初中数学最值专题1 Microsoft Word 文档
“胡不归模型”——中考最值专题(一)

.“胡不归模型”——中考最值专题(一)【教学重难点】1.“胡不归”之情景再现,模型识别2.本质:“两定一动”型——系数不为 1 的最值问题处理3.三步处理:①作角;②作垂线;③计算【模块一模型识别】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路.由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭.邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?···”.这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”.法国著名数学家费马(Fermat,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后,根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、互为辅成的.我们应该多多涉猎各方面知识,才能最大限度提升自我,走向成功.B 模型识别:沙砾地带问题本质:C操作步骤:高速公路A D【模块二几何类型·选择题&B填】【例1】1.(2012 ·崇安模拟)如图,△ABC在平面直角坐标系中,AB =AC,A(0,2 2 ),C(1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C,点P 在AD 上的运动速度是在CD 上的 3 倍,要使整个过程运动时间最少,则点 D 的坐标应为()2 2 2A(. 0,2) B.(0,) C.(0,) D.(0,)2 3 42.(2015 ·无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P,BC=6,∠ABC =150°,则PA+PB +PD 的最小值为__________.第 1 页共 4 页【模块三A20圆综合】【例2】(2015·内江)如图,在△ACE中,CA =C E,CAE =30°,⊙O 经过点C,且圆的直径AB 在线段AE 上.(1)试说明CE 是⊙O 的切线;(2)若△ACE 中AE 边上的高为h,试用含h 的代数式表示⊙O 的直径AB;(3)设点 D 是线段AC 上任意一点(不含端点),连接OD,当的长.12CD +OD 的最小值为 6 时,求⊙O 的AB【模块三二次函数综合·压轴】k【例3】(2014·成都改编)如图,已知抛物线y (x 2)( x 4) (k 为常数,k>0)与x 轴从左至右依次交83于点A、B,与y 轴交于点C,经过点 B 的直线y x b3与抛物线的另一个交点为D.(1)若点 D 的横坐标为-5,求抛物线的函数关系式;(2)在(1)的条件下,设 F 为线段BD 上一点(不含端点),连接AF,一动点M 从点A 出发,沿线段AF 以每秒 1 个单位的速度运动到F,再沿线段FD 以每秒 2 个单位的速度运动到 D 后停止,当点 F 的坐标为多少时,点M 在整个运动过程中用时最少?第 2 页共 4 页12【例4】(2015·日照改编)如图,抛物线y x mx n21与直线y x 3交于A、B 两点,交x 轴2于D、C 两点,连接AC、BC,已知A(0,3),C(3,0).(1)抛物线的函数关系式为____________________,tan∠BAC =__________;(2)设E 为线段AC 上一点(不含端点),连接DE,一动点M 从点 D 出发,沿线段DE 以每秒一个单位的速度运动到 E 点,再沿线段EA 以每秒 2 个单位的速度运动到点 A 后停止,当点 E 的坐标是多少时,点M 在整个运动过程中用时最少?2【例5】(2016·徐州改编)如图,在平面直角坐标系中,二次函数y= a x+bx+c 的图像经过点A(-1,0),B(0,- 3 ),C(2,0),其中对称轴与x 轴交于点D.(1)求二次函数的表达式及其顶点坐标;1(2)若P 为y 轴上的一个动点,连接PD,则PB PD2的最小值为__________.第 3 页共 4 页【例6】(2016·随州改编)已知抛物线y a(x 3)( x 1)( a0),与x 轴从左至右依次相交于A、B 两点,与y 轴交于点C,经过点 A 的直线y 3x b与抛物线的另一个交点为D.(1)若点 D 的横坐标为2,则抛物线的函数关系式为____________________;(2)在(1)的条件下,设点 E 是线段AD 上一点(不含端点),连接BE,一动点Q 从点 B 出发,沿线段BE 以每秒 1 个单位的速度运动到点E,再沿线段ED 以每秒坐标为多少时,点Q 运动的时间最少?2 3 个单位运动到点 D 停止,问当点 E 的3第 4 页共 4 页。
初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
1.3.1.2 函数的最大值、最小值 Word版含解析_1

第2课时 函数的最大值、最小值知识点 函数的最大值与最小值最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =x 2(x ∈R )的最大值是0,有f(0)=0.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) -=答案=-:(1)× (2)×2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )为减函数,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A.-=答案=-:A3.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5 B .-3,5 C .1,5 D .-5,3解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.-=答案=-:B4.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.f(-2),0 B.0,2C.f(-2),2 D.f(2),2解析:由图象知点(1,2)是最高点,故y max=2.点(-2,f(-2))是最低点,故y min=f(-2).-=答案=-:C类型一图象法求函数的最值例1如图所示为函数y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值及单调区间.【解析】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2),所以函数y=f(x)当x=3时取得最大值,最大值是3.当x=-1.5时取得最小值,最小值是-2.函数的单调递增区间为[-1.5,3),[5,6),单调递减区间为[-4,-1.5),[3,5),[6,7].观察函数图象,最高点坐标(3,3),最低点(-1.5,-2).方法归纳图象法求最值的一般步骤跟踪训练1 已知函数y =-|x -1|+2,画出函数的图象,确定函数的最值情况,并写出值域.解析:y =-|x -1|+2=⎩⎨⎧3-x ,x ≥1,x +1,x <1,图象如图所示.由图象知,函数y =-|x -1|+2的最大值为2,没有最小值, 所以其值域为(-∞,2].利用x 的不同取值先去绝对值,再画图.类型二 利用单调性求函数的最大(小值)例2 已知f (x )=1x -1,(1)判断f (x )在(1,+∞)上的单调性,并加以证明. (2)求f (x )在[2,6]上的最大值和最小值.【解析】 (1)函数f (x )在(1,+∞)上是减函数. 证明:任取x 2>x 1>1,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1),因为x 1-1>0,x 2-1>0,x 2-x 1>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以f (x )在(1,+∞)上是减函数. (2)由(1)可知f (x )在(1,+∞)上是减函数,即最大值为f(1)=3,最小值为f(5)=13.(1)判断函数的单调性.(2)利用单调性求出最大(小)值.类型三二次函数最值例3求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【解析】f(x)=(x-a)2-1-a2,其图象的对称轴为直线x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.由于二次函数的最值与其图象的对称轴有关,而题中函数图象的对称轴为直线x=a,位置不确定,所以应按对称轴与区间[0,2]的相对位置进行分类讨论.方法归纳1.如何求二次函数在闭区间[m,n]上的最值?①确定二次函数的对称轴x=a;②根据a<m,m≤a<m+n2,m+n2≤a<n,a≥n这4种情况进行分类讨论;③写出最值.2.求二次函数的最值常用的数学思想方法数形结合思想、分类讨论思想.跟踪训练3已知函数f(x)=3x2-12x+5,当自变量x在下列范围内取值时,求函数的最大值和最小值:(1)R;(2)[0,3];(3)[-1,1].解析:f(x)=3x2-12x+5=3(x-2)2-7.(1)当x∈R时,f(x)=3(x-2)2-7≥-7,当x=2时,等号成立.故函数f(x)的最小值为-7,无最大值.(2)函数f(x)=3(x-2)2-7的图象如图所示,由图可知,在[0,3]上,函数f(x)在x=0处取得最大值,最大值为5;在x=2处取得最小值,最小值为-7.(3)由图可知,函数f(x)在[-1,1]上是减函数,在x=-1处取得最大值,最大值为20;在x=1处取得最小值,最小值为-4.求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图象法求解.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)为f (b )=1b =14,所以b =4.-=答案=-:4三、解答题(每小题10分,共20分)9.已知函数f (x )=|x |(x +1),试画出函数f (x )的图象,并根据图象解决下列两个问题.(1)写出函数f (x )的单调区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值.解析:f (x )=|x |(x +1)=⎩⎨⎧-x 2-x ,x ≤0,x 2+x ,x >0的图象如图所示.(1)f (x )在⎝ ⎛⎦⎥⎤-∞,-12和[0,+∞) 上是增函数,在⎣⎢⎡⎦⎥⎤-12,0上是减函数, 因此f (x )的单调递增区间为⎝ ⎛⎦⎥⎤-∞,-12,[0,+∞); 单调递减区间为⎣⎢⎡⎦⎥⎤-12,0.(2)因为f ⎝ ⎛⎭⎪⎫-12=14,f (12)=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值为34.10.已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断函数在区间[3,5]上的单调性,并给出证明;=min{4x+1,x+4,-x+8}的最大值是________.解析:在同一坐标系中分别作出函数y=4x+1,y=x+4,y=-x +8的图象后,取位于下方的部分得函数f(x)=min{4x+1,x+4,-x +8}的图象,如图所示,由图象可知,函数f(x)在x=2时取得最大值6.-=答案=-:613.求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).解析:f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,其图象的对称轴为x=1.当t+1<1,即t<0时,函数图象如图(1)所示,函数f(x)在区间[t,t +1]上为减函数,所以最小值g(t)=f(t+1)=t2+1;当t≤1≤t+1,即0≤t≤1时,函数图象如图(2)所示,最小值g(t)=f(1)=1;当t>1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值g(t)=f(t)=t2-2t+2.综上可得,g(t)=⎩⎪⎨⎪⎧t2+1,t<0,1,0≤t≤1,t2-2t+2,t>1.。
(完整)初中数学“最值问题”_集锦.doc

“最”集●平面几何中的最⋯⋯⋯⋯⋯⋯⋯01●几何的定与最⋯⋯⋯⋯⋯⋯⋯⋯⋯07●最短路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14● 称⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18●巧作“ 称点”妙解最⋯⋯⋯⋯⋯22●数学最的常用解法⋯⋯⋯⋯⋯⋯⋯26●求最⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29●有理数的一多解⋯⋯⋯⋯⋯⋯⋯⋯⋯34●4 道典⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37●平面几何中的最在平面几何中,我常常遇到各种求最大和最小的,有它和不等式系在一起,称最.如果把最和生活中的系起来,可以达到最、最和最高效率.下面介几个例.在平面几何中,当某几何元素在定条件,求某几何量(如段的度、形的面、角的度数)的最大或最小,称最。
最的解决方法通常有两种:(1)用几何性:① 三角形的三关系:两之和大于第三,两之差小于第三;② 两点段最短;③ 直外一点和直上各点的所有段中,垂段最短;④ 定中的所有弦中,直径最。
⑵运用代数法:① 运用配方法求二次三式的最;② 运用一元二次方程根的判式。
例 1、A、B 两点在直 l 的同,在直L 上取一点 P,使 PA+PB最小。
分析:在直 L 上任取一点 P’, A P’, BP’,在△ ABP’中 AP’+BP’> AB,如果 AP’+BP’= AB,则 P’必在线段 AB上,而线段AB 与直线 L 无交点,所以这种思路错误。
取点 A 关于直线 L 的对称点 A’,则 AP’= AP,在△ A’BP 中 A’P’+B’P’> A’B, 当 P’移到 A’B与直线 L 的交点处 P 点时A’P’+B’P’= A’B,所以这时 PA+PB最小。
1 已知 AB是半圆的直径,如果这个半圆是一块铁皮, ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形 ABDC的周长最大 ( 图 3- 91) ?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于 AB∥ CD,必有AC=BD.若设 CD=2y,AC=x,那么只须求梯形 ABDC的半周长 u=x+y+R的最大值即可.解作 DE⊥AB于 E,则2 2 2x =BD=AB·BE=2R· (R-y) =2R -2Ry,所以2 2所以求 u 的最大值,只须求 -x +2Rx+2R最大值即可.2222 2-x +2Rx+2R=3R-(x-R)≤ 3R,上式只有当 x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点 C, D,这时,梯形的底角恰为 60°和 120°.2 . 如图 3-92 是半圆与矩形结合而成的窗户,如果窗户的周长为8 米(m) ,怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+π x=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3.已知 P 点是半圆上一个动点,试问 P在什么位置时, PA+PB最大 ( 图 3-93) ?分析与解因为 P 点是半圆上的动点,当 P 近于 A 或 B 时,显然 PA+PB渐小,在极限状况 (P 与 A 重合时 ) 等于 AB.因此,猜想 P 在半圆弧中点时, PA+PB取最大值.设P 为半圆弧中点,连 PB,PA,延长 AP到 C,使 PC=PA,连 CB,则 CB是切线.为了证 PA+PB最大,我们在半圆弧上另取一点 P′,连 P′A,P′B,延长 AP′到C′,使P′C′=BP′,连 C′B,CC′,则∠ P′ C′ B=∠P′BC=∠ PCB=45°,所以 A,B,C′, C 四点共圆,所以∠ CC′A=∠CBA=90°,所以在△ ACC′中, AC>AC′,即 PA+PB>P′A+P′B.4如图 3- 94,在直角△ ABC中,AD是斜边上的高, M,N 分别是△ ABD,△ ACD的内心,直证连结 AM, BM,DM,AN, DN,CN.因为在△ ABC中,∠ A=90°, AD⊥BC于 D,所以∠ ABD=∠ DAC,∠ ADB=∠ADC=90°.因为 M,N分别是△ ABD和△ ACD的内心,所以∠1=∠ 2=45°,∠ 3=∠4,所以△ ADN∽△ BDM,又因为∠ MDN=90° =∠ADB,所以△ MDN∽△ BDA,所以∠BAD=∠MND.由于∠ BAD=∠ LCD,所以∠MND=∠LCD,所以 D, C, L, N四点共圆,所以∠ALK=∠NDC=45°.同理,∠ AKL=∠1=45°,所以 AK=AL.因为△AKM≌△ ADM,所以AK=AD=AL.而而从而所以 S △ABC≥S△AKL.5.如图 3-95.已知在正三角形 ABC内( 包括边上 ) 有两点 P,Q.求证: PQ≤ AB.证设过 P,Q的直线与 AB,AC分别交于 P1,Q1,连结 P1C,显然, PQ≤P1Q1.因为∠ AQ1P1+∠ P1 Q1 C=180°,所以∠ AQ1P1和∠ P1Q1 C中至少有一个直角或钝角.若∠ AQ1P1≥90°,则PQ ≤ P1Q1≤AP1≤AB;若∠ P1Q1C≥90°,则PQ ≤ P1Q1≤P1C.同理,∠ AP1C 和∠ BP1C 中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P 1C≤BC=AB.对于 P,Q两点的其他位置也可作类似的讨论,因此,PQ≤ AB.6.设△ ABC是边长为 6 的正三角形,过顶点 A 引直线 l ,顶点 B,C到 l 的距离设为 d 1,d2,求 d1+d2的最大值 (1992 年上海初中赛题 ) .解如图 3-96,延长 BA到 B′,使 AB′=AB,连 B′C,则过顶点 A 的直线 l 或者与BC相交,或者与 B′C相交.以下分两种情况讨论.(1)若 l 与 BC相交于 D,则所以只有当 l ⊥BC时,取等号.(2)若 l ′与 B′C相交于 D′,则所以上式只有 l ′⊥ B′C 时,等号成立.7.如图 3-97.已知直角△ AOB中,直角顶点 O在单位圆心上,斜边与单位圆相切,延长AO, BO分别与单位圆交于 C,D.试求四边形 ABCD面积的最小值.解设⊙ O与 AB相切于 E,有 OE=1,从而即AB≥ 2.当 AO=BO时, AB有最小值 2.从而所以,当 AO=OB时,四边形 ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、 极端位置,直接计算等方法, 先探求出定值, 再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 ( 如线段长度、角度大小、图形面积 ) 等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理 ( 公理 ) 法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性 ( 目标不明确 ) ,解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 【例题就解】【例 1】 如图,已知 AB=10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作等边△ APC 和等边△ BPD ,则 CD 长度的最小值为 .思路点拨 如图,作 CC ′⊥ AB 于 C ,DD ′⊥ AB 于 D ′,2221DQ ⊥CC ′, CD=DQ+CQ , DQ= AB 一常数,当 CQ 越小, CD 越小,2本例也可设 AP=x ,则 PB=10 x ,从代数角度探求 CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1) 中点处、垂直位置关系等;(2) 端点处、临界位置等.【例 2】 如图,圆的半径等于正三角形 ABC 的高,此圆在沿底边 AB 滚动,切点为T ,⌒MTN 为的度数()圆交 AC 、BC 于 M 、N ,则对于所有可能的圆的位置而言, A .从 30°到 60°变动 B .从 60°到 90°变动C .保持 30°不变D .保持 60°不变思路点拨 先考虑当圆心在正三角形的顶点 C 时, 其弧的度数,再证明一般情形,从而作出判断. 注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例 3】 如图,已知平行四边形 ABCD ,AB= ,BC=b ( a > b ) ,P 为 AB 边上的一动点,a直线 DP 交 CB 的延长线于 Q ,求 AP+BQ 的最小值.思路点拨xx的代数式表示, 运用不等式 a 2b 22ab( 当设 AP= ,把 AP 、BQ 分别用且仅当 a b 时取等号 ) 来求最小值.7AC 与 BM 相交于 K ,直线 CB 与 AM 相交于点 N ,证明:线段 AK 和 BN 的乘积与 M 点的选择无关.思路点拨 即要证 AK · BN 是一个定值,在图形中△ ABC 的边长是一个定值,说明 AK ·BN 与 AB 有关,从图知 AB 为2△ ABM 与△ ANB 的公共边,作一个大胆的猜想, AK ·BN=AB ,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例 5】 已知△ XYZ 是直角边长为 1 的等腰直角三角形 ( ∠Z=90°) ,它的三个顶点分别在等腰 Rt △ABC(∠C=90° ) 的三边上,求△ ABC 直角边长的最大可能值.思路点拨 顶点 Z 在斜边上或直角边 CA(或 CB)上,当顶点 Z 在斜边 AB 上时,取 xy 的中点,通过几何不等关系求出直角边的最大值, 当顶点 Z 在(AC 或 CB)上时,设 CX=x ,CZ=y ,建立 x , y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题, 即适当地选取变量, 建立几何元素间的函数、 方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1) 利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2) 构造二次函数求几何最值.学力训练1.如图,正方形 ABCD 的边长为 1,点 P 为边 BC 上任意一点(可与 B 点或 C 点重合),分别过 B 、 C 、 D 作射线 AP 的垂线,垂足分别是 B ′、 C ′、 D ′,则 BB ′+CC ′ +DD ′的最大值为 ,最小值为 .2.如图,∠ AOB=45°,角内有一点 P , PO=10,在角的两边上有两点 Q , R(均不同于 点 O),则△ PQR 的周长的最小值为 .3.如图,两点 A 、 B 在直线 MN 外的同侧, A 到 MN 的距离 AC=8, B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则 PA PB 的最大值等于 .4.如图,A 点是半圆上一个三等分点, B 点是弧 AN 的中点, P 点是直径 MN 上一动点,⊙ O 的半径为 1,则 AP+BP 的最小值为 ( )A .1B.2C . 2D. 3 125.如图,圆柱的轴截面 ABCD 是边长为 4 的正方形,动点 P 从 A 点出发,沿看圆柱的 侧面移动到 BC 的中点 S 的最短距离是 ( )A . 2 1 2B . 2 1 4 2C . 4 1 2D . 2 4 26.如图、已知矩形 ABCD ,R ,P 户分别是 DC 、BC 上的点, E ,F 分别是 AP 、RP 的中点,当 P 在 BC上从 B 向 C 移动而 R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段 EF的长不改变D.线段EF的长不能确定7.如图,点 C 是线段 AB上的任意一点 (C 点不与 A、B 点重合 ) ,分别以 AC、BC为边在直线 AB的同侧作等边三角形 ACD和等边三角形 BCE, AE与 CD相交于点 M,BD与 CE 相交于点 N.(1)求证: MN∥ AB;(2) 若 AB的长为 l0cm,当点 C 在线段 AB上移动时,是否存在这样的一点 C,使线段MN的长度最长 ?若存在,请确定 C 点的位置并求出 MN的长;若不存在,请说明理由.(2002 年云南省中考题 )8.如图,定长的弦 ST在一个以 AB为直径的半圆上滑动, M是 ST 的中点, P 是 S 对AB作垂线的垂足,求证:不管 ST 滑到什么位置,∠ SPM是一定角.9.已知△ ABC是⊙ O的内接三角形, BT为⊙ O的切线, B 为切点, P 为直线 AB上一点,过点 P 作 BC的平行线交直线 BT 于点 E,交直线 AC于点 F.(1)当点 P 在线段 AB上时 ( 如图 ) ,求证: PA·PB=PE·PF;(2)当点 P 为线段 BA延长线上一点时,第 (1) 题的结论还成立吗 ?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为 4 的正方形截去一角成为五边形 ABCDE,其中 AF=2,BF=l,在AB上的一点 P,使矩形 PNDM有最大面积,则矩形 PNDM的面积最大值是 ( ) A.8 B.12C.25D.14211.如图,AB是半圆的直径,线段 CA上 AB于点 A,线段 DB上 AB于点 B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形 ACPDB的最大面积是 ( )A.22B.12C.32D.3 212.如图,在△ ABC中, BC=5,AC=12, AB=13,在边 AB、 AC上分别取点 D、E,使线段 DE将△ ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图, ABCD是一个边长为 1 的正方形, U、V 分别是 AB、CD上的点, AV与 DU 相交于点 P, BV与 CU相交于点 Q.求四边形 PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0 米的圆,问如何设计 ( 求出两喷水器之间的距离和矩形的长、宽 ) ,才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场( 平面图如图所示 ) .其中,正方形 MNPQ与四个相同矩形 ( 图中阴影部分 ) 的面积的和为800 平方米.的代数式表示y 为.(1) 设矩形的边 AB= ( 米) ,AM=y ( 米) ,用含xx(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为 2100 元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为 105 元;在四个三角形区域上铺设草坪,平均每平方米造价为 40 元.①设该工程的总造价为 S( 元) ,求 S 关于工的函数关系式.②若该工程的银行贷款为 235000 元,仅靠银行贷款能否完成该工程的建设任务 ?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金 73000 元,问能否完成该工程的建设任务 ?若能,请列出所有可能的设计方案;若不能,请说明理由.( 镇江市中考题 )16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积( 精确到21m) .参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短” 为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上 A、B二点之间的最短路线如何求呢?我们用过A、B 两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上 A、 B两点之间不超过半个圆周的弧线就是所求的 A、 B 两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从 A 地出发,去 B 地取情报.在去 B 地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点 A 关于河岸的对称点 A ′,即作 AA′垂直于河岸,与河岸交于点 C,且使 AC=A′C,连接 A′B 交河岸于一点 P,这时 P 点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P 点的另一点 P′,连接 P′A,P′B, P ′ A′.∵P′A+P′B=P′A′+P′B> A′B=PA′ +PB=PA+PB,而这里不等式 P ′ A′+ P′ B> A′ B 成立的理由是连接两点的折线段大于直线段,所以 PA+PB是最短路线.此例利用对称性把折线 APB化成了易求的另一条最短路线即直线段 A′ B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上 A 点,爬到邻近的另一面墙壁β上的 B 点捕蛾,它解:我们假想把含B 点的墙β顺时针旋转90°(如下页右图),使它和含A 点的墙α处在同一平面上,此时β转过来的位置记为β′,B 点的位置记为B′,则A、B′之间最短路线应该是线段 AB′,设这条线段与墙棱线交于一点 P,那么,折线 4PB就是从 A 点沿着两扇墙面走到 B 点的最短路线.证明:在墙棱上任取异于 P 点的 P′点,若沿折线 AP′ B走,也就是沿在墙转 90°后的路线 AP′ B′走都比直线段 APB′长,所以折线 APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体 ABCD— A′B′C′D′中, AB=4,A′ A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到 B 点,问这只小虫怎样爬距离最短?(见图( 1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、 B 两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D ′ B 间的最短路线就是连结这两点的直线段,这样,从 D′点出发,到 B 点共有六条路线供选择.①从 D′点出发,经过上底面然后进入前侧面到达 B 点,将这两个面摊开在一个平面上(上页图( 2)),这时在这个平面上 D′、 B 间的最短路线距离就是连接 D′、 B 两点的直线段,它是直角三角形 ABD′的斜边,根据勾股定理,D′ B2 =D′A2+AB2=( 1+2)2+42 =25,∴ D′ B=5.②容易知道,从D′出发经过后侧面再进入下底面到达 B 点的最短距离也是5.③从 D′点出发,经过左侧面,然后进入前侧面到达 B 点.将这两个面摊开在同一平面上,同理求得在这个平面上 D′、 B 两点间的最短路线(上页图( 3)),有:D′ B2=22+(1+4)2 =29.④容易知道,从 D′出发经过后侧面再进入右侧面到达 B 点的最短距离的平方也是29.⑤从 D′点出发,经过左侧面,然后进入下底面到达 B 点,将这两个平面摊开在同一平D′ B2 =( 2+4)2+12=37.⑥容易知道,从 D′出发经过上侧面再进入右侧面到达 B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达 B 点(上页图( 2)),或者经过后侧面然后进入下底面到达 B 点的路线是最短路线,它的长度是 5 个单位长度.利用例 2、例 3 中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上 A 和 B 两点之间的最短路线问题(下左图),同样可以把 A、 B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接 A、B 成线段 AP1P2B,P1、P2 是线段 AB与两条侧棱线的交点,则折线AP1P2B就是 AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在 A 点,绕一周之后终点为 B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线 AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时, A′、 B′分别与 A、B 重合),连接 AB′,再将上页右图还原成上页左图的形状,则 AB′在圆柱面上形成的曲线就是连接 AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图, A、 B 在同一母线上, B 为 AO的中点,试求以 A 为起点,以 B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时, A′、 B′分别与 A、 B 重合),在扇形中连 AB′,则将扇形还原成圆锥之后, AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的 A 点爬到桶内的 B 点去寻找食物,已知A 点沿母线到桶口C 点的距离是12 厘米,B 点沿母线到桶口D 点的距离是8 厘米,而 C、D两点之间的(桶口)弧长是 15 厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于 B 点在里面,不便于作图,设想将 BD延长到 F,使 DF=BD,即以直线 CD为对称轴,作出点 B 的对称点 F,用 F 代替 B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长 BD到 F,使 DF=BD,即作点 B 关于直线 CD 的对称点 F,连结 AF,交桶口沿线 CD于 O.因为桶口沿线 CD是 B 、F 的对称轴,所以 OB=OF,而 A、F 之间的最短线路是直线段AF,又AF=AO+OF,那么A、B 之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O 点后,转向桶内 B 点爬去.延长 AC到 E,使 CE=DF,易知△ AEF是直角三角形, AF 是斜边, EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2=( 12+8)2+ 152= 625=252,解得 AF=25.即蚂蚁爬行的最短路程是25 厘米.例7 A 、B 两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使 A、 B 两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从 A 点作河岸的垂线,并在垂线上取 AC等于河宽,就相当于把河宽预先扣除,找出 B、C 两点之间的最短路线,问题就可以解决.解:如上图,过 A 点作河岸的垂线,在垂线上截取 AC的长为河宽,连结 BC交河岸于 D 点,作 DE垂直于河岸,交对岸于 E 点, D、E 两点就是使两村行程最短的架桥地点.即两村的最短路程是 AE+ED+ DB.例8 在河中有 A、 B 两岛(如下图),六年级一班组织一次划船比赛,规则要求船从 A 岛出发,必须先划到甲岸,又到乙岸,再到 B 岛,最后回到 A 岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作 A、B 关于甲岸线、乙岸线的对称点 A′和 B′,连结 A′、B′分别交甲岸线、乙岸线于 E、F 两点,则 A→ E→ F→ B→ A 是最短路线,即最短路程为: AE+EF+FB+BA.证明:由对称性可知路线 A→ E→F→B 的长度恰等于线段 A′ B′的长度.而从 A 岛到甲岸,又到乙岸,再到 B 岛的任意的另一条路线,利用对称方法都可以化成一条连接 A′、B′之间的折线,它们的长度都大于线段 A ′B′,例如上图中用“·—·—·”表示的路线A→E′→ F′→ B 的长度等于折线 AE′F′ B 的长度,它大于 A′B′的长度,所以 A→E → F→ B→ A 是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。
初中数学几何最值存在性问题(word版+详解答案)

几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案

2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案中考数学压轴题专题动点产生的定值与最值问题中考数学压轴题——动点产生的定值与最值问题目录第1 讲角为定值的常规解法第2 讲角为定值的高级解法第3 讲边为定值的动点问题第4 讲线段的和或差为定值的动点问题第5 讲比值为定值的动点问题第6 讲乘积为定值的动点问题第7 讲面积为定值的动点问题第8 讲动点产生的几何最值问题【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理第 1 讲 角为定值的常规解法(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点 O,∠MON=90°,点 A 、B 分别在射线 OM 、 ON 上移动,AC 是△BAO 的角平分线,BD 为∠ABN 的角平分线,AC 与 BD 的反向延长线交于 点 P.试问:随着点 A 、B 位置的变化,∠APB 的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。
、【例】如图所示,O 的直径 AB=4,点 P 是 AB 延长线上的一点,过 P 点作 O 的切线,切点为 C , 连接 AC.(1)若∠CPA=30°,求 PC 的长;(2)若点 P 在 AB 的延长线上运动,∠CPA 的平分线交 AC 于点 M ,你认为∠CMP 的大小是否发 生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。
【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。
【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。
2024年中考数学专题复习定值与最值问题

定值与最值问题1、平面几何最值问题:在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
线段最值问题的解决通常方法:应用几何性质.①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长.基本类型有:将军饮马、选址造桥、线段之差的最大值,隐圆最值,瓜豆原理,胡不归最值,阿氏圆等。
2、立体几何最值问题:展开平面图形,根据平面几何最值问题方法去做!3、代数最值问题:无非就是根据完全平方公式或者二次函数的知识去求解!例1.如图,A、B两个机离线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为()A.11米B.10米C.9米D.8米1.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED、EB,则△BDE周长的最小值为()A.2 5 B.2 3 C.25+2 D.23+22.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB 的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为__ .3.直线l1、l2交于点O,A、B是两直线间的两点,从点A出发,先到l1上一点P,再从点P到l2上一点Q,再回到点B,求作P、Q两点,使四边形APQB周长最小.4.A、B是位于河流两旁的两个村庄,要在这条宽度为d的河上建一条垂直的桥,使得从A村到B村的距离之和最短.试着画出桥应该建在何处?例2.如图,AC⊥BC于C,连接AB,点D是AB上的动点,AC=6,BC=8,AB=10,则点C到点D的最短距离是()A.6 B.8 C.403D.2451.如图,点A 的坐标为(1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(21-,21-)C .(22,22-)D .(22-,22-) 2.如图,在平面直角坐标系xOy 中,直线AB 经过点A (﹣4,0)、B (0,4),⊙O 的半径为1,点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为_________.例3.如图,在菱形ABCD 中,AB =4,∠A =135°,点P 、M 、N 分别为对角线BD 及边BC ,CD 上的动点,则PM +PN 的最小值为__ .1.如图,∠ABC =45°,BC =42,BD 平分∠ABC 交AC 于点D ,M 、N 分别是BD 和BC 上的动点(M 与B ,D 两点不重合,N 与B ,C 两点不重合),则CM +MN 的最小值为__ .2.如图,∠AOB =45°,P 是∠AOB 内一定点,PO =10,Q 、R 分别是OA ,OB 上的动点,则△PQR 周长的最小值为__ .例4.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 .1.如图所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)2B .(1,0)C .3(,0)2D .5(,0)22.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP *OQ = .例5.在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC =2.设tan ∠BOC =m ,则m 的取值范围是_________.1.如图, △ABC 中,∠ABC =90°,AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .2.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF =90°,则EF 的最小值是_____________.例6.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+1.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A .13cmB .12cmC .10cmD .8cm2.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm .第1题 第2题例7.求二次三项式2x 2x +3的最小值.1.求代数式﹣2x 2+3x +5的最大值.例9.如果P 是边长为2的正方形ABCD 的边CD 上任意一点且PE ⊥DB ,PF ⊥CA ,垂足分别为E ,F ,则PE +PF =__ __.1.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定2.如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t =2秒时PQ =52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.1.如图,在正方形ABCD 中,G 是正方形内一点,AD =4,P 是BC 的中点,且BG =BP ,则DG +12GC 的最小值是__________.(提示:考虑用相似转化,系数需要化成相同)。
中考数学 专题聚焦一 最值问题课件

[对应训练] 1.在△ABC中,AC=BC=6,∠ACB=90°, D是BC边的中点, E是AB上的一个动点,则EC+ED的最小值是__3__5____.
点拨:以 AC 为边作正方形 ACBP,如图,连接 CP,则 AB 与 CP 互相 垂直平分,连接 DP 交 AB 于点 E, 连接 CE,∵AC=BC=6,D 是 BC 的中点,∴DB=3,又∵∠CBP=90°,PB=6,在 Rt△DBP 中,由 勾股定理有,DP= 32+62= 45=3 5,又∵EC=EP,∴EC+ED=EP +ED=DP=3 5,即:EC+ED 的最小值是 3 5
专题一 最值问题
美国著名数学家哈尔莫斯曾经说过:“数学的真正部分是问题的解” .毋庸置疑,学习数学就意味着解题.解题,联想是基础,转化是手段 ,问题解决是目的.如果说:解题它是表达一个命题从题设到结论的演 变过程,那么联想与转化它可以迅速沟通这一演变过程的作用.联想是 基础,转化是手段,灵活应用是关键,问题解决是目的,把握好这一解 题策略,对于我们学习数学,提高解题质量,提高学习成绩,可以起到 事半功倍的作用.
为(-43,0),PQ′= (-2-0)2+(2+4)2=2 10
【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.
[对应训练] 1.在平面直角坐标系中,设P(-1,1),Q(2,3),x轴上有一点R, 则PR+RQ的最小值为__5__.
2.(2016·创新题)若一次函数y=kx+b的图象与x,y轴分别交于点 A(4,0),B(0,6). (1)求该一次函数的解析式; (2)O为坐标原点,设OA,AB的中点分别为C,D,P为OB上一动点 ,求PC+PD的最小值.
解:设 t 秒后 PQ+QC 最小,取点 P 关于 AD 的对称点 P′,连接 CP′与 AD 相交,由轴对称确定最短路线问题,交点即为所求的使 PQ+QC 最小 的点 Q 的位置,∵AB=6 cm,AD=12 cm,∴AP=AP′=6-t,AQ=2t, QD=12-2t,∵AB∥CD,∴△AP′Q∽△DCQ,∴ACPD′=AQQD,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学最大(小)值问题练习1.如图所示,已知A(,y),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)2.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.3.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.B.C.D.4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°5.在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是.6.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.7.如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A 1BC 5D .528.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。
9.在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .10.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A . 1B . 2 D 111.如图,△ABC 中,∠BAC=60°,∠ABC=45°,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 .12.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .13.如图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为( ) A .1 B .2 C .3 D .414.正方形ABCD 的边长为1cm ,M 、N 分别是BC .CD 上两个动点,且始终保持AM⊥MN,当BM= cm 时,四边形ABCN 的面积最大,最大面积为 cm 2.15.我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?16.在矩形ABCD 中,AB=2,AD=3,P 是BC 上的任意一点(P 与B 、C 不重合),过点P 作AP⊥PE,垂足为P ,PE 交CD 于点E. (1)连接AE ,当△APE 与△ADE 全等时,求BP 的长;(2)若设BP 为x ,CE 为y ,试确定y 与x 的函数关系式。
当x 取何值时,y 的值最大?最大值是多少? (3)若PE∥BD,试求出此时BP 的长.17.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.∵∠DAB=120°,∴∠AA′M+∠A″=∠H AA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°, 故选:B .5.考点: 轴对称-最短路线问题。
解答: 解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC ,则CE 即为CM+MN 的最小值, ∵BC=,∠ABC=45°,BD 平分∠ABC , ∴△BCE 是等腰直角三角形, ∴CE=BC•cos 45°=4×=4.故答案为:4.6分析:作P关于OA,OB的对称点1P ,2P 。
连接1P 2P ,分别交OA,OB于Q,R。
如图所示,再连接PQ,PR。
易知 1P Q=PQ,2P R=PR, 所以△PQR的周长=1P Q+QR+2P R。
根据两点之间线段最短, △PQR的周长=1P 2P ,而∠POA=∠1P OA, ∠POB=∠2P OB,且OP=O1P =O2P =10, 又∠AOB=45°,所以∠1P O2P =90° 即△1P O2P 为等腰直角三角形,故△PQR的周长的最小值为2107.【答案】A 。
【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。
DE==== PO BA QR2P1P8.【答案】15π。
【分析】如图,圆柱展开后可见,棉线最短是三条斜线,第一条斜线与底面圆周长、13高组成直角三角形。
由周长公式,底面圆周长为4cm π,13高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线最短为15cm π。
9.【答案】245。
【考点】动点问题,垂直线段的性质,勾股定理。
【分析】如图,根据垂直线段最短的性质,当BP′⊥AC 时,BP 取得最小值。
设AP′=x,则由AB =AC =5得CP′=5-x , 又∵BC=6,∴在Rt△AB P′和Rt△CBP′中应用勾股定理,得222222BP AB AP BP BC CP '=-''=-',。
∴2222AB AP BC CP -'=-',即()22225x 66x -=--,解得7x=5。
∴24BP 5'=,即BP 的最小值是245。
10.【答案】B 。
【分析】分两步分析:(1)若点P ,Q 固定,此时点K 的位置:如图,作点P 关于BD 的对称点P 1,连接P 1Q ,交BD 于点K 1。
由线段中垂线上的点到线段两端距离相等的性质,得 P 1K 1 = P K 1,P 1K=PK 。
由三角形两边之和大于第三边的性质,得P 1K +QK >P 1Q= P 1K 1+Q K 1= P K 1+Q K 1。
∴此时的K 1就是使PK+QK 最小的位置。
(2)点P ,Q 变动,根据菱形的性质,点P 关于BD 的对称点P 1在AB 上,即不论点P 在BC 上任一点,点P 1总在AB 上。
因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P 1Q⊥AB 时P 1Q 最短。
过点A 作AQ1⊥DC 于点Q 1。
∵∠A=120°,∴∠DA Q 1=30°。
又∵AD=AB=2,∴P 1Q=AQ 1=AD·cos300=2=综上所述,PK+QK B 。
11.【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。
【分析】由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,此时线段点作OH⊥EF,垂足为H 。
∵在Rt△ADB 中,∠ABC=45°,∴AD=BD=2,即此时圆的直径为2。
由圆周角定理可知∠EO H=12∠EOF=∠BAC=60°, ∴在Rt△EOH。
由垂径定理可知12.【答案】5。
【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。
【分析】连接AB 并延长交x 轴于点P ,作A 点关于y 轴的对称点A′连接A′B 交y 轴于点Q ,求出点Q 与y 轴的交点坐标即可得出结论:连接AB 并延长交x 轴于点P , 由三角形的三边关系可知,点P 即为x 轴上使得|PA -PB|的值最大的点。
∵点B 是正方形ADPC 的中点, ∴P(3,0)即OP=3。
作A 点关于y 轴的对称点A′连接A′B 交y 轴于点Q ,则A′B即为QA+QB 的最小值。
∵A′(-1,2),B (2,1), 设过A′B 的直线为:y=kx+b ,则 2k b 12k b =-+⎧⎨=+⎩,解得1k 35b 3⎧=-⎪⎪⎨⎪=⎪⎩。
∴Q(0,53 ),即OQ=53。
∴OP•OQ=3×53=5。
15.【答案】12,58。
【考点】正方形的性质,相似三角形的判定和性质,二次函数的最值。
【分析】设BM=xcm ,则MC=1﹣xcm ,∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=90°﹣∠NMC=∠MNC。
∴△ABM∽△MCN,∴AB BM MC CN =,即1x1x CN=-,解得CN=x (1﹣x )。
∴22ABCN 1111115S 1[1x 1x ]x x x 2222228=⨯⨯+-=-++=--+四形()()边。
∵12-<0,∴当x=12cm 时,S 四边形ABCN 最大,最大值是58cm 2。
15.考点: 一次函数的应用。
810360分析: 当x≤35时,选择两个,宾馆是一样的;当35<x≤45时,选择甲宾馆比较便宜,当x >35时,两个宾馆的收费可以表示成人数x 的函数,比较两个函数值的大小即可. 解答: 解:设总人数是x ,当x≤35时,选择两个,宾馆是一样的;当x >45时,甲宾馆的收费是:y 甲=35×120+0.9×120×(x ﹣35),即y 甲=108x+420; y 乙=45×120+0.8×120(x ﹣45)=96x+1080,当y 甲=y 乙时,108x+420=96x+1080,解得:x=55;当y 甲>y 乙时,即108x+420>96x+1080,解得:x >55; 当y 甲<y 乙时,即108x+420<96x+1080,解得:x <55; 总之,当x≤35或x=55时,选择两个,宾馆是一样的; 当35<x <55时,选择甲宾馆比较便宜; 当x >55时,选乙宾馆比较便宜.点评: 此题的关键是用代数式列出在甲、乙两宾馆的费用,用了分类讨论的方法,是解决此类问题常用的方法. 16.【答案】解:(1)∵△APE≌△ADE,∴AP=AD=3。