 2≤132,∴t 1,t 2符合条件. 现分两种情况讨论: ①当t 1=17-2√316时,Q'(√31-43,√3),P'(5+√313,0),∵0<√31-43<2,5+√313>2. ∴重叠部分为如图①所示的等边三角形Q'H 1I 1,图①s=12I 1H 1·Q'K 1=√33(t +12)2=√33×(17-2√316+12)2=131√3-20√9327. ②当t 2=17+2√316时,Q'(-4-√313,√3),P'(5-√313,0), ∵-4-√313<-2,-2<5-√313<0, ∴重叠部分为如图②所示的直角三角形H 2I 2P',图②∴s=12H 2I 2·I 2P'=3√38(132-t)2=3√38(132-17+2√316)2=76√3-11√9312. 综上,当点Q'到x 轴的距离与点Q'到直线AW 的距离相等时,s=131√3-20√9327或s=76√3-11√9312.(12分)。

重庆市15年初中中考数学试卷含答案

重庆市15年初中中考数学试卷含答案

重庆市2015年初中中考数学试卷含答案重庆市2015年初中毕业暨高中招生考试数学试题bb4ac?b2在每个小题的下面,都给出了代号为A、B、C、D的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是 A. —4 B. 0 C. —1 D. 3 考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数越小.2.下列图形是轴对称图形的是A.B.C. D 考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误; D 、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.化简12的结果是 A. 43 B. 23 C. 32 D. 26 考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.计算a2b的结果是 A.a6b3 B. a2b3 C. a5b3 D. a6b 考点:幂的乘方与积的乘方.mn mnn分析:根据幂的乘方和积的乘方的运算方法:①=a ;②=an bn ;求出a2b 的结果是多少即可.解答:解:a2b= 3 ?b 3= a6b3 即计算a2b 的结果是a6b3.故选:A.mn mn 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①=a;②n =an bn .??3??3??3??3 5.下列调查中,最适合用普查方式的是 A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 C 不符合题意; D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H。

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考填空题专项训练代数计算类:1、写出一个大于21-的负整数___________.2、 2、分解因式:x 3-4x 2-12x =___________.3、3127482-+=___________. 4、请写出一个二元一次方程组______________,使它的解是21x y ⎧⎪⎨⎪⎩==-.5、计算:225(1)--=________.6、方程22x x =的解为___________.7、9-2tan45°=_____________.8、在数轴上与表示3的点的距离最近的整数点所表示的数是________.9、计算:312732-+=___________. 10、计算:2sin30°-16=___________.11、数轴上A ,B 两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为__________.12、分解因式:3m 2-6mn +3n 2=____________.13、方程组321026x y x y +=⎧⎨+=⎩的解是___________.14、写出一个在实数范围内能用平方差公式分解因式的多项式:_____________.15、 当x =_______时,分式33x x --||无意义. 16、函数122y x x =++-的自变量x 的取值范围是__________. 17、计算:3276cos60-︒=____________.18、已知方程x y =16,写出两对满足此方程的x 与y 的值______________. 19、分解因式:32a ab -=________.20、写出一个3到4之间的无理数________.如果在等式5(x +2)=2(x +2)的两边同除以(x +2)就会得到5=2.我们知道5≠2,由此可以猜测(x +2)等于_______.21、数轴上表示2-的点与原点的距离为________.22、若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是___________.23、函数42x y x -=+的自变量x 的取值范围是__________________. 24、不等式组6103452x x x -⎧⎨<+⎩≤的解集是________.25、计算:118|2|2-⎛⎫-+-- ⎪⎝⎭=_____________.26、若不等式组742x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是___________.27、计算:124cos30-=_______.几何计算类:28、如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是___________.ED CBAEDC B A(28题图) 29题图) (30题图)29、如图,AE ∥BD ,C 是BD 上的点,且AB =BC ,∠ACD =110°,则∠EAB =__________. 30、如图,在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于点E ,则∠BCE =_____________.31、已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE -CF =____________.CA BED求扇形及阴影图形类:1、如图所示,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分面积占圆面积的____________.NM OA BCD2、如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm .小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是__________.图2图1DA BCC'B'D'A'D (D')C (C')B (B')A (A')3、两个全等的梯形纸片如图1摆放,将梯形纸片ABCD 沿上底AD 方向向右平移得到图2.已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD的面积的13,则图2中平移的距离A′A =___________.4、已知圆锥的高为12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 .5、如图,菱形ABCD 的边长为2cm ,∠A =60°.弧BD 是以点A 为圆心、AB 长为半径的弧,弧CD 是以点B 为圆心、BC 长为半径的弧.则阴影部分的面积为___________.9. 如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A恰好落在DC 边上的点A′处,若∠A′BC =15°,则∠A′BD 的度数为__________.DBACC'B'CB A6553求概率类:1、在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,那么他一次就能猜中的概率是___________.2、有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽取的卡片上数字之差的绝对值大于1的概率是__________.3、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜,如果和为偶数,则哥哥胜.该游戏对双方__________(填“公平”或“不公平” ).几何求最大值最小值:1、如图,在五边形ABCDE 中,∠BAE =125°,∠B =∠E =90°,AB =BC ,AE =DE ,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小时,∠AMN +∠ANM 的度数为__________.E D CB A MN2、在三角形纸片ABC 中,已知∠ABC =90°,AB =6,BC =10.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M ,N 也随之移动.若限定端点M ,N 分别在AB ,BC 边上移动,则线段AT 长度的最大值与最小值之和为__________.3、如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1,P 2在函数4y x=(x >0)的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是 .P 2yxP 1OA 2A 14、在Rt △ACB 中,∠ACB =90°,AC =6,BC =8,P ,Q 两点分别是边BC ,AC 上的动点,将△PCQ 沿PQ 翻折,C 点的对应点为C′,连接AC′,则AC′的最小值是_________.5、一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为__________平方厘米.6、如图,在等边三角形ABC 中,点O 在AC 上,且AO =3,CO =6,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°,得到线段OD .要使点D 恰好落在BC 上,则AP 的长是_______.7、如图,直线33y x b =-+与y 轴交于点A ,与双曲线k y x =在第一象限交于B ,C两点,且AB ·AC =4,则k =__________.y xBCOAC'AQ C P BPOC ABD8、小明尝试着将矩形纸片ABCD (如图1,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图2);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图3).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为___________.图3图2图1EABDC ABDCFEGMN DCBA9、已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE ,与对角线AC 相交于点M ,则MCAM的值是_________.10、在矩形ABCD 中,AB =3,AD =4,将其沿对角线BD 折叠,顶点C 的对应位置为G (如图1),BG 交AD 于E ;再折叠,使点D 落在点A 处,折痕MN 交AD 于F ,交DG 于M ,交BD 于N ,展开后得图2,则折痕MN 的长为___________.图2图1F MG EANDBG EADCB。

相关文档
最新文档