河南省信阳市普通2018届高中高三第二次教学质量检测数学(理)试卷(含答案)
2018年河南省信阳市高考数学二模试卷(理科)(解析版)

2018年河南省信阳市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|x<2},N={x|x2﹣x<0},则下列关系中正确的是()A.M∪N=R B.M∪(∁R N)=R C.N∪(∁R M)=R D.M∩N=M 2.(5分)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱3.(5分)下面是关于复数z=的四个命题:p1:|z|=2;p2:z2=2i;p3:z的共轭复数为1+i;p4:z的虚部为﹣1.其中的真命题为()A.p1,p2B.p2,p4C.p2,p3D.p3,p44.(5分)已知定义在R上的函数f(x)=ax3+x2+ax+1有三个不同的单调区间,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)5.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)6.(5分)的展开式的常数项是()A.5B.﹣10C.﹣32D.﹣427.(5分)某校高三年级10个班参加合唱比赛得分的茎叶图如图所示,若这组数据的平均数是20,则+的最小值为()A.1B.C.2D.8.(5分)若输出的S的值等于22,那么在程序框图中的判断框内应填写的条件是()A.i>5B.i>6C.i>7D.i>89.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度10.(5分)过抛物线y2=4x的焦点F作直线l交抛物线于A,B两点,若=,则直线l的倾斜角θ(0<θ<)等于()A.B.C.D.11.(5分)设x,y,z为正实数,且log2x=log3y=log5z>0,则的大小关系不可能是()A.B.==C.D.12.(5分)如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD的形状,下底AB是半圆的直径,上底CD的端点在圆周上,则所得梯形面积的最大值为()A.3B.3C.5D.5二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知向量,的夹角为60°,||=1,|2﹣|=,则||=.14.(5分)某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是.15.(5分)过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.16.(5分)在平面四边形ABCD中,∠A=∠B=60°,AB=1,∠D=150°,则四边形ABCD 面积的取值范围是.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,且满足:(a+b+c)(sin B+sin C ﹣sin A)=b sin C.(Ⅰ)求角A的大小;(Ⅱ)设a=,S为△ABC的面积,求S+cos B cos C的最大值.18.(12分)为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?(2)求这80位师范类毕业生从事与教育有关工作的频率;(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).参考公式:k2=(n=a+b+c+d).附表:19.(12分)已知数列{a n}的前n项和为S n,且a 1=2,2S n=(n+1)2a n ﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.20.(12分)已知直线l与椭圆C:+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,又=(ax1,by1),=(ax2,by2),若⊥且椭圆的离心率e=,又椭圆经过点(,1),O为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问△AOB的面积是否为定值?21.(12分)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.选考题:共10分.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(其中t为参数),曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位.(Ⅰ)求直线l的普通方程及曲线C1的直角坐标方程;(Ⅱ)在曲线C1上是否存在一点P,使点P到直线l的距离最大?若存在,求出距离的最大值及点P的直角坐标;若不存在,请说明理由.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(Ⅰ)若∃x∈R,使得f(x)≤m成立,求实数m的取值范围;(Ⅱ)解不等式x2﹣8x+15+f(x)≤0.2018年河南省信阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|x<2},N={x|x2﹣x<0},则下列关系中正确的是()A.M∪N=R B.M∪(∁R N)=R C.N∪(∁R M)=R D.M∩N=M【解答】解:N={x|0<x<1};∴M∪N={x|x<2},∁R N={x|x≤0,或x≥1},M∪(∁R N}=R.故选:B.2.(5分)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.3.(5分)下面是关于复数z=的四个命题:p1:|z|=2;p2:z2=2i;p3:z的共轭复数为1+i;p4:z的虚部为﹣1.其中的真命题为()A.p1,p2B.p2,p4C.p2,p3D.p3,p4【解答】解:复数z===﹣1﹣i.∴|z|=,z2=2i,=﹣1+i,z的虚部为﹣1.因此只有p2,p4是真命题.故选:B.4.(5分)已知定义在R上的函数f(x)=ax3+x2+ax+1有三个不同的单调区间,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)【解答】解:根据题意,函数f(x)=ax3+x2+ax+1,其导数f′(x)=ax2+2x+a,若函数f(x)=ax3+x2+ax+1有三个不同的单调区间,则f′(x)=ax2+2x+a=0有2个零点,则有△=4﹣4a2>0,且a≠0,解可得:﹣1<a<1,且a≠0,即实数a的取值范围是(﹣1,0,(0,1);故选:D.5.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【解答】,解:根据题意,偶函数f(x)在区间(﹣∞,0]上单调递减,则其在[0,+∞)上为增函数,又由f(3)=0,则f(﹣3)=0,由图象知当x<﹣3或x>3时,f(x)>0;当﹣3<x<3时,f(x)<0,(x﹣1)f(x)>0等价为或,即或,得x>3或﹣3<x<1综合可得:不等式(x﹣1)f(x)>0的解集是(﹣3,1)∪(3,+∞);故选:A.6.(5分)的展开式的常数项是()A.5B.﹣10C.﹣32D.﹣42【解答】解:由于的通项为,故的展开式的常数项是+(﹣2)5=﹣42,故选:D.7.(5分)某校高三年级10个班参加合唱比赛得分的茎叶图如图所示,若这组数据的平均数是20,则+的最小值为()A.1B.C.2D.【解答】解:根据茎叶图知,这组数据的平均数是[12+13+15+19+17+23+(20+a)+25+28+(20+b)]=20,∴a+b=8,∴+=(+)(a+b)=(1+9++)≥(10+2)=2,当且仅当b=3a=6时取“=”,∴+的最小值为2.故选:C.8.(5分)若输出的S的值等于22,那么在程序框图中的判断框内应填写的条件是()A.i>5B.i>6C.i>7D.i>8【解答】解:S=1+1=2,i=2,不满足条件,执行循环;S=2+2=4,i=3,不满足条件,执行循环;S=4+3=7,i=4,不满足条件,执行循环;S=7+4=11,i=5,不满足条件,执行循环;S=11+5=16,i=6,不满足条件,执行循环;S=16+6=22,i=7,满足条件,退出循环体,输出S=22故判定框中应填i>6或i≥7故选:B.9.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选:C.10.(5分)过抛物线y2=4x的焦点F作直线l交抛物线于A,B两点,若=,则直线l的倾斜角θ(0<θ<)等于()A.B.C.D.【解答】解:方法一:由题意可得直线AB的斜率k存在设A(x1,y1)B(x2,y2),F(1,0)则可得直线AB的方程为y=k(x﹣1)联立方程,整理可得k2x2﹣2(k2+2)x+k2=0∴x1+x2=,x1x2=1∴x2﹣x1==,∵=﹣===,∴解得:k=或k=﹣,∵0<θ<,∴k=,∴θ=,故选B.方法二:由抛物线的焦点弦性质,+==1,由=,解得:|AF|=,|BF|=4,∴|AB|=|AF|+|BF|===,解得:sinα=,∵θ=,故选:B.11.(5分)设x,y,z为正实数,且log2x=log3y=log5z>0,则的大小关系不可能是()A.B.==C.D.【解答】解:x,y,z为正实数,且log2x=log3y=log5z=k>0,可得:x=2k>1,y=3k>1,z=5k>1.∴=2k﹣1,=3k﹣1,=5k﹣1,①若0<k<1,则函数f(x)=x k﹣1单调递减,∴>>;②若k=1,则函数f(x)=x k﹣1=1,∴==;③若1<k,则函数f(x)=x k﹣1单调递增,∴<<.∴的大小关系不可能是D.因此A,B,C,正确;D错误.故选:D.12.(5分)如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD的形状,下底AB是半圆的直径,上底CD的端点在圆周上,则所得梯形面积的最大值为()A.3B.3C.5D.5【解答】解:连接OD,过C,D分别作DE⊥AB于E,CF⊥AB,垂足分别为E,F.设∠AOD=θ,θ∈.OE=2cosθ,DE=2sinθ.可得CD=2OE=4cosθ,∴梯形ABCD的面积S=(4+4cosθ)•2sinθ=4sinθ(1+cosθ),S′=4(cosθ+cos2θ﹣sin2θ)=4(2cos2θ+cosθ﹣1)=4(2cosθ﹣1)(cosθ+1).∵θ∈.∴cosθ∈(0,1).∴当cosθ=即θ=时,S取得最大值,S=3.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知向量,的夹角为60°,||=1,|2﹣|=,则||=1.【解答】解:∵向量,的夹角为60°,||=1,|2﹣|=,∴|2﹣|2==3,解得:=1.故答案为:114.(5分)某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是30万元.【解答】解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:再设分别生产甲、乙两种肥料各x、y车皮产生的利润为z=10000x+5000y=5000(2x+y),由得两直线的交点M(2,2).令t=2x+y,当直线L:y=﹣2x+t经过点M(2,2)时,它在y轴上的截距有最大值为6,此时z=30000.故分别生产甲、乙两种肥料各2车皮时产生的利润最大为30万元.故答案为:30万元.15.(5分)过双曲线的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为.【解答】解:设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,那么OE∥PF'因为OE=a那么PF'=2a又PF'⊥PF,FF'=2c所以PF=2b设P(x,y)x+c=2ax=2a﹣c过点F作x轴的垂线,点P到该垂线的距离为2a由勾股定理y2+4a2=4b24c(2a﹣c)+4a2=4(c2﹣a2)得e=.故答案为:.16.(5分)在平面四边形ABCD中,∠A=∠B=60°,AB=1,∠D=150°,则四边形ABCD面积的取值范围是(,).【解答】解:平面四边形ABCD中,∠A=∠B=60°,∠D=150°,∴∠C=90°;延长AD、BC相交于点O,则△OAB为等边三角形,如图(1)所示;此时△AOB的面积为×1×1×sin60°=;当A,D重合时,AC⊥BC,∠B=60°,如图(2)所示;此时△ABC的面积为×1××sin60°=;∴平面四边形ABCD的面积S满足<S<.故答案为:(,).三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,且满足:(a+b+c)(sin B+sin C ﹣sin A)=b sin C.(Ⅰ)求角A的大小;(Ⅱ)设a=,S为△ABC的面积,求S+cos B cos C的最大值.【解答】解:(Ⅰ)(a+b+c)(sin B+sin C﹣sin A)=b sin C,由正弦定理可得(a+b+c)(b+c﹣a)=bc,即(b+c)2﹣a2=bc,即为b 2+c 2﹣a 2=﹣bc , 由余弦定理可得cos A ==﹣,由0<A <π,可得A =;(Ⅱ)a =,由正弦定理可得:====2,可得b =2sin B ,c =2sin C , 则S =bc sin A =sin B sin C , S +cos B cos C =sin B sin C +cos B cos C=cos (B ﹣C ),当B =C =时,S +cos B cos C 的最大值为.18.(12分)为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?(2)求这80位师范类毕业生从事与教育有关工作的频率;(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X ,求X 的数学期望E (X ). 参考公式:k 2=(n =a +b +c +d ).附表:【解答】解:(1)根据列联表计算观测值K2=≈2.0513,因为K2<3.841,所以在犯错误的概率不超过5%的前提下,不能认为“师范类毕业生从事与教育有关的工作与性别有关”;(2)由图表知这80位师范类毕业生从事与教育有关工作的频率为P==;(3)由题意知X服从B(4,),则E(X)=np=4×=.19.(12分)已知数列{a n}的前n项和为S n,且a1=2,2S n=(n+1)2a n﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.【解答】解:(I)由2S n=(n+1)2a n﹣n2a n+1,可得:2S n+1=(n+2)2a n+1﹣(n+1)2a n+2,两式相减可得:2a n+1=(n+2)2a n+1﹣(n+1)2a n+2﹣(n+1)2a n+n2a n+1,∴2a n+1=a n+2+a n,∴数列{a n}是等差数列,2S1=22a1﹣a2,a1=2,解得a2=4.∴d=4﹣2=2.∴a n=2+2(n﹣1)=2n.由b1=a1=2,nb n+1=a n b n.∴b n+1=2b n,∴数列{b n}是等比数列,首项与公比都为2.∴b n=2n.(II)c n=a n+b n=2n+2n,∴数列{c n}的前n项和T n=+=2n+1+n2+n﹣2.20.(12分)已知直线l与椭圆C:+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,又=(ax1,by1),=(ax2,by2),若⊥且椭圆的离心率e=,又椭圆经过点(,1),O为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问△AOB的面积是否为定值?【解答】解:(Ⅰ)由题意的离心率e===,则a=2b,将(,1)代入,即,解得:b=1,则a=2,∴椭圆的标准方程为:;(Ⅱ)由⊥,则•=0,即4x1x2+y1y2=0,由于A(x1,y1),B(x2,y2)在椭圆上,则,两式相乘,(y12+4x12)(y22+4x22)=(y1y2)2+16(x1x2)2+4(x12y22+x22y12),=(4x1x2+y1y2)2+4(x1y2﹣x2y1)2=4(x1y2﹣x2y1)2=16,∴(x1y2﹣x2y1)2=4,∴△AOB的面积S△AOB=|x1y2﹣x2y1|=1,△AOB的面积为定值1.注S△AOB=||或过A,B分别作y轴的垂线转化为直角梯形,与直角三角形的面积问题即可.21.(12分)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.【解答】解:(1)函数f(x)=4x2+﹣a,则y=xf(x)=4x3+1﹣ax的导数为y′=12x2﹣a,由题意可得12﹣a=0,解得a=12,即有f(x)=4x2+﹣12,f′(x)=8x﹣,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,﹣7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x﹣1),即为y=7x﹣14;(2)由f(x)=4x2+﹣a,导数f′(x)=8x﹣,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3﹣a,由f(x)有两个零点,可得3﹣a=0,即a=3,零点分别为﹣1,.令t=g(x),即有f(t)=0,可得t=﹣1或,则f(x)=﹣1﹣b或f(x)=﹣b,由题意可得f(x)=﹣1﹣b或f(x)=﹣b都有3个实数解,则﹣1﹣b>0,且﹣b>0,即b<﹣1且b<,可得b<﹣1,即有a+b<2.则a+b的范围是(﹣∞,2).选考题:共10分.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(其中t为参数),曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位.(Ⅰ)求直线l的普通方程及曲线C1的直角坐标方程;(Ⅱ)在曲线C1上是否存在一点P,使点P到直线l的距离最大?若存在,求出距离的最大值及点P的直角坐标;若不存在,请说明理由.【解答】解:(Ⅰ)直线l的参数方程为(其中t为参数),转化为直角坐标方程为:x﹣y+1=0.曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,转化为直角坐标方程为:.(Ⅱ)由(Ⅰ)知:C1的参数方程为:(θ为参数).所以:点P到直线l的距离d==,则:,此时:cos()=1,解得:(k∈Z).所以:,故P()到直线l的距离最大.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(Ⅰ)若∃x∈R,使得f(x)≤m成立,求实数m的取值范围;(Ⅱ)解不等式x2﹣8x+15+f(x)≤0.【解答】解:(Ⅰ)f(x)=|x﹣5|﹣|x﹣2|=,当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(Ⅱ)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴5﹣≤x<5;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为{x|5﹣≤x≤6}.。
河南省信阳市信阳高级中学2018届高三普通高等学校招生全国统一考试模拟测试数学(理)试题(一)(含解析)

,解得: .
综上所述:
或.
【点睛】本题考查不等式的恒成立问题,若大于 0 恒成立,则最小值大于 0,若小于 0 恒成立则最大值小
于 0,注意对参数进行分类讨论,区分存在性问题与恒成立问题.
16. 已知首项为 2 的正项数列{ }的前 n 项和为 ,且当 n≥2 时,3 -2= -3 .若 ≤m 恒成立, 则实数 m 的取值范围为_______________.
B.
C.
D.
【答案】C
【解析】
【分析】
由抛物线方程求出抛物线的焦点,即为双曲线的一个焦点,由双曲线中参数的关系求出 m,将双曲线中的
参数值代入渐近线标准方程,即可求得渐近线方程.
【详解】由抛物线方程可知其焦点为: ,即为双曲线的一个焦点,
由参数关系可得:
,解得 ,
所以双曲线的方程为:
,所以渐近线方程为:
当点 P、点 Q 分别在点 、 处时,此时中点 M 为 中点, 若 D、E、F 分别为三条棱的中点,则点 M 的轨迹为等边三角形
, 的中线,
设底面边长为 x,由底面面积可得:
,解得 ,
所以轨迹长度为 . 故选 D. 【点睛】本题考查立体几何中,动点的轨迹问题,由题意找出图形中两个临界点,由题意两点之间的线段 即为所求,注意计算的准确性.
14. 在
中,A,B,C 所对应的边分别是 a、b、c,若其面积 S= (b2+c2-a2),则
A=____________.
【答案】 【解析】 【分析】 由已知的面积表达式结合关于角 A 的面积公式列出等式,结合余弦定理,即可求出角 A.
【详解】由面积公式可得:
,化简得:
,
所以 . 【点睛】本题考查面积公式与余弦定理,当题干中给出面积相关的条件时,一般要使用面积公式,并且要 注意利用哪一个面积公式,由于式子中平方与乘积关系较多,所以考虑结合余弦定理.
2023届河南省信阳市普通高中高三第二次教学质量检测数学(理)试题(解析版)

2023届河南省信阳市普通高中高三第二次教学质量检测数学(理)试题一、单选题1.已知集合()(){}210A x x x =+-=,{}2,1,0,1,2B =--,那么BA 等于( )A .2,0,1B .{1,0,2}-C .{}2,1,0--D .{}0,1,2【答案】B【分析】根据补集的运算,可得答案.【详解】由题意,{}2,1A =-,则{}1,0,2B A =-. 故选:B.2.下列命题中,错误的命题有( )A .函数()f x x =与()2g x =不是同一个函数B .命题“[]00,1x ∃∈,201x x +≥”的否定为“[]0,1x ∀∈,21x x +<” C .设函数()22020x x x f x x +<⎧=⎨≥⎩,则()f x 在R 上单调递增D .设,R x y ∈,则 “x y <”是“2()0x y y -⋅<”的必要不充分条件 【答案】C【分析】对于A 选项,定义域不同,函数不同,故A 正确;对于B 选项,由存在量词命题与全称量词命题否定关系,可判断B 正确; 对于C 选项,举反例否定其是增函数,可得C 错误;对于D 选项,举反例说明不充分,并且可证明其是必要条件,故D 正确.【详解】对于A 选项,因为两个函数的定义域不同,所以两个函数是不同的函数,故A 正确; 对于B 选项,因为存在量词命题的否定是全称量词命题,所以B 正确;对于C 选项,因为0.10-<,但是()()0.1 1.810f f -=>=,与增函数定义矛盾,所以C 错误; 对于D 选项,若x y <,当0y =时,推不出2()0x y y -⋅<,当2()0x y y -⋅<时,0y ≠且x y <,所以D 正确. 故选:C.3.已知角α的终边在直线340x y -=上,则2cos 2sin 2αα+=( )A .6425B .4825C .1D .1625【答案】A【分析】由题意可得3tan 4α=,然后化简变形2222cos 4sin cos cos 2sin 2sin cos ααααααα++=+,再给分子分母同除以2cos α,化为正切,再代值计算即可. 【详解】因为角α的终边在直线340x y -=上, 所以当0x >时,在直线上取一点(4,3),则3tan 4α=, 当0x <时,在直线上取一点(4,3)--,则3tan 4α=, 综上3tan 4α=, 所以2222cos 4sin cos cos 2sin 2sin cos ααααααα++=+231414tan 6449tan 125116αα+⨯+===++, 故选:A.4.在等差数列{}n a 中,38a =,712a =,则12a =( ) A .19 B .18C .17D .20【答案】C【分析】利用已知条件列方程组求出1,a d ,从而可求出12a . 【详解】设等差数列{}n a 的公差为d ,则由题意可得1128612a d a d +=⎧⎨+=⎩,解得161a d =⎧⎨=⎩, 所以1211161117a a d =+=+=, 故选:C.5.如图所示的程序框图,输入3个数,0.12a =,0.23b -=,41log 2c =,则输出的a 为( )A .0B .0.12C .0.23-D .41log 2【答案】D【分析】根据条件结构的程序框图,依次执行,即得解 【详解】由题意,输入0.12a =,0.23b -=,41log 2c = 第一步,判定a b >是否成立,由于00.200.121,1233b a b a -==<=∴=>> 因此赋值0.23a -=,第二步,判定a c >是否成立,由于0.24130,log 02c a c a ->=<∴=> 因此赋值41log 2a = 输出41log 2a = 故选:D6.源于探索外太空的渴望,航天事业在21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件,宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负责的科学实验要经过5道程序,其中,A B 两道程序既不能放在最前,也不能放在最后,则该实验不同程序的顺序安排共有( ) A .18种 B .36种C .72种D .108种【答案】B【分析】先排,A B 两道程序有23A 种放法,再排剩余的3道程序有33A 种放法,再由分步计数原理即可得出答案.【详解】先排,A B 两道程序,其既不能放在最前,也不能放在最后,则在第2,3,4道程序选两个放,A B ,共有23A 种放法;再排剩余的3道程序,共有33A 种放法; 则共有2333A A =36⋅种放法. 故选:B.7.过抛物线24y x =的焦点F 的直线交抛物线于A 、B 两点,且8AB =,则线段AB 的中点到y 轴的距离为( ) A .1 B .4 C .3 D .7【答案】C【分析】设出()()1122,,,A x y B x y ,由抛物线焦点弦公式得到126x x +=,进而求出线段AB 的中点横坐标为1232x x +=,得到答案. 【详解】由题意得:()1,0F ,设()()1122,,,A x y B x y , 则1228AB x x =++=,解得:126x x +=, 则线段AB 的中点横坐标为1232x x +=, 故线段AB 的中点到y 轴的距离为3. 故选:C8.已知函数()y f x = 对任意实数x 都有(6)()2(3)f x f x f ++= 且(1)(1)0f x f x -+-= ,则(2022)f 等于( )A .3-B .0C .3D .6【答案】B【分析】根据题意可推出(1)(1)f x f x -=--即()()f x f x -=-,可得函数()y f x =是奇函数,利用赋值法求得(0)0f =以及(3)0f =,继而根据(6)()2(3)f x f x f ++=推得函数的周期,由此利用周期求得(2022)f 的值.【详解】因为对任意实数x 都有函数满足(1)(1)0f x f x -+-=,即(1)(1)f x f x -=--,即()()f x f x -=-,所以函数()y f x =是奇函数,对于(1)(1)0f x f x -+-=,令1x =,则可得(0)0f =;由(6)()2(3)f x f x f ++=,令3x =-得,(3)(3)2(3)f f f +-=, 即(3)(3)2(3),(3)0f f f f -=∴= ,所以(6)()2(3)0f x f x f ++==,即(6)()f x f x +=-,所以()()()()126f x f x f x f x ⎡⎤+=-+=--=⎣⎦ ,即12为函数()y f x =的周期, 所以()(2022)(121686(6)0)0f f f f =⨯+=== , 故选:B .9.已知函数22π()2sin cos sin (0)24x f x x x ωωωω⎛⎫=⋅-->⎪⎝⎭在区间π5π,562⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的取值范围是( ) A .15,22⎡⎤⎢⎥⎣⎦B .50,2⎛⎫ ⎪⎝⎭C .30,5⎛⎤ ⎥⎝⎦D .13,25⎡⎤⎢⎥⎣⎦【答案】D【分析】将函数()f x 用三角恒等变换化简成正弦型函数,根据整体代换与正弦函数的性质,结合已知建立ω的不等量关系,即可求解.【详解】22()2sin cos sin 24x f x x x ωπωω⎛⎫=⋅--⎪⎝⎭2πsin [1cos()]sin sin 2x x x x ωωωω=⋅+--=,()f x 在区间π5π,562⎡⎤-⎢⎥⎣⎦上是增函数, 250,ππ56x ωωωω>-≤≤,2ππ5π3π,052625ωωω∴-≥-≤∴<≤,. 当ππ2π2π(Z),(Z)22k x k k x k ωωω=+∈=+∈时,()f x 取得最大值, 而()f x 在区间[0,]π上恰好取得一次最大值, ππ2π2ππ2ωωω⎧≤⎪⎪∴⎨⎪+>⎪⎩,解得1522ω≤<,综上,1325ω≤≤. 故选:D.10.某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则( )①()0.054=P B ②()20.03=P A B ③()10.06P B A = ④()259P A B = A .①②④ B .②③④C .②③D .①②③④【答案】B【分析】根据全概率概率公式及条件概率概率公式计算可得;【详解】依题意()10.4P A =,()20.6P A =,()1|0.06P B A =,()2|0.05P B A =,故③正确; 所以()()()()()1122||0.40.060.60.050.054P B P B A P A P B A P A =⋅+⋅=⨯+⨯=, 所以()()110.0540.946P B P B =-=-=,故①错误; 因为()()()222|P BA P B A P A =,所以()()()222|0.60.050.03P BA P B A P A ==⨯=,故②正确;所以()()()220.0350.0549P BA P A B P B ===,故④正确; 故选:B11.设直线0)30(x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .12CD【答案】A【分析】联立直线方程与双曲线的渐近线的方程可得(,)33ma bm A b a b a --,(,)33ma bmB b a b a-++,进而可得,A B 中点2222223(,)99ma mb Q b a b a --,由||||PA PB =,可得PQ AB ⊥,进而可得1PQ ABk k ⋅=-,代入得2a b =,c 即可得答案.【详解】解:因为双曲线的渐近线方程为by x a=±, 由30b y x a x y m ⎧=⎪⎨⎪-+=⎩,解得33bm y b a ma x b a ⎧=⎪⎪-⎨⎪=⎪-⎩,不妨设(,)33ma bmA b a b a--, 同理可得(,)33ma bmB b a b a-++, 则,A B 中点2222223(,)99ma mb Q b a b a --,又因为点(,0)P m 满足||||PA PB =,所以点PQ AB ⊥, 所以1PQ AB k k ⋅=-,又因为13AB k =,所以2222223939PQmb b a k mamb a -==---,所以2a b =, 所以2252ac a b =+=, 所以52c e a ==. 故选:A.12.已知关于x 的不等式e ax x b ≥+对任意x R ∈恒成立,则ba的最大值为( )A .12B .1C .2eD .e【答案】C【分析】讨论a 的取值范围,利用函数图象,结合导数求出2ln 1b a a a +=,构造函数2ln )01(,a g a a a+=>,利用导数求出函数的最值,进而得解.【详解】设()axf x e =,()g x x b =+,若e ax x b ≥+,对任意x R ∈恒成立,则()()f x g x ≥,对任意x R ∈恒成立, 当0a ≤时,在同一坐标系中作出函数()(),f x g x 的图象,显然,由图可知e ax x b ≥+,对任意x R ∈不恒成立; 当0a >时,在同一坐标系中作出函数()(),f x g x 的图象,由图可知,临界条件是直线()g x x b =+与曲线()axf x e =的图象相切时,由()axf x e =,求导()e e x f x a '=,设()00e 1ax a f x '==,解得0e 1axa=,且()00e axf x =, ∴当()axf x e =的切线斜率为1时,切点坐标为()00,ax x e ,故001e ax ax b =+=,所以01x b a =-即111e1l 1n 1n e l a ab a b ab a a a a ab -⎛⎫- ⎪⎝⎭=⇒==-⇒+=-⇒ 两边同除以2a ,2ln 1b a a a +=,令2ln )01(,ag a a a +=> 求导24332(1ln )12(1ln )12ln ()1a a a a a g a a a a a ⋅-+-+--'===令()0g a '=,得1ln 2a =-,即12e a -=当120,e a -⎛⎫∈ ⎪⎝⎭,()0g a '>,函数()g a 单调递增,当12e ,a -⎛⎫∈+∞ ⎪⎝⎭,()0g a '<,函数()g a 单调递减,所以当12e a -=,函数()g a 取到最大值,且11222112ln ee(e )1e 2e 12g ----+===⎛⎫ ⎪⎝⎭故b a 的最大值为2e 故选:C.【点睛】思路点睛:本题考查不等式恒成立求参数取值范围问题,需要结合图象分类讨论,构造函数将问题转化,考查数形结合思想、分类讨论思想、转化与化归思想和运算求解能力,是难题.二、填空题13.i 是虚数单位,若复数()()12i i a -+ 是纯虚数,则实数a 的值为____________. 【答案】2-【详解】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.【解析】复数的运算.14.()()24211x x +-的展开式中4x 的系数为_____________. 【答案】9【分析】利用二项式定理求指定项的系数.【详解】()2424(21)(1)441(1)x x x x x +-=++-,展开式中4x 的系数为()2344444C 4C 1C 9+⨯-+=.故答案为:915.已知D 是ABC 内部(不含边界)一点,若::5:4:3ABD BCD CAD S S S =△△△,AD x AB y AC =+,则x y +=__________. 【答案】23【分析】利用向量共线表示AM AD x AB y AC λλλ==+,以及()1AM AB AC μμ=-+,转化求得1x y +=λ,根据图形可知AMAD=λ,再逐步变形转化为面积比值,即可求解. 【详解】如图,连结AD 并延长交BC 于点M , 设点B 到AD 的距离为B d ,点C 到AD 的距离为C d ,因为::5:4:3ABD BCD CAD S S S =△△△,所以设5,4,3ABD BCDCAD S k S k S k ==△△,设AM AD x AB y AC λλλ==+,BM BC μ=, 所以()AM AB BM AB BC AB AC AB μμ=+=+=+-()1AB AC μμ=-+,所以1x y λμλμ=-⎧⎨=⎩,即11x y μμλλλ-+=+=, ()()()B C B C AD DM d d AM AD DM AD AD AD d d λ+⨯++===⨯+ ()1112221122B C B C B C AD d AD d DM d d AD d AD d ⨯+⨯+⨯+=⨯+⨯ 5343532k k k k k ++==+,所以123x y +==λ. 故答案为:2316.剪纸是一种镂空艺术,是中国汉族最古老的民间艺术之一.如图,一圆形纸片,直径20cm AB =,需要剪去菱形EFGH ,可以经过两次对折、沿EF 裁剪、展开后得到.若CF EF =,要使镂空的菱形EFGH 面积最大,则菱形的边长EF =______cm.【答案】203##263【分析】设圆心为O ,结合已知条件,求出OF 与OE 的关系式,然后利用导函数即可求解菱形EFGH 面积最大值,进而可得到答案.【详解】设圆心为O ,由圆的性质可知,A ,E ,O ,G ,B 共线,C ,F ,O ,H ,D 共线, 由菱形性质可知,EG FH ⊥,不妨令OF m =,OE n =,且半径为10, 则22=10EF m n CF m +==-,即2121010m n =-,010n <<, 故314221010EFGH OEFS SOE OF mn n n ==⋅==-+, 不妨令31()1010f x x x =-+,010x <<, 则23()1010f x x '=-+,从而()00f x x '>⇒<<;()010f x x '<⇒<<,故()f x 在上单调递增,在上单调递减,所以当x =()f x 在(0,10)上取最大值,从而要使镂空的菱形EFGH 面积最大,则n =, 由2121010m n =-可知,103m =,则此时20103EF m =-=. 故答案为:203.三、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos b A c =. (1)求B 的大小;(2)若2c a b +=,求ABC 的面积.【答案】(1)6π; (2【分析】(1sin cos A A B =,求得cos B 即可求解;(2)由余弦定理可得2233a b a -+=,结合2a b +=,求得1a b ==,利用三角形的面积公式,即可求解.【详解】(1)因为cos b A c =,由正弦定理可得sin cos sin B A A C =, 又sin sin()sin cos cos sin C A B A B A B =+=+,sin cos A A B =,因为(0,)A π∈,则sin 0A >,所以cos B = 因为(0,)B π∈,所以6B π=.(2)因为6B π=,c由余弦定理可得22cosB =,整理得2233a b a -+=, 又2a b +=,解得1a b ==,所以111sin 1222ABCSac B ==⨯=. 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.18.2022年北京冬奥会即第24届冬季奥林匹克运动会在2022年2月4日至2月20日在北京和张家口举行.某研究机构为了解大学生对冰壶运动是否有兴趣,从某大学随机抽取男生、女生各200人,对冰壶运动有兴趣的人数占总数的27,女生中有80人对冰壶运动没有兴趣.(1)完成上面2×2列联表,并判断是否有99%的把握认为对冰壶运动是否有兴趣与性别有关? (2)按性别用分层抽样的方法从对冰壶运动有兴趣的学生中抽取9人,若从这9人中随机选出2人作为冰壶运动的宣传员,设X 表示选出的2人中女生的人数,求X 的分布列和数学期望. 附:22()()n ad bc K n a b c d -==+++.【答案】(1)列联表见解析,有99%的把握认为对冰壶运动是否有兴趣与性别有关. (2)分布列见解析,8()9E X =.【分析】(1)根据题干所给数据求出冰壶运动有兴趣的男女人数,即可得到列联表,再计算出卡方,即可判断;(2)首先利用分层抽样求出男、女抽取的人数,依题意X 的所有可能取值为0,1,2,求出所对应的概率,即可得到分布列与数学期望;【详解】(1)解:依题意对冰壶运动有兴趣的人数为()2720020027040⨯+=人, 则女生中对冰壶运动有兴趣的有20080120-=人, 男生中对冰壶运动有兴趣的有270120150-=人, 所以男生中对冰壶运动无兴趣的有20015050-=人, 所以22⨯列联表:22400(1508050120)40010.256 6.63527013020020039K ⨯⨯-⨯==≈>⨯⨯⨯,∴有99%的把握认为对冰壶运动是否有兴趣与性别有关.(2)解:从对冰壶运动有兴趣的学生中抽取9人,抽到的男生人数、女生人数分别为:15095270⨯=(人),12094270⨯=(人), 则X 的所有可能取值为0,1,2,所以2529C 105(0)C 3618P X ====,114529C C 205(1)C 369P X ====, 4292C 61(2)C 366P X ====, 故X 的分布列是:故5518()01218969E X =⨯+⨯+⨯=.19.在数列{an }中,1244n n a a n ++=-(n ∈N *),123a =-. (1)求n a ;(2)设n S 为{}n a 的前n 项和,求n S 的最小值.【答案】(1)24,21,21,2,n n n k k Za n n k k Z -=+∈⎧=⎨-=∈⎩(2)当n 为偶数时,n S 取得最小值为-242;当n 为奇数时,n S 取最小值为-243【分析】(1)根据题干条件得到()212144n n a a n +++=+-,与1244n n a a n ++=-相减后得到212n n a a ++-=,故得到a 1,a 3,a 5,…是以123a =-为首项,2为公差的等差数列,a 2,a 4,a 6,…是以219a =-为首项,2为公差的等差数列,进而求出通项公式;(2)分n 为偶数和n 为奇数两种情况表达出n S ,并求出最小值.【详解】(1)∵1244n n a a n ++=-(n ∈N *),①()212144n n a a n +++=+-②②-①得,22n n a a +-=. 又∵a 2+a 1=2-44,a 1=-23, ∴a 2=-19,同理得,a 3=-21,a 4=-17.故a 1,a 3,a 5,…是以123a =-为首项,2为公差的等差数列,a 2,a 4,a 6,…是以219a =-为首项,2为公差的等差数列.从而24,21,21,2,n n n k k Za n n k k Z -=+∈⎧=⎨-=∈⎩ (2)当n 为偶数时,()()()12341n n n S a a a a a a -=++++++ ()()()214423442144n =⨯-+⨯-++⨯--⎡⎤⎣⎦()2131442n n =+++--⨯⎡⎤⎣⎦2222n n =- 故当n =22时,Sn 取得最小值为-242. 当n 为奇数时,()()()123451n n n S a a a a a a a -=+++++++()()2322442144n =-+⨯-++⨯--⎡⎤⎣⎦()1232241442n n -=-+++--⨯⎡⎤⎣⎦()()()11232212n n n +-=-+--232222n n =--. 故当n =21或n =23时,Sn 取得最小值-243.综上所述:当n 为偶数时,Sn 取得最小值为-242;当n 为奇数时,Sn 取最小值为-243. 20.已知椭圆2222:1(0)x y C a b a b +=>>长轴的两个端点分别为(2,0),(2,0)A B -(1)求椭圆C 的方程;(2)P 为椭圆C 上异于,A B 的动点,直线,AP PB 分别交直线6x =-于,M N 两点,连接NA 并延长交椭圆C 于点Q .(ⅰ)求证:直线,AP AN 的斜率之积为定值; (ⅱ)判断,,M B Q 三点是否共线,并说明理由.【答案】(1)2214x y +=;(2)(ⅰ)证明见解析;(ⅱ)是,理由见解析.【分析】(1)根据长轴的两个端点分别为(2,0),(2,0)A B -2,c a e a === (2)(ⅰ)设00(,)P x y ,则直线AP 的斜率为002y x +,直线BP 的斜率为002y x -,再由直线的交点,求得点N 的坐标,进而得到直线AN 的斜率,然后结合220014x y +=运算即可;(ⅱ)设直线AP 斜率为k ,易得M 的坐标,再由(ⅰ)得到直线AN 斜率为12k-,写出直线AN 的方程,与椭圆方程联立,求得Q 点的坐标,再判断直线BQ k 与BM k 是否相等即可. 【详解】(1)由题意得2,c a e a ===所以2221==-=c b a c , 所以椭圆C 的方程为2214x y +=.(2)(ⅰ)证明:设00(,)P x y ,因为P 在椭圆C 上,所以220014x y +=. 因为直线AP 的斜率为002y x +,直线BP 的斜率为002y x -,所以直线BP 的方程为00(2)2y y x x =--. 所以N 点的坐标为008(6,)2y N x ---.所以直线AN 的斜率为0000822622y x y x --=-+-. 所以直线,AP AN 的斜率之积为:20200022000021422122442x y y y x x x x ⎛⎫-⎪⎝⎭⋅===-+---.(ⅱ),,M B Q 三点共线.设直线AP 斜率为k ,易得(6,4)M k --. 由(ⅰ)可知直线AN 斜率为12k -,所以直线AN 的方程为1(2)2y x k=-+. 联立22440,22,x y x ky ⎧+-=⎨=--⎩可得22(44)80k y ky ++=.解得Q 点的纵坐标为221kk -+, 所以Q 点的坐标为222222(,)11k kQ k k --++. 所以,直线BQ 的斜率为22220122221kk k k k--+=--+,直线BM 的斜率为40622k k --=--. 因为直线BQ 的斜率等于直线BM 的斜率, 所以,,M B Q 三点共线.【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数()e sin cos xf x x x ax =+--.(1)若函数()f x 在[)0,∞+上单调递增,求实数a 的取值范围; (2)设函数()()()ln 1g x f x x =--,若()0g x ≥,求a 的值. 【答案】(1)2a ≤ (2)3a =【分析】(1)由题意()e cos sin 0xf x x x a '=++-≥,利用分离参数法得到e cos sin x a x x ≤++对[)0,x ∈+∞恒成立.设()e cos sin x h x x x =++,利用导数判断出函数()h x 在[)0,∞+上单调递增,求出2a ≤;(2)把题意转化为(),1x ∀∈-∞,()()0g x g ≥恒成立.由0x =为()g x 的一个极小值点,解得3a =.代入原函数验证成立.【详解】(1)由题意知()e cos sin xf x x x a '=++-因为函数()f x 在[)0,∞+上单调递增,所以()e cos sin 0xf x x x a '=++-≥,即e cos sin x a x x ≤++对[)0,x ∈+∞恒成立设()e cos sin xh x x x =++,则()e sin cos 4x x h x x x e x π⎛⎫'=-+=- ⎪⎝⎭当02x π≤<时,()e 1104xh x x π⎛⎫'=->-= ⎪⎝⎭当2x π≥时,()2e e 0h x π'>>>所以函数()e cos sin xh x x x =++在[)0,∞+上单调递增所以()()min 02a h x h ≤==(2)由题知()()()()()ln 1e sin cos ln 11xg x f x x x x ax x x =--=+----<所以()1e cos sin 1xg x x x a x'=++-+-,()00g = 因为()0g x ≥,所以(),1x ∀∈-∞,()()0g x g ≥即()0g 为()g x 的最小值,0x =为()g x 的一个极小值点,所以()010e cos0sin 0010g a '=++-+=-,解得3a = 当3a =时,()()()e sin cos 3ln 11xg x x x x x x =+----<所以()11e cos sin 3e 3141xx g x x x x x x π⎛⎫'=++-+=+-+ ⎪--⎝⎭ ①当01x ≤<时,()11310g x '≥+-+=(当且仅当0x =时等号成立) 所以()g x 在[)0,1上单调递增 ②当0x <时,若02x π-≤<,()11310g x '<+-+=;若2x π<-,()22132e3302222g x πππ-'<+<+-+<++ 所以()g x 在(),0∞-上单调递减综上,()g x 在(),0∞-上单调递减,在[)0,1上单调递增所以当3a =时,()()00g x g ≥=【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.在平面直角坐标系xOy 中,曲线C的参数方程为:3x y αα⎧=+⎪⎨=⎪⎩(α为参数),在以O 为极点,x 轴的非负半轴为极轴的极坐标系中,点P 的极坐标为π2,3⎛⎫⎪⎝⎭.(1)写出曲线C 的普通方程,并判断点P 与曲线C 的位置关系; (2)设直线l :()π3R θρ=∈与曲线C 交于M N 、两点,求11PM PN +的值. 【答案】(1)22(3)8x y -+=,P 在曲线C 内部【分析】(1)利用消参法可得曲线C 的普通方程,求得点P 的直角坐标,代入曲线C 的普通方程中,可判断点P 与曲线C 的位置关系; (2)求出直线π3θ=的参数方程,并代入曲线方程中,得根与系数的关系式,利用参数的几何意义,求得答案.【详解】(1)由3x y αα⎧=+⎪⎨=⎪⎩,消参得曲线C 的普通方程为:22(3)8x y -+=, 由cos sin x y ρθρθ=⎧⎨=⎩,可得点P的直角坐标为P ,将P 代入曲线C 的普通方程的左边得:78<,故P 在曲线C 内部. (2)因为直线l :()π3R θρ=∈的极坐标方程对应的普通方程为:y =,所以P 在直线l 上,所以可设直线l的参数方程为:112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C 的普通方程22(3)8x y -+=并化简整理得:210t t +-=,50∆=> ,设它的两根为12,t t ,则121211t t t t +=-⎧⎨=-⎩,所以:121111PM PN t t +=+=23.已知a ,b ,c 为正数. (1)求24a a+的最小值; (2)求证:bc ac aba b c a b c++≥++. 【答案】(1)3 (2)证明见解析【分析】(1)24a a +24=22a a a++,然后利用均值不等式可得答案; (2)由2bc ac c a b +≥=, 2ac ab a b c +≥,2bc ab b a c +≥可证明. 【详解】(1)因为24a a+24=322a a a ++≥=,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立。
2018-2019学年高二数学下学期期末教学质量检测试题理(含解析)

2018-2019学年高二数学下学期期末教学质量检测试题理(含解析)一、选择题(本大题共12小题,每小题5分,共60分)1.复数(为虚数单位)等于()A. B. C. D.【答案】B【解析】【分析】由复数的乘法运算法则求解.【详解】故选.【点睛】本题考查复数的乘法运算,属于基础题.2.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A. 身高在左右B. 身高一定是C. 身高在以上D. 身高在以下【答案】A【解析】【分析】由线性回归方程的意义得解.【详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【点睛】本题考查线性回归方程的意义,属于基础题.3.“四边形是矩形,四边形的对角线相等”补充以上推理的大前提是()A. 正方形都是对角线相等的四边形B. 矩形都是对角线相等的四边形C. 等腰梯形都是对角线相等的四边形D. 矩形都是对边平行且相等的四边形【答案】B【解析】【分析】根据题意,用三段论的形式分析即可得答案.【详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形是矩形,得到四边形对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选B.【点睛】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.4.已知数列是等比数列,若则的值为()A. 4B. 4或-4C. 2D. 2或-2【答案】A【解析】【分析】设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列的性质以及通项公式,属于简单题.5.在某项测量中,测量结果,且,若在内取值的概率为,则在内取值的概率为()A. B. C. D.【答案】B【解析】【分析】根据,得到正态分布图象的对称轴为,根据在内取值的概率为0.3,利用在对称轴为右侧的概率为0.5,即可得出答案.【详解】∵测量结果,∴正态分布图象的对称轴为,∵在内取值的概率为0.3,∴随机变量在上取值的概率为,故选B.【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义、概率的基本性质等基础知识,考查运算求解能力,属于基础题.6.在平面直角坐标系中,由坐标轴和曲线所围成的图形的面积为()A. B. C. D.【答案】C【解析】【分析】根据余弦函数图象的对称性可得,求出积分值即可得结果.【详解】根据余弦函数图象的对称性可得,故选C.【点睛】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.7.欧拉公式eix=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由题意得,得到复数在复平面内对应的点,即可作出解答.【详解】由题意得,e2i=cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos2∈(-1,0),sin 2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.8.函数的图象是()A. B.C. D.【答案】A【解析】【分析】根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案.【详解】∵,∴,令得;当时,,即函数在内单调递减,可排除B,D;又时,,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.9.某同学通过英语听力测试的概率为,他连续测试次,要保证他至少有一次通过的概率大于,那么的最小值是( ) A. B. C. D.【答案】B【解析】【分析】由题意利用次独立试验中恰好发生次的概率计算公式以及对立事件发生的概率即可求得结果.【详解】由题意可得,,求得,∴,故选B.【点睛】本题主要考查次独立试验中恰好发生次的概率计算公式的应用,属于基础题.10.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【点睛】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.11.不相等的三个正数a、b、c成等差数列,并且x是a、b的等比中项,y是b、c的等比中项,则x2、b2、y2三数( )A. 成等比数列而非等差数列B. 成等差数列而非等比数列C. 既成等差数列又成等比数列D. 既非等差数列又非等比数列【答案】B【解析】由已知条件,可得由②③得代入①,得=2b,即x2+y2=2b2.故x2、b2、y2成等差数列,故选B.12.当时,函数,则下列大小关系正确的是()A. B.C. D.【答案】D【解析】【分析】对函数进行求导得出在上单调递增,而根据即可得出,从而得出,从而得出选项.【详解】∵,∴,由于时,,函数在上单调递增,由于,故,所以,而,所以,故选D.【点睛】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.在的二项展开式中,若只有的系数最大,则__________.【答案】10【解析】【分析】根据二项式系数的性质可直接得出答案.【详解】根据二项式系数的性质,由于只有第项的二项式系数最大,故答案为10.【点睛】本题主要考查了二项式系数的性质,解决二项式系数的最值问题常利用结论:二项展开式中中间项的二项式系数最大,属于基础题.14.函数的最小值为__________.【答案】3【解析】【分析】对函数求导,然后判断单调性,再求出最小值即可.【详解】∵,∴(),令,解得,令,解得即原函数在递减,在递增,故时取得最小值3,故答案 3.【点睛】本题主要考查了利用导数研究函数的单调性和最值,正确求导是解题的关键,属于基础题.15.从字母中选出个字母排成一排,其中一定要选出和,并且它们必须相邻(在前面),共有排列方法__________种.【答案】36【解析】【分析】从剩余的4个字母中选取2个,再将这2个字母和整体进行排列,根据分步计数原理求得结果.【详解】由于已经选出,故再从剩余的4个字母中选取2个,方法有种,再将这2个字母和整体进行排列,方法有种,根据分步计数原理求得所有的排列方法共有种,故答案为36.【点睛】本题主要考查排列与组合及两个基本原理的应用,属于中档题.16.已知为上的连续可导函数,当时,,则函数的零点有__________个.【答案】0【解析】【分析】令得,即,然后利用导数研究函数的单调性和极值,即可得到结论.【详解】令,得,即,即零点满足此等式不妨设,则.∵当时,,∴当时,,即当时,,即,此时函数单调递增,当时,,即,此时函数单调递减,∴当时,函数取得极小值,同时也是最小值,∴当时,,∴无解,即无解,即函数的零点个数为0个,故答案为0.【点睛】本题主要考查函数零点个数的判断,利用条件构造函数,利用导数研究函数的单调性和极值是解决本题的关键,综合性较强,涉及的知识点较多.三、解答题(本大题共6小题,共70分,解答要写出证明过程或解题步骤)17.在二项式的展开式中,第三项的系数与第四项的系数相等.(1) 求的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.【答案】(1)8,256;(2)1792.【解析】【分析】(1)由题意利用二项展开式的通项公式,求出的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令的幂指数等于0,求出的值,即可求得常数项.【详解】(1) ∵二项式的展开式的通项公式为,由已知得,即,解得,所有二项式系数的和为;(2)展开式中的通项公式,若它为常数项时.所以常数项是【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.18.某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,【答案】(1)(2)与负相关,预测该超市当日的销售量为千克【解析】【分析】(1)根据线性回归直线的求解方法求解;(2)根据(1)问中的正负,判断是正相关还是负相关,再代入其值可得解.【详解】由题目条件可得,,故关于线性回归方程为由可知与负相关将代入得据此预测该超市当日的销售量为千克【点睛】本题考查线性回归直线方程,属于基础题.19.在各项均为正数的数列中,且.(1)当时,求的值;(2)求证:当时,.【答案】(1) ;(2)证明见解析.【解析】【分析】(1)推导出,解得,从而,由此能求出的值;(2)利用分析法,只需证,只需证,只需证,根据基本不等式即可得到结果.【详解】(1) ∵,∴,∴,解得,同理解得即;(2) 要证时,,只需证,只需证,只需证,只需证,只需证,根据基本不等式得,所以原不等式成立.【点睛】本题考查实数值的求法,考查数列的递推公式、递推思想等基础知识,考查运算求解能力,是中档题.20.某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.【答案】(1) ,,;(2) 从风险控制角度,建议该投资公司选择项目.【解析】【分析】(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.【详解】(1)依题意,,,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,,因为所以,即,又,解得,;,,(2)当投入万元资金时,由(1)知,所以,,,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建议该投资公司选择项目.【点睛】本题主要考查了离散型随机变量的分布列与数学期望和方差的计算问题,是中档题.21.已知函数 (为自然对数的底数).(1)若,求函数的单调区间;(2)在(1)的条件下,求函数在区间上的最大值和最小值.【答案】(1)单调递增区间为,;单调递减区间为;(2)见解析.【解析】【分析】(1)将代入函数中,求出导函数大于零求出递增区间,导函数小于零求出递减区间;(2)分为和和三种情况分别判断在上的单调性,然后求出最大值和最小值.【详解】(1)若,则,求导得.因为,令,即,解得或令,即,解得∴函数在和上递增,在上递减.即函数的单调递增区间为,;单调递减区间为(2)①当时,∵在上递减,∴在区间上的最大值为,在区间上的最小值为.②当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.③当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.【点睛】本题考查了利用导数研究函数的单调性和最值,考查了转化思想和分类讨论思想,属中档题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)若点坐标为,直线交曲线于,两点,求的值.【答案】(1),;(2).【解析】分析】(1)根据参普互化和极值互化的公式得到标准方程;(2)联立直线和圆的方程,得到关于t的二次,再由韦达定理得到.【详解】(1)由消去参数,得直线的普通方程为又由得,由得曲线的直角坐标方程为,即;(2)其代入得,则所以.选修4-5:不等式选讲23.已知函数,.(1)解不等式;(2)若方程在区间有解,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)通过讨论的范围得到关于的不等式组,解出即可;(2)根据题意,原问题可以等价函数和函数图象在区间上有交点,结合二次函数的性质分析函数的值域,即可得答案.【详解】解:(1)可化为,故,或,或;解得:,或,或;不等式的解集为;(2)由题意:,.故方程在区间有解函数和函数,图像在区间上有交点当时,实数的取值范围是.【点睛】本题考查绝对值不等式的性质以及应用,注意零点分段讨论法的应用,属于中档题.2018-2019学年高二数学下学期期末教学质量检测试题理(含解析)一、选择题(本大题共12小题,每小题5分,共60分)1.复数(为虚数单位)等于()A. B. C. D.【答案】B【解析】【分析】由复数的乘法运算法则求解.【详解】故选.【点睛】本题考查复数的乘法运算,属于基础题.2.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A. 身高在左右B. 身高一定是C. 身高在以上D. 身高在以下【答案】A【解析】【分析】由线性回归方程的意义得解.【详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【点睛】本题考查线性回归方程的意义,属于基础题.3.“四边形是矩形,四边形的对角线相等”补充以上推理的大前提是()A. 正方形都是对角线相等的四边形B. 矩形都是对角线相等的四边形C. 等腰梯形都是对角线相等的四边形D. 矩形都是对边平行且相等的四边形【答案】B【解析】【分析】根据题意,用三段论的形式分析即可得答案.【详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形是矩形,得到四边形对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选B.【点睛】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.4.已知数列是等比数列,若则的值为()A. 4B. 4或-4C. 2D. 2或-2【答案】A【解析】【分析】设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列的性质以及通项公式,属于简单题.5.在某项测量中,测量结果,且,若在内取值的概率为,则在内取值的概率为()A. B. C. D.【答案】B【解析】【分析】根据,得到正态分布图象的对称轴为,根据在内取值的概率为0.3,利用在对称轴为右侧的概率为0.5,即可得出答案.【详解】∵测量结果,∴正态分布图象的对称轴为,∵在内取值的概率为0.3,∴随机变量在上取值的概率为,故选B.【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义、概率的基本性质等基础知识,考查运算求解能力,属于基础题.6.在平面直角坐标系中,由坐标轴和曲线所围成的图形的面积为()A. B. C. D.【答案】C【解析】【分析】根据余弦函数图象的对称性可得,求出积分值即可得结果.【详解】根据余弦函数图象的对称性可得,故选C.【点睛】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.7.欧拉公式eix=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由题意得,得到复数在复平面内对应的点,即可作出解答.【详解】由题意得,e2i=cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos2∈(-1,0),sin 2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.8.函数的图象是()A. B.C. D.【答案】A【解析】【分析】根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案.【详解】∵,∴,令得;当时,,即函数在内单调递减,可排除B,D;又时,,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.9.某同学通过英语听力测试的概率为,他连续测试次,要保证他至少有一次通过的概率大于,那么的最小值是( )A. B. C. D.【答案】B【解析】【分析】由题意利用次独立试验中恰好发生次的概率计算公式以及对立事件发生的概率即可求得结果.【详解】由题意可得,,求得,∴,故选B.【点睛】本题主要考查次独立试验中恰好发生次的概率计算公式的应用,属于基础题.10.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【点睛】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.11.不相等的三个正数a、b、c成等差数列,并且x是a、b的等比中项,y是b、c的等比中项,则x2、b2、y2三数( )A. 成等比数列而非等差数列B. 成等差数列而非等比数列C. 既成等差数列又成等比数列D. 既非等差数列又非等比数列【答案】B【解析】由已知条件,可得由②③得代入①,得=2b,即x2+y2=2b2.故x2、b2、y2成等差数列,故选B.12.当时,函数,则下列大小关系正确的是()A. B.C. D.【答案】D【解析】【分析】对函数进行求导得出在上单调递增,而根据即可得出,从而得出,从而得出选项.【详解】∵,∴,由于时,,函数在上单调递增,由于,故,所以,而,所以,故选D.【点睛】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.在的二项展开式中,若只有的系数最大,则__________.【答案】10【解析】【分析】根据二项式系数的性质可直接得出答案.【详解】根据二项式系数的性质,由于只有第项的二项式系数最大,故答案为10.【点睛】本题主要考查了二项式系数的性质,解决二项式系数的最值问题常利用结论:二项展开式中中间项的二项式系数最大,属于基础题.14.函数的最小值为__________.【答案】3【解析】【分析】对函数求导,然后判断单调性,再求出最小值即可.【详解】∵,∴(),令,解得,令,解得即原函数在递减,在递增,故时取得最小值3,故答案 3.【点睛】本题主要考查了利用导数研究函数的单调性和最值,正确求导是解题的关键,属于基础题.15.从字母中选出个字母排成一排,其中一定要选出和,并且它们必须相邻(在前面),共有排列方法__________种.【答案】36【解析】【分析】从剩余的4个字母中选取2个,再将这2个字母和整体进行排列,根据分步计数原理求得结果.【详解】由于已经选出,故再从剩余的4个字母中选取2个,方法有种,再将这2个字母和整体进行排列,方法有种,根据分步计数原理求得所有的排列方法共有种,故答案为36.【点睛】本题主要考查排列与组合及两个基本原理的应用,属于中档题.16.已知为上的连续可导函数,当时,,则函数的零点有__________个.【答案】0【解析】【分析】令得,即,然后利用导数研究函数的单调性和极值,即可得到结论.【详解】令,得,即,即零点满足此等式不妨设,则.∵当时,,∴当时,,即当时,,即,此时函数单调递增,当时,,即,此时函数单调递减,∴当时,函数取得极小值,同时也是最小值,∴当时,,∴无解,即无解,即函数的零点个数为0个,故答案为0.【点睛】本题主要考查函数零点个数的判断,利用条件构造函数,利用导数研究函数的单调性和极值是解决本题的关键,综合性较强,涉及的知识点较多.三、解答题(本大题共6小题,共70分,解答要写出证明过程或解题步骤)17.在二项式的展开式中,第三项的系数与第四项的系数相等.(1) 求的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.【答案】(1)8,256;(2)1792.【解析】【分析】(1)由题意利用二项展开式的通项公式,求出的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令的幂指数等于0,求出的值,即可求得常数项.【详解】(1) ∵二项式的展开式的通项公式为,由已知得,即,解得,所有二项式系数的和为;(2)展开式中的通项公式,若它为常数项时.所以常数项是【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.18.某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,【答案】(1)(2)与负相关,预测该超市当日的销售量为千【解析】【分析】(1)根据线性回归直线的求解方法求解;(2)根据(1)问中的正负,判断是正相关还是负相关,再代入其值可得解.【详解】由题目条件可得,,故关于线性回归方程为由可知与负相关将代入得据此预测该超市当日的销售量为千克【点睛】本题考查线性回归直线方程,属于基础题.19.在各项均为正数的数列中,且.(1)当时,求的值;(2)求证:当时,.【答案】(1) ;(2)证明见解析.【解析】【分析】(1)推导出,解得,从而,由此能求出的值;(2)利用分析法,只需证,只需证,只需证,根据基本不等式即可得到结【详解】(1) ∵,∴,∴,解得,同理解得即;(2) 要证时,,只需证,只需证,只需证,只需证,只需证,根据基本不等式得,所以原不等式成立.【点睛】本题考查实数值的求法,考查数列的递推公式、递推思想等基础知识,考查运算求解能力,是中档题.20.某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.【答案】(1) ,,;(2) 从风险控制角度,建议该投资公司选择项目.【解析】【分析】(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.。
河南省信阳市2018届新高三年级升级考试理科数学试题 Word版含答案

信阳市2017—2018学年新高三年级升级考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z =201731i+复数(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.随机变量X ~N (1,4),若P (X ≥2)=0.2,则P (0<X <2)等于A .0.3B .0.5C .0.6D .0.83.已知a ,b ,c ∈R ,则下列推证中正确的是A .a >b ⇒a 2c >b 2cB .a c >bc ⇒a >b C .3a >3b ,ab >0⇒1a <1b D .2a >2b ,ab >0⇒1a <1b4.设(3n x 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -17N =480,则展开式中含3x 项的系数为A .40B .30C .20D .155.下面给出了四个类比推理:(1)由“若a ,b ,c ∈R ,则(ab )c =a (bc )”类比推出“若a ,b ,c 为三个向量,则(a ·b )·c =a ·(b ·c )”;(2)“已知a ,b 为实数,若2a +2b =0,则a =b =0”类比推出“已知z 1,z 2为复数,若21z +22z =0;则z l =z 2=0”(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”上述四个推理中,结论正确的个数是A .1B .2C .3D .46.已知定义在R 上的函数f (x )=313ax +2x +ax +1既有极大值又有极小值,则实数a 的取值范围是A .(-∞,-1)∪(1,+∞)B .[-1,0)∪(0,1]C .(-1,1)D .(-1,0)∪(0,1)7.箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是 A .16625 B .96625 C .624625 D .46258.观察下列式子:1+212<32,1+212+213<53,1+212+213+214<74,…,根据以上式子可以猜想:1+212+213+…+212017< A .40292017 B .40312017 C .40332017 D .40352017 9.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为A .6B .395C .415D .910.设k 是一个正整数,(1)k xk +的展开式中第四项的系数为116,任取x ∈[0,4],y ∈[0,16],如图1,则点(x ,y )恰好落在函数y =2x 与y =kx 的图象所围成的阴影区域内的概率为A .1796B .532C .16D .74811.设n =20(4sin )x cox dx π⎰+,则二项式1()n x x-的展开式中x 的系数为A .4B .10C .5D .612.如图2,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为A .84B .24C .18D .48第Ⅱ卷二、填空题:本大题共4小题。
2018年河南省信阳高中高考数学二模试卷和答案(理科)

=1,则 f(
)的值为
.
16.(5 分)设 an 表示正整数 n 的所有因数中最大的奇数与最小的奇数的等差中项,数列{an}
的前 n 项和为 Sn,那么 S63 的值为
.
三、解答题:本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(12 分)在△ABC 中,D∈BC,
x
1.6
1.7
1.74
1.8
10
y
4.953
5.474
5.697
6.050
22026
lnx
0.470
0.531
0.554
0.588
2.303
请考生在 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.[选修 4-4:坐标 系与参数方程]
第 4 页(共 18 页)
22.(10 分)在平面直角坐标系 xOy 中,直线 l 的参数方程为
=
=λ.
(1)求证:AD 平分∠BAC;
(2)当
时,若 AD=1,DC= ,求 BD 和 AC 的长.
18.(12 分)国家放开计划生育政策,鼓励一对夫妇生育 2 个孩子.在某地区的 100000 对 已经生育了一胎夫妇中,进行大数据统计得,有 100 对第一胎生育的是双胞胎或多胞胎, 其余的均为单胞胎.在这 99900 对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩 的有 50000 对,男方愿意生育二孩女方不愿意生育二孩的有 x1 对,男方不愿意生育二孩 女方愿意生育二孩的有 x2 对,其余情形有 x3 对,且 x1:x2:x3=300:100:99.现用样 本的频率来估计总体的概率.
(1)说明“其余情形”指何种具体情形,并求出 x1,x2,x3 的值;
河南省信阳市信阳高级中学2018届高三普通高等学校招生全国统一考试模拟测试数学理试题(一) Word版含解析

2018年普通高等学校招生全国统一考试模拟卷理科数学一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合A={x|x2-2x<0},B={x||x|<2},则A. A∩B=∅B. A∩B=AC. A∪B=AD. A∪B=R【答案】B【解析】【分析】解二次不等式和绝对值不等式求出集合A与集合B,根据两集合的范围判断集合关系. 【详解】解二次不等式可得:,解绝对值不等式可得:,由范围可知集合A为集合B的子集,由集合间的关系可知:.故选B.【点睛】本题考查绝对值与二次不等式的求解以及集合间的关系,解二次不等式可以辅助图像解题,含一个绝对值的不等式可利用绝对值的定义求解,集合间的关系可以结合韦恩图求解.2. 下面是关于复数的四个命题:;;;.其中真命题为A. B. C. D.【答案】B【解析】【分析】由模的公式求出复数的模,由共轭复数的概念即可求出共轭复数,由复数的乘法法则可求得其平方,由复数的除法法则可以求出其倒数.【详解】由模的公式可得:,所以为假命题;由共轭复数概念可知:,所以为真命题;由复数乘法公式:,所以为真命题;由复数除法公式:,所以为假命题.故选B.【点睛】本题考查复数的综合知识,复数的模、共轭复数、乘法、除法等,注意概念的掌握以及计算的准确性.3. 已知双曲线与抛物线有相同的焦点,则该双曲线的渐近线方程为A. B. C. D.【答案】C【解析】【分析】由抛物线方程求出抛物线的焦点,即为双曲线的一个焦点,由双曲线中参数的关系求出m,将双曲线中的参数值代入渐近线标准方程,即可求得渐近线方程.【详解】由抛物线方程可知其焦点为:,即为双曲线的一个焦点,由参数关系可得:,解得,所以双曲线的方程为:,所以渐近线方程为:.故选C.【点睛】本题考查双曲线与抛物线参数关系及渐近线的方程,求解时注意抛物线的焦点在y 轴上,注意将双曲线化为标准形式再求解,注意焦点在y轴上的双曲线的渐近线公式,避免将参数混淆,造成错解.4. 甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为A. 8B. 7C. 6D. 5【答案】B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A (甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A (甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.5. 已知中,,, ,为AB边上的中点,则A. 0B. 25C. 50D. 100【答案】C【解析】【分析】三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.6. 已知函数,则f(x)的大致图象为A. B. ........................C. D.【答案】A【解析】【分析】由函数奇偶性定义判断函数的奇偶性,再给函数求导判断单调性,最后代入特殊点判断. 【详解】因为,所以函数为奇函数,排除B选项,求导:,所以函数单调递增,故排除C选项,令,则,故排除D.故选A.【点睛】本题考查函数图像的判断,由对称性可知可以先由奇偶性判断,由其图像趋势可知可以利用单调性判断,最后对比两图像可以用代入特殊点的方式判断,一般要根据函数图像的差别代入相应的点.7. 已知数列{a n}为等比数列,S n是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5=A. 35B. 33C. 31D. 29【答案】C【解析】设等比数列{a n}的公比为q,则a2·a3=a·q3=a1·a4=2a1,解得a4=2,∵a4与2a7的等差中项为,∴a4+2a7=a4+2a4q3=2+4q3=5,解得。
河南省信阳市高三第二次调研考试数学试卷(理科)

数学(理科)★2009 年1 月16 日满分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷150 分,考试时间120 分钟。
1 至2 页,第Ⅱ卷3 至8 页。
第Ⅰ卷(选择题,共60 分)注意事项:1.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
不可以答在试卷上。
2.考试结束,考生将本试卷和答题卡一并交回。
一、选择题:本大题共 12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项切合题目要求的。
1. 0<x<6是不等式2|<6建立的.|x -A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件2. 函数 f ( x) | x | a x(0 a 1) 的图像大概是x3. 设a R,2a i是一个实数,则该实数是1 iA. 1 1C. 1D. 1 2B.24.把函数y cos2x 3 sin 2x 的图像按向量平移后获得的图象对于y 轴对称,则| m |的最小值为A. B. C. D.512 6 1235.已知函数f ( x) 4 x3 2x 且 f ' ( x) f ' ( a) 建立,则实数 a 的取值范围是A. ( ,1)B. (1, )C.( , 1)U (1, ) D. ( 1,1)6. 已知ABC λ的重心为P,若实数λ知足: AB AC AP 则λ的值为A.2B. 2C.3D.6 37. 设函数f (x) x,x 2{22x , x 2 若 f ( a) 1 ,则a的取值范围是x 3A. (0,2) U (3, )B. (3, )C. (0,1)U (2, )D. (0, 2)8.等差数列中有两项a m 1, a k1则该数列前 mK 项之和为mk 1 kmk kmmk m k mA. B. C.2 2 2 D.2x2 y21 (a b x2 y21有同样的焦点,该椭圆离心率为9.已知椭圆2b2 0) 与双曲线b22a2 a2A.2B.1C.6D.6 2 2 6 3x y 1 010. 已知x, y知足3x 2 y 6 0 ,则x2 y2的最小值是x 2A.1B. 6 13C.36D.13 13 13 411.某人射击 8 次,有 3 次命中目标,此中恰有 2 次连续命中目标的情况有A.15 种B.30 种C.48 种D.60 种12. 若函数y f ( x)( x R) 知足 f ( x 2) f ( x),且 x ( 1,1]时,f ( x) x ,则函数y f ( x) 的图像与函数y log4 x 的图像的交点个数为A.3B.4C.6D.8第Ⅱ卷 (非选择题,共 90 分)注意事项:1. 第Ⅱ卷共 6 页,用钢笔或圆珠笔挺接答在试卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信阳市2017—2018学年普通高中高三第二次教学质量检测
数 学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
第Ⅰ卷 (满分60分)
一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合M ={x |x <2},N ={x |2x -x <0},则下列关系中正确的是
A .M ∪N =R
B .M ∪(
C R N )=R C .N ∪(C
R M )=R D .M ∩N =M
2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为 A .
54钱 B .53钱 C .32钱 D .43
钱 3.下面是关于复数z =21i i --的四个命题:p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1.其中的真命题为
A .p 1,p 2
B .p 2,p 4
C .p 2,p 3
D .p 3,p 4
4.已知定义在R 上的函数f (x )=313ax +2x +ax +1有三个不同的单调区间,则实数a 的取值范围是
A .(-∞,-1)∪(1,+∞)
B .[-1,0)∪(0,1]
C .(-1,1)
D .(-1,0)∪(0,1)
5.若偶函数f (x )在区间(-∞,0]上单调递减,且f (3)=0,则不等式(x -1)f (x )>0的解集是
A .(-3,1)∪(3,+∞)
B .(-∞,-1)∪(1,+∞)
C .(-∞,-3)∪(3,+∞)
D .(-∞,-1)∪(3,+∞)
6.25(2)x x
+1的展开式的常数项为 A .5 B .-10 C .-32
D .-
42
7.某校高三年级10个班参加合唱比赛得分的茎叶图如图1所
示,若这组数据的平均数是20,则1a +9b 的最小值为 A .1 B .32 C .2 D .52 8.若输出的S 的值等于22,那么在如图2所示的程序框图中的判断框内应
填写的条件是
A .i >5
B .i >6
C .i >7
D .i >8
9.要得到函数f (x )=cos (2x +
3π)的图象,只需将函数g (x )= sin (2x +3
π)的图象 A .向左平移2π个单位长度 B .向右平移2
π个单位长度 C .向左平移4π个单位长度 D .向右平移4
π个单位长度 10.过抛物线2y =4x 的焦点F 作直线l 交抛物线于A 、B 两点,若1AF -1BF =12
,则 直线l 的倾斜角θ(0<θ<
2π)等于 A .2π B .3π C .4π D .6
π 11.设x ,y ,z 为正实数,且2log x =3log y =5log z >0,则2x ,3y ,5
z 的大小关系不可是 A .2x <3y <5z B .2x =3y =5z C .3y <2x <5
z D .5z <3y <2x
12.如图3,将一半径为2的半圆形纸板裁剪成等腰梯形
ABCD 的形状,下底AB 是半圆的直径,上底CD 的端
点在圆周上,则所得梯形面积的最大值为
A .5
B .3
C .5
D .3
第Ⅱ卷(满分90分)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.已知向量a,b的夹角为60°,且|a|=1,|2a-b|=3,则|b|=__________.
14.某化肥厂生产甲、乙两种肥料,生产一车皮甲肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨,如果该厂合理安排生产计划,则可以获得的最大利润是____________万元.
15.过双曲线
22
22
1
x y
a b
-=(a>0,b>0)的左焦点F(-c,0)作圆222
x y a
+=的切线,切点为E,
延长FE交抛物线2y=4cx于点P,O为坐标原点,若E为PF的中点,则双曲线的离心率为
_____________.
16.在平面四边形ABCD中,∠A=∠B=60°,AB=1,∠D=150°,则四边形ABCD面积的取值范围是_____________.
三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21
题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
17.(本小题满分12分)
已知a,b,c分别是△ABC内角A,B,C的对边,且满足:(a+b+c)(sinB+sinC-
sinA)=bsinC.
(Ⅰ)求角A的大小;
(Ⅱ)设a=3,S为△ABC的面积,求S+3cosBcosC的最大值.
18.(本小题满分12分)
为了调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2017年师范类毕业大学生,得到具体数据如表:
(Ⅰ)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(Ⅱ)求这80位师范类毕业生从事与教育有关工作的频率;
(Ⅲ)以(Ⅱ)中的频率作为概率.该校近几年毕业生的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
19.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且a 1=2,2n S =2
(1)n +n a -21n n a +,数列{n b }满足 b 1=a 1,n 1n b +=n a n b .
(Ⅰ)求数列{ n a }和{n b }的通项公式;
(Ⅱ)若数列{n c }满足n c =n a +n b (n ∈N ﹡),求数列{n c }的前n 项和n T .
20.(本小题满分12分)
已知直线l 与椭圆C :22
221y x a b
+=(a >b >0)交于A (x 1,y 1),B (x 2,y 2)两点,又m =(ax 1,by 1),n =(ax 2,by 2),若m ⊥n 且椭圆的离心率e 3,又椭圆经过点 (32
,1),O 为坐标原点. (Ⅰ)求椭圆的方程;
(Ⅱ)试问△AOB 的面积是否为定值?
21.(本小题满分12分)
已知函数f (x )=24x +1x
-a ,g (x )=f (x )+b ,其中a ,b 为常数. (Ⅰ)若x =1是函数y =xf (x )的一个极值点,求曲线y =f (x )在点(1,f (1))处
的切线方程;
(Ⅱ)若函数f (x )有2个零点,f (g (x ))有6个零点,求a +b 的取值范围.
选考题:共10分。
请考生从第22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。
22.(本小题满分10分)选修4—4:坐标系与参数方程
已知直线l
的参数方程为
1
2
2
x
y
⎧
⎪⎪
⎨
⎪
⎪⎩
=-+,
=
(其中t为参数),曲线C1:22
cos
ρθ+22
3sin
ρθ-
3=0,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位.(Ⅰ)求直线l的普通方程及曲线C1的直角坐标方程;
(Ⅱ)在曲线C1上是否存在一点P,使点P到直线l的距离最大?若存在,求出距离的最大值及点P的直角坐标;若不存在,请说明理由.
23.(本小题满分10分)选修4—5:不等式选讲
已知函数f(x)=|x-5|—|x-2|.
(Ⅰ)若x∃∈R,使得f(x)≤m成立,求实数m的取值范围;
(Ⅱ)解不等式2x-8x+15+f(x)≤0.。