26.1.1-反比例函数-课件-_语文_初中教育_教育专区.ppt
合集下载
26.1 第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册

(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函 数图象的位置和增减性
当堂练习
1.已知反比例函数 y m 2 的图象在第一、三
y
4 x
的图象.
解析:通过刚刚的学习可知画图象的三个步骤为
列表
描点
连线
需要注意的是在反比例函数中自变量 x 不能为 0.
解:列表如下
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
…2 3
0.8 1
4 3
2
4 -4 -2 - 4 -1
3
-0.8 - 2 …
3
y
y=
4 x
6
5 4 3
为(-1,3),则它们的另一个交点坐标是
( C)
A. (1,3)
y
B. (3,1) C. (1,-3)
x O
D. (-1,3)
4.已知反比例函数y k 的图象经过点 A (2,3). x
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3), x
∴ 把点 A 的坐标代入表达式,得 3 k , 2
例3 已知反比例函数的图象经过点 A (2,6). (1) 这个函数的图象位于哪些象限?y 随 x 的增大如
何变化?
解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.
(2) 点B(3,4),C( 2 1 , 4 4),D(2,5)是否在这个
《反比例函数》PPT优秀教学课件

观察思考 北京市的总面积为1.68×104 km2,人均占有面积S km2/人,全市总 人口n人,那么S与n有何关系.
n ·S = 11..6688× ×110044 n
1000 t=
v
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考 某住宅小区要种植一块面积为2 000 m2的矩形,草坪的长为y m,宽 为x m,那么y与x有何关系.
典型例题
例1.指出下列函数中的反比例函数:
k
(1)
y
=
1 x﹢1
(2)
y =﹣
3
﹣3 =4
4x x
(3) y =
k x
(k≠0)
y与x+1成反比例
y
﹣2
=x
k
(4)
y=
k2﹢1 x
≥
1
≠
0
(5) xy =﹣2
1 y= x
k
(6) y = x﹣1
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
26.1.1 反比例函数
学习目标
1. 经历在实际问题中提炼出具有反比例变化规律的数学表达式;
反
比 例
2. 能识别反比例函数的常见形式;
函
数
3. 利用待定系数法求解反比例函数的解析式;
4. 理解反比例函数在描述现实世界中的重要意义.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
观察思考
反比例函数
v · t = 1000
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
反比例函数
1000 v · t = 10v00
《反比例函数》ppt完美课件1

第26章 反比例函数
26.1 反比例函数
26.1.2 反比例函数的图象和性质
第1课时 反比例函数的图象和性质的认识
情境层,请君入内
1. 我们学习一次函数和二次函数时,研究了函 数的哪些内容?是如何进行研究的?
我们研究了函数的解析式、图象、性质,根 据解析式,通过列表、描点、连线画出函数图象, 从图象的形状、位置、增减性等多个方面分析归 纳函数的性质.
yLeabharlann k(xx0)
的图象是双曲线,它
x
具有以下性质:
当 k 0 时,双曲线的两支分别位于第一、第三象限,在
每一个象限内, y 随 x 的增大而减小;
当 k 0 时,双曲线的两支分别位于第二、第四象限,在
每一个象限内, y 随 x 的增大而增大.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
象限,在每一个象限内, y 随 x 的增大而减小.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
探究园,任你驰骋
活动2:类比探究
回顾以上研究过程,你能用类似的方法研究函
数 y k (k 0) 的图象和性质吗?
x
结论2:一般地,当 k 0 时,反比例函数
2.实践性作业:教材第10页“信息技术的应用: 探索反比例函数的性质”.
要求:(1)探究反比例函数图象的对称性,并 找出对称轴或对称点;
(2)探究 k 值对函数图象的影响,以及随着 k 的变化,函数图象相对于坐标原点的变化;
(3)把你的探究过程和探究结果写成数学小论 文,供全班交流、学习.
《反比例函数》完美实用课件1(PPT 优秀课 件)
26.1 反比例函数
26.1.2 反比例函数的图象和性质
第1课时 反比例函数的图象和性质的认识
情境层,请君入内
1. 我们学习一次函数和二次函数时,研究了函 数的哪些内容?是如何进行研究的?
我们研究了函数的解析式、图象、性质,根 据解析式,通过列表、描点、连线画出函数图象, 从图象的形状、位置、增减性等多个方面分析归 纳函数的性质.
yLeabharlann k(xx0)
的图象是双曲线,它
x
具有以下性质:
当 k 0 时,双曲线的两支分别位于第一、第三象限,在
每一个象限内, y 随 x 的增大而减小;
当 k 0 时,双曲线的两支分别位于第二、第四象限,在
每一个象限内, y 随 x 的增大而增大.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
象限,在每一个象限内, y 随 x 的增大而减小.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
探究园,任你驰骋
活动2:类比探究
回顾以上研究过程,你能用类似的方法研究函
数 y k (k 0) 的图象和性质吗?
x
结论2:一般地,当 k 0 时,反比例函数
2.实践性作业:教材第10页“信息技术的应用: 探索反比例函数的性质”.
要求:(1)探究反比例函数图象的对称性,并 找出对称轴或对称点;
(2)探究 k 值对函数图象的影响,以及随着 k 的变化,函数图象相对于坐标原点的变化;
(3)把你的探究过程和探究结果写成数学小论 文,供全班交流、学习.
《反比例函数》完美实用课件1(PPT 优秀课 件)
反比例函数ppt课件

本节课我们开始学习反比例函数.
探究新知
知识点1 反比例函数的概念
问题1 京沪线铁路全程为 1 463 km,某次列车的平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h) 的变化而变化. (1)平均速度 v,运行时间 t 存在什么数量关系?
(2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?
位:m)随宽 x(单位:m)的变化而
变化.
y 1 000 x
问题3 已知北京市的总面积为 1.68×104 km2 ,人均占有面 积 S(单位: km2 /人)随全市总人口 n(单位:人)的变化 而变化.
1.68 104 S
n
v 1 463 t
y 1 000 x
S 1.68104 n
y k(k ≠ 0) x
高 h(单位:cm)随底面积 S(单位:cm2)的变化
而变化;
h 1 000 S
k = 1 000
(3)一个物体重 100 N,物体对地面的压强 p
(单位:Pa)随物体与地面的接触面积 S(单位:
m2)的变化而变化.
p 100 S
k = 100
2.下列哪些关系式中的 y 是 x 的反比例函
数?并指出比例系数.
的比例系数 k 是
____2_____.
练习
1.用函数解析式表示下列问题中变量间的对应 关系,并指出比例系数 k 的值.
(1)一个游泳池的容积为 2 000 m3,游泳池注 满水所用时间 t(单位:h)随注水速度 v(单位: m3/h)的变化而变化;
t 2 000 k = 2 000 v
(2)某长方体的体积为 1 000 cm3,长方体的
探究新知
知识点1 反比例函数的概念
问题1 京沪线铁路全程为 1 463 km,某次列车的平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h) 的变化而变化. (1)平均速度 v,运行时间 t 存在什么数量关系?
(2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?
位:m)随宽 x(单位:m)的变化而
变化.
y 1 000 x
问题3 已知北京市的总面积为 1.68×104 km2 ,人均占有面 积 S(单位: km2 /人)随全市总人口 n(单位:人)的变化 而变化.
1.68 104 S
n
v 1 463 t
y 1 000 x
S 1.68104 n
y k(k ≠ 0) x
高 h(单位:cm)随底面积 S(单位:cm2)的变化
而变化;
h 1 000 S
k = 1 000
(3)一个物体重 100 N,物体对地面的压强 p
(单位:Pa)随物体与地面的接触面积 S(单位:
m2)的变化而变化.
p 100 S
k = 100
2.下列哪些关系式中的 y 是 x 的反比例函
数?并指出比例系数.
的比例系数 k 是
____2_____.
练习
1.用函数解析式表示下列问题中变量间的对应 关系,并指出比例系数 k 的值.
(1)一个游泳池的容积为 2 000 m3,游泳池注 满水所用时间 t(单位:h)随注水速度 v(单位: m3/h)的变化而变化;
t 2 000 k = 2 000 v
(2)某长方体的体积为 1 000 cm3,长方体的
26.1.1 反比例函数课件(共22张PPT)

x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
26.1.1-反比例函数课件1

∴y与x的函数关系式为 y=
12 x
(2)
把
x=4
代入
y=
12 x
得
y=
12 4
=3
情寄待定系数法求函数的解析式
第11页,共16页。
例题欣赏
例2、y是x的反比例函数,下表给出了x与y的一些
值:
x
-1
-
1 2
1 2
1
魂 牵
y2
4 -4 -2
梦
(1)写出这个反比例函数的表达式;
绕
(2)根据函数表达式完成上表.
2、如果y是z的反比例函数,z是x的反比例 函数,那么y与x具有怎样的函数关系?
3、如果y是z的反比例函数,z是x的正比 例函数,且x≠0,那么y与x具有怎样的函 数关系?
第15页,共16页。
小结
一、知识点
反比例函数的意义:
若y是x的反比例函数,则
;
若
,则y是x的反比例函数。
二、方法
待定系数法
第16页,共16页。
y=
k x
y=kx-1 xy=k
第10页,共16页。
例题欣赏
例1、已知y是x的反比例函数,当x=2时,y=6.
(1)写出y与x的函数关系式;
(2)
求当x=4时y的值.
解已:知(1y)是设xy=的xk反,因比为例当 x函=2数时y,=当6,x所=以3有时,y=-8. 求
当y=2时6=xk2的值. 解得 k=12
y2
k2 x
函数的值。
则
y
k1x
k2 x
∵x=1时,y=4;x=2时,y=5,
k1 k2
2k1
k2 2
4
12 x
(2)
把
x=4
代入
y=
12 x
得
y=
12 4
=3
情寄待定系数法求函数的解析式
第11页,共16页。
例题欣赏
例2、y是x的反比例函数,下表给出了x与y的一些
值:
x
-1
-
1 2
1 2
1
魂 牵
y2
4 -4 -2
梦
(1)写出这个反比例函数的表达式;
绕
(2)根据函数表达式完成上表.
2、如果y是z的反比例函数,z是x的反比例 函数,那么y与x具有怎样的函数关系?
3、如果y是z的反比例函数,z是x的正比 例函数,且x≠0,那么y与x具有怎样的函 数关系?
第15页,共16页。
小结
一、知识点
反比例函数的意义:
若y是x的反比例函数,则
;
若
,则y是x的反比例函数。
二、方法
待定系数法
第16页,共16页。
y=
k x
y=kx-1 xy=k
第10页,共16页。
例题欣赏
例1、已知y是x的反比例函数,当x=2时,y=6.
(1)写出y与x的函数关系式;
(2)
求当x=4时y的值.
解已:知(1y)是设xy=的xk反,因比为例当 x函=2数时y,=当6,x所=以3有时,y=-8. 求
当y=2时6=xk2的值. 解得 k=12
y2
k2 x
函数的值。
则
y
k1x
k2 x
∵x=1时,y=4;x=2时,y=5,
k1 k2
2k1
k2 2
4
反比例函数PPT课件

x、y值代入
y
k x
中得到关于k的方程.(3)解,即解
方程,求出k的值.(4)定,即将k值代入 确定函数解析式.
y
k x
中,
10
【针对练二】
4. 当m=__-_2__时,函数 y (m 2)x3m2
是反比例函数.
5.已知y与x2成反比例,并且当x=3时y=4.
(1)写出y和x之间的函数解析式为_y___3_x6_2 _;
6
【针对练一】
1. 已知游泳池的容积为a m3,向池内注满水所需时间t(h)
,随注水速度v(m3/h),那么a= vt ,当 a 为定值时 ,t、v成__反__比__例___关系.
2. 已知下列函数:(1)y x ,(2)y 3
2 x
,(3)xy
=
21
,(4)y
x
5
2
,(5)y
3 2x
,(6)y
( ≠0) ,
3
• 1.使学生理解并掌握反比例函数的概念.
• 2.能判断一个给定的函数是否为反比例函数,并会 用待定系数法求函数解析式.
• 3.能根据实际问题中的条件确定反比例函数的解析 式,体会函数的模型思想.
4
合作探究 达成目标
活动1:阅读教材第2页思考中的三个问题,并写出这 三个问题的函数解析式分别为__________,__________, __________.
1 x
3
,(7)y=x-4 ,其中是反比例函数的是_(_2_)(_3_)_(5__) .
7
合作探究 达成目标
例1 已知y是x的反比例函数,并且当x=2时, y=6.
(1)写出y关于x的函数解析式;
(2)求x=4时,求y的值.
《26.1反比例函数的图象与性质》课件

列表法绘制步骤
确定自变量的取值范围
根据反比例函数的定义,自变量$x$ 不能为0,因此可以选取一系列$x$值 ,如$x = -5, -4, -3, -2, -1, 1, 2, 3, 4, 5$。
计算对应的函数值
Hale Waihona Puke 列出表格将自变量和对应的函数值列成表格, 方便后续绘图使用。
对于每个选定的$x$值,计算其对应 的函数值$y = frac{k}{x}$,其中$k$ 为常数。
右,y随x的增大而减小。
当k<0时,图象分别位于第二、 四象限,每一个象限内,从左往
右,y随x的增大而增大。
k>0时,函数在x<0上同为减函 数、在x>0上同为减函数;k<0 时,函数在x<0上为增函数、在
x>0上同为增函数。
对称性特点揭示
反比例函数的图象属于以原点为对称中 心的中心对称的两条曲线,反比例函数 图象中每一象限的每一条曲线会无限接 近X轴Y轴但不会与坐标轴相交(y≠0)
当比例系数 $k > 0$ 时,函数图象位于第一、三象限;当 $k < 0$ 时,函数图 象位于第二、四象限。
函数值变化规律
函数值 $y$ 随 $x$ 的增大而减小
在反比例函数中,当 $x$ 增大时,$y$ 的值会减小。这是因为随着 $x$ 的增大,分母变 大导致整体函数值减小。
函数值 $y$ 随 $x$ 的减小而增大
03
对错题进行讲解和纠正 ,帮助学生巩固知识点
04
鼓励学生在课后进行复 习和巩固,提高学习效 果
THANKS
感谢观看
表达式解析
在反比例函数中,$x$ 是自变量 ,$y$ 是因变量,$k$ 是比例系 数。当 $x$ 取值不为零时,$y$ 的值由 $x$ 和 $k$ 共同决定。