2018-2019学年高中数学人教A版选修1-2模块综合检测:-含解析

合集下载

2018高中数学人教a版选修1-2:模块综合检测 含解析

2018高中数学人教a版选修1-2:模块综合检测 含解析

模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z1=2+i,z2=1+i,则z1z2在复平面内对应的点位于( ) A.第一象限B.第三象限C.第二象限D.第四象限解析:选D z1z2=2+i1+i=32-i2,对应点⎝⎛⎭⎪⎪⎫32,-12在第四象限.2.下面几种推理中是演绎推理的为( )A.由金、银、铜、铁可导电,猜想:金属都可导电B.猜想数列11×2,12×3,13×4,…的通项公式为a n=1n(n+1)(n∈N+)C.半径为r的圆的面积S=πr2,则单位圆的面积S=πD.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2解析:选C 由演绎推理的概念可知C正确.3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a+bi为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:选B ∵ab=0,∴a=0或b=0.由复数a+bi=a-bi为纯虚数,得a=0且b ≠0.∴“ab =0”是“复数a +b i为纯虚数”的必要不充分条件. 4.下列说法正确的有( )①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A .①②B .②③C .③④D .①③解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.5.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=( )A .192B .202C .212D .222解析:选C 归纳得13+23+33+43+53+63=()1+2+…+62=212.6.定义运算⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪⎪⎪1 -1z zi =4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i解析:选A 由定义知⎪⎪⎪⎪⎪⎪⎪⎪1 -1z zi =zi +z ,得zi +z =4+2i ,即z =4+2i 1+i =3-i.7.(重庆高考)执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5,故选C.8.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y^=7.19x +73.93,用此方程预测儿子10岁的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右解析:选D 用线性回归方程预测的不是精确值,而估计值,当x =10时,。

2018-2019年人教版高中《数学选修1-2》试题(题后含答案)106

2018-2019年人教版高中《数学选修1-2》试题(题后含答案)106

2018-2019年人教版高中《数学选修1-2》试题
(题后含答案)
单选题(共5道)
1、下面说法正确的有()
(1)演绎推理是由一般到特殊的推理;
(2)演绎推理得到的结论一定是正确的;
(3)演绎推理一般模式是“三段论”形式;
(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。

A1个
B2个
C3个
D4个
2、用三段论推理:“指数函数y=ax是增函数,因为y=()x是指数函数,所以y=()x是增函数”,你认为这个推理()
A大前提错误
B小前提错误
C推理形式错误
D是正确的
3、在复平面内,复数i(2-i)对应的点位于()
A第一象限
B第二象限
C第三象限
D第四象限
4、证明不等式的最适合的方法是()
A综合法
B分析法
C间接证法
D合情推理法
5、以下说法不正确的是()
A顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含选择结构
C循环结构中不一定包含选择结构
D用程序框图表示算法,使之更加直观形象,容易理解
简答题(共5道)
6、用三段论证明:.
7、已知复数.
(1)求z的共轭复数;
(2)若,求实数的值.
8、用分析法证明:
9、已知z=1+i,a,b为实数.
(1)若ω=z2+3-4,求|ω|;
(2)若=1-i,求a,b的值.
10、设复数z=cosθ+isinθ,θ∈(π,2π),求复数z2+z的模和辐角.。

2018_2019版高中数学模块综合测评新人教A版选修

2018_2019版高中数学模块综合测评新人教A版选修

模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若a>b>c,则的值()A.大于0B.小于0C.小于或等于0D.大于或等于0解析因为a>b>c,所以a-c>b-c>0.所以,所以>0,故选A.答案A2.不等式|x+3|+|x-2|<5的解集是()A.{x|-3≤x<2}B.RC.⌀D.{x|x<-3或x>2}解析令f(x)=|x+3|+|x-2|=则f(x)的图象如图,由图可知,f(x)<5的解集为⌀.故原不等式的解集是⌀.答案C3.若P=(x>0,y>0,z>0),则P与3的大小关系是()A.P≤3B.P<3C.P≥3D.P>3解析因为1+x>0,1+y>0,1+z>0,所以=3,即P<3.答案B4.不等式>a的解集为M,且2∉M,则a的取值范围为()A. B.C. D.解析由已知2∉M,可得2∈∁R M,于是有≤a,即-a≤≤a,解得a≥,故应选B.答案B5.某人要买房,随着楼层的升高,上、下楼耗费的体力增多,因此不满意度升高,设住第n层楼,上、下楼造成的不满意度为n;但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高,环境不满意度降低,设住第n层楼时,环境不满意程度为,则此人应选()A.1楼B.2楼C.3楼D.4楼解析设第n层总的不满意程度为f(n),则f(n)=n+≥2=2×3=6,当且仅当n=,即n=3时等号成立.答案C6.若关于x的不等式|x-1|+|x-3|≤a2-2a-1在R上的解集为⌀,则实数a的取值范围是()A.a<-1或a>3B.a<0或a>3C.-1<a<3D.-1≤a≤3解析|x-1|+|x-3|的几何意义是数轴上与x对应的点到1,3对应的两点距离之和,则它的最小值为2.∵原不等式的解集为⌀,∴a2-2a-1<2,即a2-2a-3<0,解得-1<a<3.故选C.答案C7.已知x+3y+5z=6,则x2+y2+z2的最小值为()A. B.C. D.6解析由柯西不等式,得x2+y2+z2=(12+32+52)(x2+y2+z2)×≥(1×x+3×y+5×z)2×=62×.答案C8.设函数f(n)=(2n+9)·3n+1+9,当n∈N+时,f(n)能被m(m∈N+)整除,猜想m的最大值为()A.9B.18C.27D.36解析当n=1时,f(1)=(2×1+9)·31+1+9=108.当n=2时,f(2)=(2×2+9)·32+1+9=360.故猜想m的最大值为36.(1)当n=1时,猜想成立.(2)当n=k(k≥1)时猜想成立,即f(k)=(2k+9)·3k+1+9能被36整除.当n=k+1时,f(k+1)=[2(k+1)+9]·3k+2+9=(2k+9+2)·3·3k+1+9=3[(2k+9)·3k+1+9]+6·3k+1-18=3[(2k+9)·3k+1+9]+18(3k-1).∵(2k+9)·3k+1+9,18(3k-1)均能被36整除,∴猜想成立.综上,m的最大值为36.答案D9.(2017 山东淄博一模)设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则的最小值为()A.4B.6C.8D.9解析=(a-1,1),=(-b-1,2),∵A,B,C三点共线,∴2(a-1)-(-b-1)=0,整理,得2a+b=1.又a>0,b>0,则=(2a+b)=4+≥4+2=8,当且仅当b=2a=时,等号成立.故选C.答案C10.用反证法证明“△ABC的三边长a,b,c的倒数成等差数列,求证B<”,假设正确的是()A.B是锐角B.B不是锐角C.B是直角D.B是钝角答案B11.实数a i(i=1,2,3,4,5,6)满足(a2-a1)2+(a3-a2)2+(a4-a3)2+(a5-a4)2+(a6-a5)2=1,则(a5+a6)-(a1+a4)的最大值为()A.3B.2C. D.1解析因为[(a2-a1)2+(a3-a2)2+(a4-a3)2+(a5-a4)2+(a6-a5)2](1+1+1+4+1)≥[(a2-a1)×1+(a3-a2)×1+(a4-a3)×1+(a5-a4)×2+(a6-a5)×1]2=[(a6+a5)-(a1+a4)]2,所以[(a6+a5)-(a1+a4)]2≤8,即(a6+a5)-(a1+a4)≤2.答案B12.已知x,y,z,a,b,c,k均为正数,且x2+y2+z2=10,a2+b2+c2=90,ax+by+cz=30,a+b+c=k(x+y+z),则k=()A. B.C.3D.9解析因为x2+y2+z2=10,a2+b2+c2=90,ax+by+cz=30,所以(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2,又(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,当且仅当=k时,等号成立,则a=kx,b=ky,c=kz,代入a2+b2+c2=90,得k2(x2+y2+z2)=90,于是k=3.答案C二、填空题(本大题共4小题,每小题5分,共20分)13.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为.解析2x+=2(x-a)++2a≥2+2a=2a+4≥7(当且仅当(x-a)2=1时,等号成立), 则a≥,即实数a的最小值为.答案14.不等式|x-4|+|x-3|≤a有实数解的充要条件是.解析不等式a≥|x-4|+|x-3|有解⇔a≥(|x-4|+|x-3|)min=1.答案a≥115.设x,y,z∈R,2x+2y+z+8=0,则(x-1)2+(y+2)2+(z-3)2的最小值为.解析由柯西不等式可得(x-1)2+(y+2)2+(z-3)2(22+22+12)≥[2(x-1)+2(y+2)+(z-3)]2=(2x+2y+z-1)2=81,所以(x-1)2+(y+2)2+(z-3)2≥9当且仅当,即x=-1,y=-4,z=2时,等号成立.答案916.导学号26394074对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a||x-1|恒成立,则实数x的取值范围是.解析依题意只需不等式的左边的最小值≥|a||x-1|,由绝对值三角不等式得|a+b|+|a-b|≥|(a+b)+(a-b)|=|2a|=2|a|,故只需求解2|a|≥|a||x-1|即可,解得-1≤x≤3.答案[-1,3]三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知x,y均为正数,且x>y,求证2x+≥2y+3.证明因为x>0,y>0,x-y>0,所以2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.18.(本小题满分12分)已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.解(1)∵m>1,不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵其解集为[0,4],∴解得m=3.(2)由(1)知a+b=3.(方法一:利用基本不等式)∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2≥,∴a2+b2的最小值为.(方法二:利用柯西不等式)∵(a2+b2)·(12+12)≥(a×1+b×1)2=(a+b)2=9,∴a2+b2≥,∴a2+b2的最小值为.(方法三:消元法求二次函数的最值)∵a+b=3,∴b=3-a.∴a2+b2=a2+(3-a)2=2a2-6a+9=2,∴a2+b2的最小值为.19.(本小题满分12分)用数学归纳法证明:>n!(n>1,n∈N+).(n!=n×(n-1)×…×2×1)证明(1)当n=2时,>2!=2,不等式成立.(2)假设当n=k(k≥2)时不等式成立,即>k!.当n=k+1时,=+…+(k+1)·=(k+1)·>(k+1)·k!=(k+1)!,所以当n=k+1时不等式成立.由(1)(2)可知,对n>1的一切自然数,不等式成立.20.(本小题满分12分)已知x+y>0,且xy≠0.(1)求证:x3+y3≥x2y+y2x;(2)如果恒成立,试求实数m的取值范围.(1)证明因为x3+y3-(x2y+y2x)=x2(x-y)-y2(x-y)=(x+y)(x-y)2,且x+y>0,(x-y)2≥0,所以x3+y3-(x2y+y2x)≥0,故x3+y3≥x2y+y2x.(2)解①若xy<0,则等价于.又因为=-3,即<-3,因此m>-6.②若xy>0,则等价于.因为=1,即≥1(当且仅当x=y时,等号成立),故m≤2.综上所述,实数m的取值范围是(-6,2].21.导学号26394075(本小题满分12分)设函数f(x)=|x+2|-|x-2|.(1)解不等式f(x)≥2;(2)当x∈R,0<y<1时,求证:|x+2|-|x-2|≤.(1)解由已知可得,f(x)=故f(x)≥2的解集为{x|x≥1}.(2)证明由(1)知,|x+2|-|x-2|≤|(x+2)-(x-2)|=4.∵0<y<1,∴0<1-y<1.∴[y+(1-y)]=2+≥4,当且仅当,即y=时,等号成立.∴|x+2|-|x-2|≤.22.(本小题满分12分)已知a,b,c为非零实数,且a2+b2+c2+1-m=0,+1-2m=0.(1)求证:;(2)求实数m的取值范围.(1)证明由柯西不等式得(a2+b2+c2)≥,即(a2+b2+c2)≥36.∴.(2)解由已知得a2+b2+c2=m-1,=2m-1,∴(m-1)(2m-1)≥36,即2m2-3m-35≥0,解得m≤-或m≥5.又a2+b2+c2=m-1>0,=2m-1>0,∴m≥5,即实数m的取值范围是[5,+∞).。

2018-2019学年高中数学人教A版选修1-2阶段质量检测:(二)推理与证明-含解析

2018-2019学年高中数学人教A版选修1-2阶段质量检测:(二)推理与证明-含解析

阶段质量检测(二)推理与证明(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是()A.归纳推理B.类比推理C.演绎推理D.非以上答案解析:选C根据演绎推理的定义知,推理过程是演绎推理,故选C.2.自然数是整数,4是自然数,所以4是整数.以上三段论推理()A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致解析:选A三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有()A.0 B.1C.2 D.3解析:选B可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是()A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D(xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为()A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数, 所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立. 上述证明过程应用了( ) A .综合法B .分析法C .综合法、分析法配合使用D .间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知D 成立. 8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3, 得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2nn +1B .S n =3n -1n +1 C .S n =2n +1n +2D .S n =2nn +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.已知a >0,b >0,m =lga +b 2,n =lg a +b2,则m ,n 的大小关系是________. 解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒ a +b 2>a +b 2⇒lg a +b2>lg a +b2. 答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b,b =62-1 =35,a =6.∴a +b =6+35=41. 答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2; (2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab , ∴lg a +b 2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2,即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…). (1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n, 解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾, 所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根.解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 2 65°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-cos (2α+120°)2+1-cos (2α+240°)2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°) =32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边.将一般形式写成sin2(α-60°)+sin2α+sin2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a,b,且a⊥b,求证:|a|+|b||a+b|≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项.证明:(1)a⊥b⇔a·b=0,要证|a|+|b||a+b|≤ 2.只需证|a|+|b|≤2|a+b|,只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),则数列的公差d=2-1n-m=3-1k-m,即2-1=2(n-m)k-m,因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以2(n-m)k-m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.。

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

模块综合检测(一)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.(新课标全国卷Ⅱ)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5 B.5C.-4+i D.-4-i解析:选A由题意可知z2=-2+i,所以z1z2=(2+i)·(-2+i)=i2-4=-5.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形解析:选C只有平行四边形与平行六面体较为接近.3.实数的结构图如图所示,其中1,2,3三个方格中的内容分别为()A.有理数、零、整数B.有理数、整数、零C.零、有理数、整数D.整数、有理数、零解析:选B由实数的包含关系知B正确.4.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是()A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:选D利用归纳推理可知,第k项中第一个数为a k-1,且第k项中有k项,次数连续,故第k项为a k-1+a k+…+a2k-2.5.下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥lg a ·lg bD .若a 为正实数,ab <0,则a b +ba =--ab +-b a≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2解析:选D A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( )A.83B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=(3m -8)+(6+4m )i32+42.∵z 1z 2为实数, ∴6+4m =0, ∴m =-32.7.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式为( )A .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)B .(n +1)(n +2)…(n +1+n +1)=2n ×1×3×…×(2n -1)C .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n +1)D .(n +1)(n +2)…(n +1+n )=2n +1×1×3×…×(2n -1)解析:选A 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n ,另一部分是1×3×…×(2n -1).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n∈Z,且n≥5)的末四位数为f(n),则f(2 015)=f(502×4+7)=f(7),∴52 015与57的末四位数相同,均为8 125.9.(重庆高考)执行如图所示的程序框图,则输出的k的值是()A.3 B.4C.5 D.6解析:选C第一次运行得s=1+(1-1)2=1,k=2;第二次运行得s=1+(2-1)2=2,k=3;第三次运行得s=2+(3-1)2=6,k=4;第四次运行得s=6+(4-1)2=15,k=5;第五次运行得s=15+(5-1)2=31,满足条件,跳出循环,所以输出的k的值是5,故选C.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为=0.67x+54.9.现发现表中有一个数据模糊不清,经推断可知该数据为()零件数x/个1020304050加工时间y/min62758189A.70 B.解析:选B依题意得,=15×(10+20+30+40+50)=30.由于直线=0.67x+54.9必过点(,),于是有=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分)11.复数z=-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i ,所以=-1-i.答案:-1-i12.“一群小兔一群鸡,两群合到一群里,数腿共40,数脑袋共15,多少小兔多少鸡?”其解答流程图如图所示,空白部分应为________.设有x 只鸡,y 只小兔→列方程组→ →得到x ,y 的值 答案:解方程组13.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V PA ′B ′C ′V PABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V PA ′B ′C ′V PABC =PA ′·PB ′·PC ′PA ·PB ·PC .答案:PA ′·PB ′·PC ′PA ·PB ·PC14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6, f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z =5ω+|ω-2|,求.解:由ω-4=(3-2ω)i ,得8ω(1+2i)=4+3i , ∴ω=4+3i1+2i=2-i.∴z =52-i+|-i|=3+i. 则z =3+i 的共轭复数=3-i.于是=3+i 3-i =(3+i )2(3-i )(3+i )=8+6i 10=45+35i.16.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程=x +; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知, n =10,=1n ∑i =1n x i =8010=8,=1n ∑i =1n y i =2010=2,==184-10×8×2720-10×82=2480=0.3,=-b =2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 17.(本小题满分12分)先解答(1),再通过结构类比解答(2). (1)求证:tan ⎝⎛⎭⎫x +π4=1+tan x1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得 tan ⎝⎛⎭⎫x +π4=tan x +tanπ41-tan x tanπ4 =tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想:f (x )是以4a 为周期的周期函数.证明:因为f (x +2a )=f ((x +a )+a ) =1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),所以f (x +4a )=f ((x +2a )+2a ) =-1f (x +2a )=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表所示:甲厂:(2)由以上统计数据填下面2×2列联表,问:能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)优质品360320680非优质品140180320总计500500 1 000K2的观测值k=500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.设z=10i3+i,则z的共轭复数为()A.-1+3i B.-1-3i C.1+3i D.1-3i解析:选D∵z=10i3+i=10i(3-i)(3+i)(3-i)=1+3i,∴=1-3i.2.以下说法,正确的个数为()①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质,这是运用的类比推理.④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理.A.0 B.2 C.3 D.4解析:选C①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推测出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观察下图中图形的规律,在其右下角的空格内画上合适的图形为()解析:选A表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是()A.①②B.①③C.②③D.②①解析:选A解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.6.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出:“a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出:“若a,b,c,d ∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出:“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出:“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数是()A.1 B.2 C.3 D.4解析:选B①②正确,③④错误,因为③④中虚数不能比较大小.7.执行如图所示的程序框图,则输出s的值为()A.10 B.17C.19 D.36解析:选C执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19.选C.8.p=ab+cd,q=ma+nc·bm+dn(m,n,a,b,c,d均为正数),则p,q的大小为()A.p≥q B.p≤qC.p>q D.不确定解析:选B q=ab+madn+nbcm+cd≥ab+2abcd+cd=ab+cd=p.9.下图所示的是“概率”知识的()A.流程图B.结构图C.程序框图D.直方图解析:选B这是关于“概率”知识的结构图.10.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表:喜爱打篮球不喜爱打篮球总计男生20525女生101525总计302050.()附参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2>k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.78910.828C.0.005 D.0.001解析:选C由2×2列联表可得,K2的估计值k=50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“喜爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a=3+22,b=2+7,则a,b的大小关系为________________.解析:a=3+22,b=2+7两式的两边分别平方,可得a2=11+46,b2=11+47,显然,6<7.∴a<b.答案:a<b12.复数z=i1+i(其中i为虚数单位)的虚部是________.解析:化简得z=i1+i=i(1-i)(1+i)(1-i)=12+12i,则虚部为12.答案:1 213.根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是________(填序号).①a n=2n②a n=2(n-1)③a n=2n④a n=2n-1解析:由程序框图可知:a1=2×1=2,a2=2×2=4,a3=2×4=8,a4=2×8=16,归纳可得:a n=2n.答案:③14.(福建高考)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0 有且只有一个正确,则100a+10b+c等于________.解析:可分下列三种情形:(1)若只有①正确,则a≠2,b≠2,c=0,所以a=b=1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=2,a=2,c=0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠0,a=2,b≠2,所以b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取网上学习注册码.(2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.解:某大学远程教育学院网上学习流程如下:17.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计 50岁以下 50岁以上 总计(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下: (2)因为K 2的观测值 30×(8-128)212×18×20×10=k=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”.18.(本小题满分14分)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?解:根据题目所给的数据得到如下列联表:理科 文科 总计 有兴趣 138 73 211 无兴趣 98 52 150 总计236125361k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.因为1.871×10-4<2.706,所以据目前的数据不能认为学生选报文、理科与对外语的兴趣有主食蔬菜主食肉类总计 50岁以下 4 8 12 50岁以上 16 2 18 总计201030关,即可以认为学生选报文、理科与对外语的兴趣无关.。

2018学年高中数学人教A版选修1-2创新应用模块综合检测 Word版含解析

2018学年高中数学人教A版选修1-2创新应用模块综合检测 Word版含解析

模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i2.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a >b ”,应假设( ) A .a >b B .a <b C .a =b D .a ≤b4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为( )A .②①③B .③①②C .①②③D .②③①5.若P =a +a +7,Q =a +3+a +4,a ≥0,则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )8.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1009.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +ax n ≥n +1,则a 的值为( )A .2nB .n 2C .22(n-1)D .n n10.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z 2|=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R )有两个不同实数根的条件是b 2-4ac >0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根的条件是b 2-4ac >0;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是________.14.已知x ,y 的取值如表:由表格中数据的散点图分析,y 与x 线性相关,且回归方程为y =0.95x +a ,则a =________.15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.16.观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明证明过程或演算步骤) 17.(本小题10分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平方内对应的点分别为A ,B ,C ,求△ABC 的面积.18.(本小题12分)小流域综合治理可以有三个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土.生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种,地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.用结构图把“小流域综合治理”的措施与功能表示出来.19.(本小题12分)为研究大气污染与人的呼吸系统疾病是否无关,对重污染地区和轻污染地区作跟踪调查,得如下数据:20.(本小题12分)求证:对于任意的正实数a ,b ,c ,31a +1b +1c≤a +b +c 3(当且仅当a =b =c 时取等号).21.(本小题12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.22.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?答案1.解析:选C 因为(z -1)i =1+i ,所以z =1+ii+1=2-i.2.解析:选D 复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限. 3.解析:选D 因为“a >b ”的反面就是“a <b 或a =b ”,所以选D. 4.解析:选D 由“三段论”的推理形式可知D 正确. 5.解析:选C P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, 由于a 2+7a <a 2+7a +12, 所以2a 2+7a <2a 2+7a +12, 从而P 2<Q 2,即P <Q .6.解析:选B 由题可知若x 0=x ,y 0=y ,由回归直线的性质可知(x 0,y 0)满足回归方程y ^=b ^x +a ^,但满足回归方程y ^=b ^x +a ^的除(x ,y )外,可能还有其他样本点.c =|tan a |=33. 8.解析:选B 由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.9.解析:选D 由归纳推理,知a =n n .10.解析:选C 因为复数z 中,|z |2为实数,z 2不一定为实数,所以|z |2≠z 2,故②错;当方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根时,应设出复数根的表达式,利用复数相等的条件列关系式,故③错.11.解析:选D 由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).12.解析:选B 法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16.13.解析:z = m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:因为(x ,y )必在直线y ^=0.95x +a 上, 又x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=92,所以92=0.95×2+a ,所以a =2.6.答案:2.6 15.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 4=S 1+S 2+S 3.答案:S 24=S 21+S 22+S 2316.解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1). 答案:43n (n +1)17.解:(1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2abi , 所以2ab =2.所以a =b =1或a =b =-1, 即z =-1+i 或z =-1-i .(2)当z =1+i 时,z 2=(1+i )=2i ,z -z 2-1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1;当z =-1-i 时,z 2=(-1-i )2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =12|AC |×1=12×2×1=1.即△ABC 的面积为1. 18.解:19.解:假设H 0:大气污染与人的呼吸系统疾病无关. 由公式得k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636.因为72.636>10.828,所以拒绝H 0,即我们在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关. 20.证明:对于任意正实数a ,b ,c , 要证31a +1b +1c ≤a +b +c 3成立,只需证9≤(a +b +c )⎝⎛⎭⎫1a +1b +1c , 即证9≤3+a b +a c +b a +b c +c a +c b ,即证6≤⎝⎛⎭⎫a b +b a +⎝⎛⎭⎫a c +c a +⎝⎛⎭⎫b c +c b (*) 因为对于任意正实数a ,b ,c , 有a b +b a≥2a b ·ba=2, 同理a c +c a ≥2,b c +cb≥2,所以不等式(*)成立,且要使(*)的等号成立必须b a =a b 且c a =a c 且b c =c b .即当且仅当a =b =c 时等号成立.21.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1, 解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35, (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1).22.解:(1)设事件A 表示“选取的2组数据恰好是不相邻2天的数据”,则A 表示“选取的数据恰好是相邻2天的数据”.基本事件总数为10,事件A 包含的基本事件数为4. 所以P (A )=410=25, 所以P (A )=1-P (A )=35.(2)x =12,y =27,∑i =13x i y i =977,∑i =13x 2i =434,所以b ^=∑i =13x i y i -3x -y-∑i =13x 2i -3x -2=977-3×12×27434-3×122=2.5,a ^=y -b ^x -=27-2.5×12=-3, 所以y ^=2.5x -3.(3)由(2)知:当x =10时,y ^=22,误差不超过2颗; 当x =8时,y ^=17,误差不超过2颗. 故所求得的线性回归方程是可靠的.。

2018年秋高中数学 模块综合测评 新人教A版选修1-2

2018年秋高中数学 模块综合测评 新人教A版选修1-2

模块综合测评(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( )【导学号:48662218】A .1B .0C .-1D .-1或1B [由题意知,⎩⎪⎨⎪⎧m m +=0m 2-1≠0,∴m =0.]2.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y=log 12x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误A [对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.] 3.i 是虚数单位,复数1-3i1-i的共轭复数是( )【导学号:48662219】A .2+iB .2-iC .-1+2iD .-1-2iA [∵1-3i 1-i =-+-+=4-2i 2=2-i ,∴1-3i1-i的共轭复数是2+i.] 4.用反证法证明命题“a ,b ∈N ,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除B [用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.] 5.实数的结构图如图1所示,其中1,2,3三个方格中的内容分别为( )【导学号:48662220】图1A .有理数、零、整数B .有理数、整数、零C .零、有理数、整数D .整数、有理数、零B [由实数的包含关系知B 正确.]6.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表,下列结论正确的是( )B .在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”;C .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”;D .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”.A [K 2=-230×70×50×50≈4.762>3.841,所以在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.]7.已知复数z 1=2+i ,z 2=1+i ,则z 1z 2在复平面内对应的点位于( )【导学号:48662221】A .第一象限B .第三象限C .第二象限D .第四象限D [z 1z 2=2+i 1+i =32-i 2,对应点⎝ ⎛⎭⎪⎫32,-12在第四象限.]8. 某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查发现,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%A [由(x,7.765)在回归直线y ^=0.66x +1.562上.所以7.765=0.66x +1.562,则x ≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.]9.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的重心,则AG GD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体A ­BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM等于( )A .1B .2C .3D .4C [面的重心类比几何体的重心,平面类比空间,AG GD =2类比AO OM=3,故选C.] 10.如图2所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在和两个空白框中,可以分别填入( )【导学号:48662222】图2A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2D [因为题目要求的是“满足3n-2n>1 000的最小偶数n ”,所以n 的叠加值为2,所以内填入“n =n +2”.由程序框图知,当内的条件不满足时,输出n ,所以内填入“A ≤1 000”.故选D.]11.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )。

高中数学人教A版选修1-2章末综合测评3 Word版含解析.doc

高中数学人教A版选修1-2章末综合测评3 Word版含解析.doc

章末综合测评(三)数系的扩充与复数的引入(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·福建高考)若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3 D.-1,4【解析】(1+i)+(2-3i)=3-2i=a+b i,所以a=3,b=-2.【答案】 A2.(2015·广东高考)若复数z=i(3-2i)(i是虚数单位),则z=()A.2-3i B.2+3iC.3+2i D.3-2i【解析】∵z=i(3-2i)=3i-2i2=2+3i,∴z=2-3i.【答案】 A3.(2016·衡阳高二检测)若i(x+y i)=3+4i(x,y∈R),则复数x+y i 的模是()A.2B.3C.4D.5【解析】由i(x+y i)=3+4i,得-y+x i=3+4i,解得x=4,y=-3,所以复数x+y i的模为42+(-3)2=5.【答案】 D4.(2014·广东高考)已知复数z满足(3-4i)z=25,则z=()A.-3-4i B.-3+4iC.3-4i D.3+4i【解析】由(3-4i)z=25,得z=253-4i=25(3+4i)(3-4i)(3+4i)=3+4i,故选D.【答案】 D5.(2016·天津高二检测)“m=1”是“复数z=(1+m i)(1+i)(m∈R,i为虚数单位)为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】z=(1+m i)(1+i)=1+i+m i-m=(1-m)+(1+m)i,若m=1,则z=2i为纯虚数;若z为纯虚数,则m=1.故选C.【答案】 C6.设z∈C,若z2为纯虚数,则z在复平面上的对应点落在()【导学号:19220054】A.实轴上B.虚轴上C.直线y=±x(x≠0)上D.以上都不对【解析】设z=a+b i(a,b∈R),∵z2=a2-b2+2ab i为纯虚数,∴{a2-b2=0,ab≠0.∴a=±b,即z在复平面上的对应点在直线y=±x(x≠0)上.【答案】 C7.设复数z满足1-z1+z=i,则|1+z|=()A.0 B.1 C. 2 D.2【解析】∵1-z1+z=i,∴z=1-i1+i=(1-i)2(1+i)(1-i)=-i,∴|z+1|=|1-i|= 2. 【答案】 C8.设i 是虚数单位,z 是复数z 的共轭复数,若z ·z i +2=2z ,则z =( ) A .1+i B .1-i C .-1+iD .-1-i【解析】 设z =a +b i(a ,b ∈R ),由z ·z i +2=2z ,得(a +b i)(a -b i)i +2=2(a +b i),即(a 2+b 2)i +2=2a +2b i ,由复数相等的条件得{ a 2+b 2=2b ,2=2a ,得{ a =1,b =1,∴z =1+i.【答案】 A9.若z =cos θ+isin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B.π4 C.π3D.π2【解析】 z 2=(cos θ+isin θ)2=(cos 2θ-sin 2θ)+2isin θcos θ=cos 2θ+isin 2θ=-1,∴{ sin 2θ=0,cos 2θ=-1,∴2θ=2k π+π(k ∈Z ),∴θ=k π+π2(k ∈Z ),令k =0知选D. 【答案】 D 10.当z =-1-i2时,z 100+z 50+1的值是( ) A .1 B .-1 C .iD .-i【解析】 原式=⎝ ⎛⎭⎪⎫-1-i 2100+⎝ ⎛⎭⎪⎫-1-i 250+1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-i 2250+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-i 2225+1=(-i)50+(-i)25+1=-i.故应选D.【答案】 D11.在复平面上,正方形OBCA 的三个顶点A ,B ,O 对应的复数分别为1+2i ,-2+i,0,则这个正方形的第四个顶点C 对应的复数是( )A .3+iB .3-iC .1-3iD .-1+3i【解析】 ∵正方形的三个顶点的坐标分别是A (1,2),B (-2,1),O (0,0), ∴设第四个顶点C 的坐标为(x ,y ), 则BC →=OA →,∴(x +2,y -1)=(1,2). ∴{ x +2=1,y -1=2, ∴{ x =-1,y =3,∴第四个顶点C 的坐标为(-1,3). 【答案】 D12.复数z =(x -2)+y i(x ,y ∈R )在复平面内对应向量的模为2,则|z +2|的最大值为( )A .2B .4C .6D .8【解析】 由于|z |=2,所以(x -2)2+y 2=2,即(x -2)2+y 2=4,故点(x ,y )在以(2,0)为圆心,2为半径的圆上,而|z +2|=|x +y i|=x 2+y 2,它表示点(x ,y )与原点的距离,结合图形易知|z +2|的最大值为4,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上.)13.(2015·天津高考)i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.【解析】 由(1-2i)(a +i)=(a +2)+(1-2a )i 是纯虚数可得a +2=0,1-2a ≠0,解得a =-2.【答案】 -214.复数z 1=⎝⎛⎭⎪⎫1-i 1+i 2,z 2=2-i 3分别对应复平面内的点P ,Q ,则向量PQ →对应的复数是________.【解析】 ∵z 1=⎝⎛⎭⎪⎫1-i 1+i 2=-1,z 2=2-i 3=2+i ,∴P (-1,0),Q (2,1),∴PQ →=(3,1),即PQ →对应的复数为3+i. 【答案】 3+i 15.定义运算||a bc d =ad -bc ,则对复数z =x +y i(x ,y ∈R )符合条件||z 1z 2i =3+2i 的复数z 等于_________________________________.【导学号:19220055】【解析】 由定义运算,得||z 1z 2i =2z i -z =3+2i ,则z =3+2i-1+2i=(3+2i )(-1-2i )(-1+2i )(-1-2i )=15-85i.【答案】 15-85i16.复数z =(a -2)+(a +1)i ,a ∈R 对应的点位于第二象限,则|z |的取值范围是________.【解析】 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以{ a -2<0,a +1>0,解得-1<a <2.由条件得|z |=(a -2)2+(a +1)2 =2a 2-2a +5 =2⎝ ⎛⎭⎪⎫a 2-a +14+92 =2⎝ ⎛⎭⎪⎫a -122+92, 因为-1<a <2,所以|z |∈⎣⎢⎡⎭⎪⎫322,3.【答案】 ⎣⎢⎡⎭⎪⎫322,3三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知复数x 2+x -2+(x 2-3x +2)i(x ∈R )是4-20i 的共轭复数,求实数x 的值.【解】∵复数4-20i的共轭复数为4+20i,∴x2+x-2+(x2-3x+2)i=4+20i,∴{x2+x-2=4,x2-3x+2=20,∴x=-3.18.(本小题满分12分)已知复数z=(2+i)m2-6m1-i-2(1-i),当实数m取什么值时,复数z是:(1)虚数;(2)纯虚数.【解】z=(2+i)m2-3m(1+i)-2(1-i)=(2m2-3m-2)+(m2-3m+2)i,(1)当m2-3m+2≠0,即m≠2且m≠1时,z为虚数.(2)当{2m2-3m-2=0,m2-3m+2≠0,即m=-12时,z为纯虚数.19.(本小题满分12分)设复数z=(1+i)2+3(1-i)2+i,若z2+az+b=1+i,求实数a,b的值.【解】z=(1+i)2+3(1-i)2+i=2i+3(1-i)2+i=3-i2+i=(3-i)(2-i)(2+i)(2-i)=1-i.将z=1-i代入z2+az+b=1+i,得(1-i)2+a(1-i)+b=1+i,(a+b)-(a+2)i=1+i,所以{a+b=1,-(a+2)=1.所以{a=-3,b=4.20.(本小题满分12分)已知等腰梯形OABC的顶点A,B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.【解】设z=x+y i,x,y∈R,因为OA∥BC,|OC|=|BA|,所以k OA=k BC,|z C|=|z B-z A|,即⎩⎪⎨⎪⎧21=y -6x +2,x 2+y 2=32+42, 解得{ x 1=-5,y 1=0或{ x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.21.(本小题满分12分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平面内对应的点分别为A ,B ,C ,求△ABC 的面积. 【解】 (1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2ab i , ∴2ab =2.∴a =b =1或a =b =-1,即z =1+i 或z =-1-i. (2)当z =1+i 时,z 2=(1+i)2=2i ,z -z 2=1-i. ∴点A (1,1),B (0,2),C (1,-1), ∴S △ABC =12|AC |×1=12×2×1=1.当z =-1-i 时,z 2=(-1-i)2=2i ,z -z 2=-1-3i. ∴点A (-1,-1),B (0,2),C (-1,-3), ∴S △ABC =12|AC |×1=12×2×1=1. 即△ABC 的面积为1.22.(本小题满分12分)已知关于x 的方程:x 2-(6+i)x +9+a i =0(a ∈R )有实数根b .(1)求实数a ,b 的值;(2)若复数z 满足|z -a -b i|-2|z |=0,求z 为何值时,|z |有最小值,并求出|z |的值.【导学号:19220056】【解】 (1)∵b 是方程x 2-(6+i)x +9+a i =0(a ∈R )的实根, ∴(b 2-6b +9)+(a -b )i =0,∴{b2-6b+9=0,a=b,解得a=b=3.(2)设z=x+y i(x,y∈R),由|z-3-3i|=2|z|,得(x-3)2+(y+3)2=4(x2+y2),即(x+1)2+(y-1)2=8,∴复数z对应的点Z的轨迹是以O1(-1,1)为圆心,22为半径的圆,如图所示.当点Z在OO1的连线上时,|z|有最大值或最小值,∵|OO1|=2,半径r=22,∴当z=1-i时,|z|有最小值且|z|min= 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 1=2+i ,z 2=1+i ,则z 1z 2在复平面内对应的点位于( )A .第一象限B .第三象限C .第二象限D .第四象限解析:选D z 1z 2=2+i 1+i =32-i2,对应点⎝⎛⎭⎫32,-12在第四象限. 2.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列11×2,12×3,13×4,…的通项公式为a n =1n (n +1)(n ∈N +) C .半径为r 的圆的面积S =πr 2,则单位圆的面积S =πD .由平面直角坐标系中圆的方程为(x -a )2+(y -b )2=r 2,推测空间直角坐标系中球的方程为(x -a )2+(y -b )2+(z -c )2=r 2解析:选C 由演绎推理的概念可知C 正确.3.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选B ∵ab =0,∴a =0或b =0.由复数a +bi =a -b i 为纯虚数,得a =0且b ≠0.∴“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.4.下列说法正确的有( ) ①回归方程适用于一切样本和总体. ②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围. ④回归方程得到的预报值是预报变量的精确值. A .①② B .②③ C .③④ D .①③解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.5.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=( )A .192B .202C .212D .222解析:选C 归纳得13+23+33+43+53+63=()1+2+…+62=212.6.定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+i D .1-3i解析:选A 由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,即z =4+2i 1+i =3-i. 7.(重庆高考)执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5,故选C.8.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y ^=7.19x +73.93,用此方程预测儿子10岁的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右解析:选D 用线性回归方程预测的不是精确值,而估计值,当x =10时,y =145.83,故身高在145.83 cm 左右.9.执行如图所示的程序框图,若输出的i 的值为2,则输入的x 的最大值是( )A .8B .11C .12D .22解析:选D分析该程序框图可知⎩⎨⎧x2-1>3,12⎝⎛⎭⎫x2-1-2≤3.解得⎩⎨⎧x >8,x ≤22.即8<x ≤22,所以输入的x 的最大值是22,故选D.10.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 017的末四位数字为( ) A .3 125 B .5 625 C .0 625 D .8 125解析:选A ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4. 记5n (n ∈Z ,且n ≥5)的末四位数为f (n ),则f (2 017)=f (503×4+5)=f (5), ∴52 017与55的末四位数相同,均为3 125.11.某程序框图如图所示,若该程序输出的结果是163,则判断框内可填入的条件是( )A .i <4?B .i >4?C .i <5?D .i >5?解析:选C 依题意知,初始值i =1,T =0,P =15,第一次循环:i =2,T =1,P =5;第二次循环:i =3,T =2,P =1;第三次循环:i =4,T =3,P =17;第四次循环:i =5,T=4,P =163.因此循环次数应为4,故“i <5?”可以作为判断框内的条件,故选C.12.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为6,据此模型预测气温为30 ℃时销售饮料瓶数为( )A .141B .191C .211D .241解析:选B 由题意,x =-1+3+8+12+175=7.8,y =3+40+52+72+1225=57.8,因为回归方程y ^=b ^x +a ^中的b ^为6,所以57.8=6×7.8+a ^,所以a ^=11,所以y ^=6x +11,所以x =30时,y ^=6×30+11=191,故选B.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.设z =(2-i)2(i 为虚数单位),则复数z 的模为______. 解析:z =(2-i)2=3-4i ,所以|z |=|3-4i|=32+(-4)2=5. 答案:514.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如表根据列联表数据,求得K 2≈__________.解析:由计算公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2≈7.469. 答案:7.46915.(山东高考)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.解析:第一次循环:S =2-1,1<3,i =2; 第二次循环:S =3-1,2<3,i =3; 第三次循环:S =4-1=1,3≥3,输出S =1. 答案:116.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.下图中实心点的个数5,9,14,20,…,被称为梯形数.根据图形的构成,记第2 016个梯形数为a 2 016,则a 2 016=________.解析:5=2+3=a 1,9=2+3+4=a 2,14=2+3+4+5=a 3,…,a n =2+3+…+(n +2)=(n +1)(2+n +2)2=12×(n +1)(n +4),由此可得a 2 016=2+3+4+…+2 018=12×2 017×2020=2 017×1 010.答案:2 017×1 010三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a >b >c ,求证:1a -b +1b -c ≥4a -c.证明:已知a >b >c ,因为a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -bb -c ≥2+2b -c a -b ·a -bb -c=4, 所以a -ca -b +a -c b -c ≥4,即1a -b +1b -c ≥4a -c .18.(本小题满分12分)已知复数z 1=2-3i ,z 2=15-5i (2+i )2.求:(1)z 1z 2;(2)z 1z 2. 解:因为z 2=15-5i (2+i )2=15-5i 3+4i =(15-5i )(3-4i )(3+4i )(3-4i )=25-75i25=1-3i ,所以(1)z 1z 2=(2-3i)(1-3i)=-7-9i.(2)z 1z 2=2-3i 1-3i =(2-3i )(1+3i )(1-3i )(1+3i )=11+3i 10=1110+310i. 19.(本小题满分12分)小流域综合治理可以有3个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土;生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种、地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.试画出小流域综合治理开发模式的结构图.解:根据题意,3个措施为结构图的第一层,每个措施中具体的实现方式为结构图的第二层,每个措施实施所要达到的治理功能为结构图的第三层,各类功能所体现的具体内容为结构图的第四层.小流域综合治理开发模式的结构图如图所示.20.(本小题满分12分)某商品在销售过程中投入的销售时间x 与销售额y 的统计数据如下表:用线性回归分析的方法预测该商品6月份的销售额.(参考公式: b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2,a ^=y --b ^x -,其中x -,y -表示样本平均值) 解:由已知数据可得x -=1+2+3+4+55=3,y -=0.4+0.5+0.6+0.6+0.45=0.5,所以∑5i =1(x i -x -)(y i -y -)=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,∑5i =1(x i -x -)2=(-2)2+(-1)2+02+12+22=10,于是b =0.01,a =y --b x -=0.47.故y ^=0.01x +0.47令x =6,得y ^=0.53.即该商品6月份的销售额约为0.53万元.21.(本小题满分12分)先解答(1),再通过结构类比解答(2): (1)求证:tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ;(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x 1-tan x, 即tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),所以f (x +4a )=f [(x +2a )+2a ] =-1f (x +2a )=f (x ).所以f (x )是以4a 为周期的周期函数.22.(本小题满分12分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,并问能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)K 2的观测值k =1 000×(360×180-320×140)500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.。

相关文档
最新文档