2019-2020学年湖北省武汉市东西湖区九年级上学期期末数学试卷 (解析版)

合集下载

2019-2020学年湖北省度九年级上册期末数学试题(有答案)【精校本】

2019-2020学年湖北省度九年级上册期末数学试题(有答案)【精校本】

2019-2020学年度上学期期末考试九年级数学试题希望你带着轻松.带着自信来解答下面的题目,同时尽情展示自己的才能。

答题时,请记住细心、一.选择题(本大题共10小题,每小题3分,满分30分)每小题有四个选择支,其中只有一个符合题意,请将序号填在题后的括号中 1. 一元二次方程022=--x x 的解是()A.11=x ,22=xB.11=x ,22-=xC. 11-=x ,22-=xD. 11-=x ,22=x2. 如图,在△ABC 中,∠C=90°,AB=5 ,BC=3,则tanB 的值是()A.43 B.34 C.53 D.543.关于x 的一元二次方程032=+-m x x 有两个不相等的实数根,则实数m 的取值范围为()A. m >49B. m <49C. m 49= D. m <494.已知一个正棱柱的俯视图和左视图如图所示,则其主视图为()5.如图,将Rt △ABC 绕点A 按顺时针方向旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上,若AC 3=,∠B=60°,则CD 的长为()A.0.5B.1.5C.2D.16.下列说法中正确的是()A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.000 1的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 7.在反比例函数xk y 1-=的图象的每一条曲线上,y 随x 的增大而减小,则k 的取值范围是() A. k >1 B.k >0 C. k ≥1 D. k <18.把抛物线22x y -=先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.2)1(22++-=x y B.2)1(22-+-=x y C.2)1(22+--=x y D.2)1(22---=x y9.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为() A.30πcm 2 B.48πcm 2 C.60πcm 2 D.80πcm 210.弦AB ,CD 是⊙O 的两条平行弦,⊙O 的半径为5,AB=8,CD=6,则AB ,CD 之间的距离为()C.4或3D.7或1二.填空题(每题3分,共18分)11.如图是二次函数c bx ax y ++=2的部分图象,由图象可知不等式c bx ax ++2<0的解集是. 12.如图,四边形ABCD 中,AD ∥BC ,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA 的面积比为.13.如图,一天,我国一渔政船航行到A 处时,发现正东方向的我 领海区域B 处有一可疑渔船,正在以12海里/时的速度向西北 方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后, 在我航海区域的C 处截获可疑渔船.问我渔政船的航行路程是 海里(结果保留根号).14.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是. 15.如图,直线mx y =与双曲线xky =相交于A ,B 两点,A 点的坐标为(1,2),当mx >x k 时,x 的取值范围为.16.如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D.AD 与BC 相交于点F ,连结BE ,DC ,已知EF=2,CD=5,则AD=.三.解答下列各题(本大题共9题,满分72分)17.(本题满分6分)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?18.(本题满分6分)小明、小林是实验中学九年级的同班同学.今年他俩都被枣阳一中录取,因成绩优异将被随机编入A 、B 、C 三个奥赛班,他俩希望能再次成为同班同学.请你用画树状图法或列表法求两人再次成为同班同学的概率.19.(本题满分6分)如图,⊙O 的直径AB 为10cm,弦AC 为6cm ,∠ACB 的平分线交⊙O 于点D,求BC ,AD ,BD 的长.15题图16题图20.(本题满分6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线xky =的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18℃的时间有多少小时? (2)求k 的值;(3)当=x 16时,大棚内的温度约为多少℃?21.(本题满分7分)如图,在△ACD 中,已知∠ACD=120°,将△ACD 绕点C 逆时针方向旋转得到△BCE ,并且使B ,C ,D 三点在一条直线上,AC 与BE 交于点M ,AD 与CE 交于点N ,连接AB ,DE .求证:CM=CN .22.(本题满分8分)如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F.(1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD 32=,BF=2,求阴影部分的面积(结果保留π).23.(本题满分10分)我市某初中九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量D(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本题满分10分)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE , PE 交边BC 于点F .连接BE 、DF. (1)求证:∠ADP=∠EPB ; (2)求∠CBE 的度数;(3)当ABAP的值等于多少时.△PFD ∽△BFP ?并说明理由.25.(本题13分)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC 、OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y =ax 2+bx +c 经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式; (2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.2019-2020学年度上学期九年级数学期末测试题答案一.选择题二.11.x <-1或x >512.4∶9 13.218 14.10 15.-1<x <0或x >1 16.325 三.解答题17.解:设应邀请x 个队参赛。

2020-2021学年武汉市东西湖区九年级上学期期末数学试卷(含答案解析)

2020-2021学年武汉市东西湖区九年级上学期期末数学试卷(含答案解析)

2020-2021学年武汉市东西湖区九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列长度的三条线段能组成三角形的是()A. 3,4,5B. 5,6,11C. 3,4,8D. 4,4,102.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A. 75°B. 90°C. 105°D. 120°3.下列交通图形中不是轴对称图形的是()A. B. C. D.4.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A. 14B. 10C. 14或10D. 以上都不对5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带().A. 第4块B. 第3块C. 第2块D. 第1块6.机器人在一平面上从点A处出发开始运动,规定“向前走1米再向左转60°”为1次运动,则运动2012次后机器人距离出发点A的距离为()A. 0米B. 1米C. √3米D. 2米7.点A(−2,1)关于x轴的对称点是()A. (−1,2)B. (−2,−1)C. (2,−1)D. (2,1)8.如图,AB//CD,点E在线段BC上,CD=CE,若∠D=70°,则∠B等于()A. 70°B. 30°C. 40°D. 20°9.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.其中正确的有()A. 0个B. 1个C. 2个D. 3个10.在三角形内部,到三角形三边距离相等的点是()A. 三条中线的交点B. 三条高线交点C. 三边垂直平分线交点D. 三个内角平分线交点二、填空题(本大题共6小题,共18.0分)11.从八边形的一个顶点出发可以引______ 条对角线,八边形的对角线有______ 条,八边形的内角和为______ .12.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有______对.13.在△ABC中,若∠B=∠C=2∠A,则∠C的度数为______.14.如图,△ACB和△DCE都是等腰直角三角形,若∠ACB=∠DCE=90°,AC=2,CE=3,则AD2+BE2=______ .15.如图,△ABC三边各不相等,PM⊥AB,PN⊥AC,垂足分别为M、N,且PM=PN,Q在AC上,QP=QA,下列结论:①AP是∠BAC的角平分线,②AM=AN,③QP//AM,④BP=CP,其中正确的是______.16.腰长为12cm,底角为15°的等腰三角形的面积为_______ 。

湖北省武汉市部分学校2019-2020学年度上学期九年级数学期末模拟试题含答案解析

湖北省武汉市部分学校2019-2020学年度上学期九年级数学期末模拟试题含答案解析

湖北省武汉市部分学校2019-2020学年度上学期九年级数学期末模拟试题含答案解析一.选择题(共10小题)1.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.02.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°4.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)5.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4 C.k<﹣1 D.k<46.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=4cm,若以点C为圆心,以2cm为半径作⊙C,则AB与⊙C的位置关系是()A.相离B.相切C.相交D.相切或相交7.将抛物线y=2x2向左平移2个单位后所得到的抛物线为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)2 8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③9.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是()A.150°B.120°C.105°D.75°10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二.填空题(共6小题)11.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是.12.如图,已知电流在一定时间段内正常通过电子元件“”的概率是,在一定时间段内,A,B之间电流能够正常通过的概率为.13.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为.14.已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.16.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为.三.解答题(共8小题)17.解方程:x2﹣2x﹣3=0.18.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.19.武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).20.如图,在平面直角坐标系中有点A(1,5)、B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为,C点的坐标为;(3)若C为直线y=x上的动点,则P点横、纵坐标之间的关系为.21.如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线;(2)点F是弧AC的中点,求EF的长.22.武汉市江夏区计划2019年3月举办风筝节,小孟决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)直接写出蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30).(2)小孟为了让利给顾客,并获得840元利润,售价应定位多少?(3)当售价定位多少时,小孟获得利润最大,最大利润是多少?23.如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.24.已知抛物线y=ax2﹣3amx﹣4am2(a>0,m>0)与x轴交于A、B两点(A在B左边),与y轴交于C点,顶点为P,OC=2AO.(1)求a与m满足的关系式;(2)直线AD∥BC,与抛物线交于另一点D,△ADP的面积为,求a的值;(3)在(2)的条件下,过(1,﹣1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.参考答案与试题解析一.选择题(共10小题)1.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.0 【分析】根据一元二次方程的定义即可求出答案.【解答】解:一次项系数为﹣1,故选:A.2.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360°是不可能事件,故选:C.4.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(﹣3,5),故选:B.5.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4 C.k<﹣1 D.k<4【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选:A.6.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=4cm,若以点C为圆心,以2cm为半径作⊙C,则AB与⊙C的位置关系是()A.相离B.相切C.相交D.相切或相交【分析】过C作CD⊥AB于D,根据含30°角的直角三角形性质求出AC、AD,根据勾股定理求出CD,再根据直线和圆的位置关系得出即可.【解答】解:过C作CD⊥AB于D,则∠ADC=∠BDC=90°,∵Rt△ABC中,∠C=90°,∠B=30°,AB=4cm,∴AC=AB=2cm,∠A=60°,∴∠ACD=30°,∴AD=AC=1cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,12+CD2=22,解得:CD=,∵以点C为圆心,以2cm为半径作⊙C,∴此时AB与⊙C的位置关系是相交,故选:C.7.将抛物线y=2x2向左平移2个单位后所得到的抛物线为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)2【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2向左平移2个单位,所得抛物线的解析式为:y=2(x+2)2.故选:D.8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.9.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是()A.150°B.120°C.105°D.75°【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=15°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选:C.10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.二.填空题(共6小题)11.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是 2 .【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,再用这个数代替未知数所得式子仍然成立.【解答】解:把x=﹣1代入方程可得1﹣m+1=0,∴m=2.故答案为:2.12.如图,已知电流在一定时间段内正常通过电子元件“”的概率是,在一定时间段内,A,B之间电流能够正常通过的概率为.【分析】根据题意,某一个电子元件不正常工作的概率为,可得两个元件同时不正常工作的概率为,进而由概率的意义可得一定时间段内AB之间电流能够正常通过的概率.【解答】解:根据题意,电流在一定时间段内正常通过电子元件的概率是0.5,即某一个电子元件不正常工作的概率为,则两个元件同时不正常工作的概率为;故在一定时间段内AB之间电流能够正常通过的概率为1﹣=;故答案为:.13.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为(x﹣1)x=2256 .【分析】根据题意得:每人要写(x﹣1)条毕业感言,有x个人,然后根据题意可列出方程.【解答】解:根据题意得:每人要写(x﹣1)条毕业感言,有x个人,∴全班共写:(x﹣1)x=2256,故选:(x﹣1)x=2256.14.已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为120°.【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=,解得n=120°.故答案为:120°.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是2﹣.【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON =FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【解答】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.16.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为2+2.【分析】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.证明EJ是定值,可得点E的运动轨迹是以J为圆心,EJ为半径的圆,由此即可解决问题.【解答】解:如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF 的中点J,连接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=4,∵四边形BCDA是平行四边形,∴AE=EC,∵AJ=JF,∴EJ=CF=2,∴点E的运动轨迹是以J为圆心,EJ为半径的圆,易知OJ=2当点E在OJ的延长线上时,OE的值最大,最大值为OJ+JE=2+2,故答案为2+2.三.解答题(共8小题)17.解方程:x2﹣2x﹣3=0.【分析】通过观察方程形式,本题可用因式分解法进行解答.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.18.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为50°,∠A的度数为25°;(2)求证:∠ADC=2∠DAB.【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【解答】(1)解:连接OD.∵=,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案为50°,25°.(2)证明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.19.武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).【分析】(1)先画出树状图,得出所有等情况数和小孟、小柯都参加实验A考查的情况数,再根据概率公式即可得出答案;(2)根据每人都有2种选法,得出共有8种等情况数,他们三人中至少有两人参加实验B的有4种,再根据概率公式即可得出答案.【解答】解:(1)画树状图如图所示:∵两人的参加实验考查共有四种等可能结果,而两人均参加实验A考查有1种,∴小孟、小柯都参加实验A考查的概率为.(2)共有8种等情况数,他们三人中至少有两人参加实验B的有4种,所以他们三人中至少有两人参加实验B的概率是=.故答案为:.20.如图,在平面直角坐标系中有点A(1,5)、B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为(4,4),C点的坐标为(3,1);(3)若C为直线y=x上的动点,则P点横、纵坐标之间的关系为y=2x﹣4 .【分析】(1)根据要求画出线段CD即可.(2)根据题意画出图形即可解决问题.(3)因为点C的运动轨迹是直线y=13x,所以点P的运动轨迹也是直线,取特殊点解决问题即可.【解答】解:(1)如图1中,线段CD即为所求.(2)如图2中,观察图象可知P(4,4),C(3,1)故答案为(4,4),(3,1),(3)如图3中,因为点C的运动轨迹是直线y=x,所以点P的运动轨迹也是直线,当C(3,1)时,P(4,4),当C(0,0)时,P′((3,2),设直线PP′的解析式为y=kx+b,则有,解得,∴P点横、纵坐标之间的关系为y=2x﹣4,故答案为y=2x﹣4.21.如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线;(2)点F是弧AC的中点,求EF的长.【分析】(1)连接OE,根据垂径定理求出OE⊥BC,推出OE⊥DE,根据切线判定推出即可;(2)根据勾股定理求得AM,然后利用相交弦定理求得直径AE.得出半径OA=OF=,根据勾股定理求得AF,再利用勾股定理即可求得EF.【解答】(1)证明:连接OE交BC于M,∵E为弧BC中点,∴由垂径定理得:OE⊥BC,∵DE∥BC,∴OE⊥DE,∵OE为半径,∴DE是⊙O切线.(2)连接AF,OF交AC于N,∵AB=AC=10,∴A在BC的垂直平分线上,∵OE⊥BC,∴BM=CM=6,∴A、O、E三点共线,∴AE是⊙O的直径,∴∠AFE=90°,∵点F是弧AC的中点,∴OF⊥AC,AN=CN=5,在 Rt△ABM中,AB=10,BM=6,∴AM==8,∵BM•CM=ME•AM,∴ME===,∴AE=8+4.5=12.5,∴OA=OF=,∴ON==,∴FN=OF﹣ON=﹣=,在Rt△AEF中,AF2=AN2+FN2=,∴EF==5.22.武汉市江夏区计划2019年3月举办风筝节,小孟决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)直接写出蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30).(2)小孟为了让利给顾客,并获得840元利润,售价应定位多少?(3)当售价定位多少时,小孟获得利润最大,最大利润是多少?【分析】(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设小孟获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x 的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=﹣10(x﹣20)2+1000,根据二次函数的性质即可解决最值问题.【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设小孟获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:小孟为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.23.如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为2,BE2+CD2与AD2的数量关系为BE2+CD2=4AD2;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为2.【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE ≌△BDA,利用勾股定理可得结论;(2)将△ACD绕点A顺时针旋转120°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(2)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【解答】解:(1)如图1,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=2∴BE2+CD2=BE2+DE2=BD2∵=cos∠ADB=cos60°=∴BD=2AD∴BE2+CD2=4AD2;故答案为:2;BE2+CD2=4AD2;(2)能满足(1)中的结论.如图2,将△ACD绕点A顺时针旋转120°得到△ABD′,使AC与AB重合,∵∠DAD′=120°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE =∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,A、E、B、D′四点共圆;∴∠D′BE=90°∴BE2+BD′2=D′E2∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=2AD′=2AD∴BE2+BD′2=(2AD)2=4AD2∴BE2+CD2=4AD2.(3)由(2)知:经过B、E、D三点的圆必定经过D′、A,且该圆以D′E为直径,该圆最小即D′E最小,∵D′E=2AD∴当AD最小时,经过B、E、D三点的圆最小,此时,AD⊥BC如图3,过A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB•cos∠ABC=2cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=2由(2)知:在D运动过程中,∠CBE=30°,∴点D运动路径是线段;当点D位于D1时,由(2)中结论得:=4﹣=3,∴BE1=当点D运动到M时,易求得:BE2=∴E点经过的路径长=BE1+BE2=2故答案为:2.24.已知抛物线y=ax2﹣3amx﹣4am2(a>0,m>0)与x轴交于A、B两点(A在B左边),与y轴交于C点,顶点为P,OC=2AO.(1)求a与m满足的关系式;(2)直线AD∥BC,与抛物线交于另一点D,△ADP的面积为,求a的值;(3)在(2)的条件下,过(1,﹣1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.【分析】(1)在y=ax2﹣3amx﹣4am2中,令x=0,可求出点C的坐标,令y=0时,可求出点A,B的坐标,利用OC=2AO可列等式求出a与m的关系式;(2)用含a或m的代数式求出直线BC的解析式,直线AD的解析式,表示出D,A的坐标,求出抛物线顶点坐标,利用S△ADP=PE•(x D﹣x A)可求出m的值及a的值;(3)可设抛物线解析式为为y=x2+cx+d,设M(x1,y1),N(x2,y2),过点M的切线解析式为y=k(x﹣x1)+y1,将抛物线与切线的解析式联立,由只有一个公共点可求出k 的值,得到M,N的坐标满足y M=(c+2x)(x M﹣x)+y=cx M+(2x M﹣c)x﹣2x2+y,将(1,﹣1)代入,推出G为直线y=x﹣上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【解答】解:(1)在抛物线y=ax2﹣3amx﹣4am2中,当x=0时,y=﹣4am2,∴C(0,﹣4am2),当y=0时,x1=4m,x2=﹣m,∴A(﹣m,0),B(4m,0),∵OC=2OA,∴4am2=2m,∴a=;(2)∵a=,∴C(0,﹣2m),设BC的解析式为y=kx﹣2m,将点B(4m,0)代入,得,k=,∴y BC=x﹣2m,∵AD∥BC,∴设直线AD的解析式为y AD=x+b,将点A(﹣m,0)代入,得,b=,∴直线AD的解析式为y AD=x+,直线AD与抛物线联立,得x+=x2﹣x﹣2m,解得,m1=﹣m,m2=5m,∴D(5m,3m),∵y=ax2﹣3amx﹣4am2=x2﹣x﹣2m=(x﹣m)2﹣m,∴顶点P(m,﹣m),如图1,过点P作x轴的垂线,交AD于点E,则E(m,m),∴PE=m﹣(﹣m)=m,∴S△ADP=PE•(x D﹣x A)=×m×6m=,解得,m=(取正值),∴a==1;(3)在(2)的条件下,可设抛物线的解析式为y=x2+cx+d,设M(x1,y1),N(x2,y2),过点M的切线解析式为y=k(x﹣x1)+y1,将抛物线与切线的解析式联立,得x2+cx+d=k(x﹣x1)+y1,整理,得x2+(c﹣k)x+(d+kx1﹣y1)=0,∵y1=x12+cx+d,∴方程可整理为x2+(c﹣k)x﹣x12﹣(c+k)x1=0,∵只有一个交点,∴D=(c﹣k)2+4x12+4(c+k)x1=0,整理,得k2﹣(2c+4x1)k+(c+2x1)2=0,即(k﹣c﹣2x1)2=0,∴k=c+2x1,∴过M的切线为y=(c+2x1)(x﹣x1)+y1,同理可得过N的切线为y=(c+2x2)(x﹣x2)+y2,∴M,N的坐标满足y M=(c+2x)(x M﹣x)+y=cx M+(2x M﹣c)x﹣2x2+y,将x2=y﹣cx﹣d代入整理,得y=(c+2x M)x+cx M﹣y M+2d,将(1,﹣1)代入,得﹣1=(c+2x M)+cx M﹣y M+2d,在(2)的条件下,抛物线解析式为y=x2﹣x﹣1,即c=﹣,d=﹣1,∴﹣1=(﹣+2x M)﹣x M﹣y M﹣2,整理,得y M=x M﹣,∴G点坐标满足y=x﹣,即点G为直线y=x﹣上的一点,当OG垂直于直线y=x﹣时,OG最小,如图2所示,直线y=x﹣与x轴交点H(5,0),与y轴交点F(0,﹣),∴OH=5,OF=,FH==,∵OF•OH=FH•OG,∴OG=,∴OG的最小值为.。

2019学年湖北武汉部分学校九年级上期末数学试卷【含答案及解析】

2019学年湖北武汉部分学校九年级上期末数学试卷【含答案及解析】

2019学年湖北武汉部分学校九年级上期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在数1、2、3和4中,是方程+x﹣12=0的根的为().A.1 B.2 C.3 D.42. 桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则(). A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D.从中随机抽取7张,可能都是红桃3. 抛物线y=的顶点坐标是().A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)4. 在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为().A.10 B.6 C.5 D.45. 在平面直角坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为().A.点A和点B B.点B和点C C.点C和点D D.点D和点A6. 方程﹣8x+17=0的根的情况是().A.两实数根的和为﹣8B.两实数根的积为17C.有两个相等的实数根D.没有实数根7. 抛物线y=向右平移2个单位得到的抛物线的解析式为().A.y=B.y=C.y=+2D.y=﹣28. 由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为().A.4π B.9π C.16π D.25π9. 在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:10. M号衬衫数0145791011包数7310155433td11. 在抛物线y=﹣2ax﹣3a上有A(﹣0.5,)、B(2,)和C(3,)三点,若抛物线与y轴的交点在正半轴上,则、和y3的大小关系为().A.<<B.<<C.<<D.<<二、填空题12. 掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为.13. 如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.14. 两年前生产1t药品的成本是6000元,现在生产1t药品的成本是4860元,则药品成本的年平均下降率是.15. 圆心角为75°的扇形的弧长是2.5π,则扇形的半径为.16. 如图,正三角形的边长为12cm,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为 cm.17. 在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题18. 解方程:﹣5x+3=0.19. 如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC,(1)求证:∠ACB=2∠BAC;(2)若AC平分∠OAB,求∠AOC的度数.20. 如图,要设计一副宽20cm、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm?21. 阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.四、计算题22. 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D 与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.五、解答题23. 某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:24. 产销商品件数(x/件)102030产销成本(C/元)120180260td25. 如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0)、B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A、B和O的对应点分别为点O、C和D,(1)画出△OCD,并写出点C和点D的坐标;(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°,①若点M在x轴上,则点M的坐标为;②若△ACM为直角三角形,求点M的坐标;(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由).26. 已知抛物线y=+mx﹣2m﹣2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,(1)当m=1时,求点A和点B的坐标;(2)抛物线上有一点D(﹣1,n),若△ACD的面积为5,求m的值;(3)P为抛物线上A、B之间一点(不包括A、B),PM⊥x轴于点M,求的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019-2020学年湖北省武汉市九年级(上)期末数学试卷(解析版)

2019-2020学年湖北省武汉市九年级(上)期末数学试卷(解析版)

2019-2020学年湖北省武汉市部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1 D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0 B.1 C.2 D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△PAD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B 两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1 ∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时FA=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠PAD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△PAD中,S△PAD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。

武汉市2019-2020年度九年级上学期期末数学试题(II)卷

武汉市2019-2020年度九年级上学期期末数学试题(II)卷

武汉市2019-2020年度九年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 等边三角形的边心距为,则该等边三角形的边长是()A.3B.6C.2D.22 . 函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点A. PD⊥y轴于点D,交y=的图象于点B..下面结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP. 其中正确结论是A.①②③B.①②④C.①③④D.②③④3 . 下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)4 . 有一座圆弧形的拱桥,桥下水平宽,拱顶高出水平面,现有一货船,送一箱货欲从桥下经过,已知货箱(货箱底与水平面持平)宽,至多能截()的货.A.B.C.D.5 . 对于二次函数的图象,给出下列结论:①开口向上;②对称轴是直线;③顶点坐标是;④时,随的增大而增大;⑤函数有最大值,其中正确的结论有()A.2个B.3个C.4个D.5个6 . 如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②2a+b=0;③a+b+c>0;④当x>0.5时,y随x的增大而增大;⑤对于任意x均有ax2+bx≥a+b,正确的说法有()A.5个B.4个C.3个D.2个7 . 如图,在中,,点在上,且,则的值为()A.B.C.D.8 . 如图,与相似,且,则下列比例式中正确的是()A.B.C.D.9 . 在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率()A.B.C.D.10 . 已知如图,、切于、,切于,交于;若,则的周长是()A.B.C.D.二、填空题11 . 如图,在平面直角坐标系中,点A在抛物线y=3x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_______.12 . 如图,圆锥的底面半径为1cm,母线AB的长为3cm,则这个圆锥侧面展开图扇形的圆心角为_____度.13 . 有四张不透明的卡片4,,,,除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片记下数字,再在余下的三张卡片中再抽取一张,那么抽取的卡片都是无理数的概率为______.14 . 如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______15 . 如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点F、E,若CD=,BC=4,则CE的长度为_____.16 . 在⊙O中,AB是⊙O的直径,AB=8cm,,M是AB上一动点,CM+DM的最小值是____cm.17 . 在一个不透明的箱子里有四张外形相同的卡片・卡片上分别标有数字﹣1,1,3,5.摸出一张后,记下数字,再放回,摇匀后再摸出一张,记下数字.以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=﹣x+4上的概率是_____.18 . 在平面直角坐标系中,点在双曲线上,点关于轴的对称点在双曲线上,则的值为_________19 . 若抛物线开口向上,则的取值范围是__________.三、解答题20 . 解方程:(1)(x﹣1)2=3(x-1);(2)x2+2x﹣1=0(用配方法).21 . 新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C 的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.22 . 如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点A.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长.23 . 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求过O,B,E三点的二次函数关系式;(2)求直线DE的解析式和点M的坐标;(3)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.24 . 如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠A.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.25 . 如图,在▱ABCD中,对角线AC、BD相交成的锐角为60°,若AC=6,BD=8,求▱ABCD的面积.(,结果精确到0.1)26 . 已知:如图,在△ABC 中,D在边AB上.(1)若∠ACD =∠ABC ,求证:AC2 = AD· AB;(2)若E为CD 中点,∠ACD =∠ABE,AB = 3,AC=2,求BD的长.27 . 在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.28 . 传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)。

2019-2020学年九年级数学上学期期末原创卷A卷(湖北)(参考答案)

2019-2020学年九年级数学上学期期末原创卷A卷(湖北)(参考答案)

2019-2020学年上学期期末原创卷A 卷九年级数学·参考答案11.3- 12.(–5,–1) 13.22(2)3y x =-+14.3415.1216.8π3-17.【解析】(1)22410x x --=,2122x x -=, 212112x x -+=+,23(1)2x -=,(2分)12x -=±∴112x =+,21x =.(4分)(2)(1)220y y y -+-=,(1)2(1)0y y y -+-=, (1)(2)0y y -+=,(6分)10y -=或20y +=,∴11y =,22y =-.(8分)18.【解析】在△ABD 中,∠ABD =90°,∠BAD =18°,BA =10 m ,∵tan ∠BAD =BDBA, ∴BD =10×tan18°,∴CD =BD -BC =10×tan18°-0.5≈2.7(m ),(3分) 在△ABD 中,∠CDE =90°-∠BAD =72°, ∵CE ⊥ED ,∴sin ∠CDE =CECD, ∴CE =sin ∠CDE ×CD =sin72°×2.7≈2.6(m ),(6分) ∵2.6 m<2.7 m ,且CE ⊥AE , ∴小亮说的对.答:小亮说的对,CE 为2.6 m .(8分) 19.【解析】(1)∵ABC △是等边三角形,∴60BAC ∠=︒,AB AC =,因为线段AD 绕点A 顺时针旋转60︒得到线段AE , ∴60DAE ∠=︒,AE AD =,∴BAD EAB BAD DAC ∠+∠=∠+∠, ∴EAB DAC ∠=∠,(2分)在EAB △和DAC △中,AB ACEAB DAC AE AD =⎧⎪∠=∠⎨⎪=⎩,∴EAB DAC △≌△, ∴AEB ADC ∠=∠.(4分)(2)如图,∵60DAE ∠=︒,AE AD =,∴EAD △为等边三角形. ∴60AED ∠=︒,(6分) ∵115AEB ADC ∠=∠=︒, ∴55BED ∠=︒.(8分)20.【解析】(1)设袋中的黄球个数为x 个,由题意得21212x =++,(2分)解得:1x =,∴袋中黄球的个数1个.(4分)(2)列表如下:(6分)由表可知,共有12种等可能的结果,其中两次摸到球的颜色是红色与黄色的有4种:(红1,黄),(红2,黄),(黄,红1),(黄,红2), 所以两次摸到球的颜色是红色与黄色的概率为:41123=.(8分) 21.【解析】(1)设反比例函数的解析式为(0)ky k x=≠,正比例函数的解析式为y k x '=. ∵正比例函数和反比例函数的图象都经过点(21)M --,, ∴12k-=-,12k '-=-.(2分) ∴2k =,12k'=.∴正比例函数的解析式为12y x =,反比例函数的解析式为2y x=.(4分)(2)当点Q 在直线MO 上运动时,假设在直线MO 上存在这一的点1()2Q x x ,,使得OBQ △与OAP △面积相等,则1(0)2B x ,.∵OBQ OAP S S =△△,∴11121222x x ⋅⋅=⨯⨯,解得2x =±.(6分) 当2x =时,112x =.当2x =-时,112x =-.故在直线MO 上存在这样的点(21)Q ,或(21)--,,使得OBQ △与OAP △面积相等.(8分) 22.【解析】(1)∵PA ,PC 分别与O 相切于点A 、点C ,∴PA PC =,OPA EPD ∠=∠,90OAP ∠=︒, ∴90OPA AOP ∠+∠=︒, ∵DE PO ⊥, ∴90OED ∠=︒,∴90DOE EDO ∠+∠=︒, ∵AOP DOE ∠=∠, ∴OPA EDO ∠=∠, ∴EPD EDO ∠=∠.(3分)(2)∵6PA PC ==,90OAP ∠=︒,3tan 4PA PDA AD ∠==, ∴483AD PA ==,∴10PD ==,∴4DC PD PC =-=, ∵PD 是O 的切线,∴2DC DB AD =⨯,∴22428DC BD AD ===,∴6AB AD BD =-=,∴3OA =,5OD AD OA =-=,∴OP = ∵DE PO ⊥,∴90E OAP ∠=︒=∠, ∵DOE AOP ∠=∠, ∴ODE OPA △∽△, ∴OE ODOA OP=,即3OE =解得:OE =.(7分) (3)作FG AB ⊥于G ,如图,则FG PA ∥, ∵PA ,PC 分别与O 相切于点A 、点C ,∴AC OP ⊥, ∴90OFA ∠=︒,∵90OAP ∠=︒,AOF POA ∠=∠, ∴AOF POA △∽△,∴OF OAOA OP=,即3OF =,解得:OF =, ∵FG PA ∥, ∴OFG OPA △∽△,∴OG FG OFOA PA OP==,即36OG FG == 解得:35OG =,65FG =, ∴185BG OG OB =+=,∴BF ==∴6sin FG ABF BF ∠===.(10分) 23.【解析】(1)2224()24b c b y x bx c x -=++=++,∵该抛物线的顶点坐标为(,)c b ,∴2244b c c b b⎧-=⎪⎪⎨-⎪=⎪⎩,解得:00c b =⎧⎨=⎩或36c b =⎧⎨=-⎩, ∴函数的解析式为2y x =或263y x x =-+.(4分)(2)①∵该函数在3y =-的情况下,只有一个自变量x 的值与其对应, 即方程23x bx c -=++有两相等的实数根, ∴0∆=,∴24(3)0b c -+=, ∴24(3)0c b +=≥, ∴30c +≥, ∴3c ≥-,∴c 的最小值为3-.(7分)②由①得234b c =-,即二次函数解析式为2234b y x bx =++-,图象开口向上,对称轴为直线2bx =-, 当2bb -<,即0b >时, 在自变量x 的值满足3b x b ≤≤+的情况下,y 随x 的增大而增大,∴当x =b 时,y 的最小值为:22293344b by b b b =+⋅+-=-,∴29364b -=,解得,12b =-(舍去),22b =,∴二次函数的解析式为223y x x =+-.当32bb b ≤-≤+时,即20b -≤≤, ∴2bx =-,y 的最小值为:36y =-≠,∴不满足题意.(10分)24.【解析】(1)如图1,过点G 作GM ⊥CB 于M ,过点E 作EN ⊥CD 于点N ,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且GM⊥BC,EN⊥CD,∴四边形DCMG是矩形,四边形ABMG是矩形,四边形AEND是矩形,四边形BCNE是矩形,∴GM=CD=AB,EN=AD=BC,(2分)∵EF⊥GH,∠BCD=90°,∴∠EFC+∠GHC=180°,且∠DFE+∠EFC=180°,∴∠EFN=∠GHC,且∠ENF=∠GMH=90°,∴△EFN∽△GHM,∴EF EN BC bGH GM AB a===.(4分)(2)如图2,连接BD交EF于点O,DE,BF,∵将矩形对折,使得B、D重叠,∴BE=DE,∠DEF=∠BEF,∵AB∥CD,∴∠DFE=∠BEF,∴∠DFE=∠DEF,∴DF=DE,且BE=DE,∴BE=DF,且AB∥CD,∴四边形DFBE是平行四边形,且DF=DE,∴四边形DFBE是菱形,∴BO=DO,EO=FO,BD⊥EF,∵DE2=AE2+AD2,∴DE2=9+(4-DE)2,∴DE=25 8,∵BD,∴DO=BO=52,∴OE=15 8,∴EF=2OE=154.(8分)(3)如图3,过点D作EF⊥BC,交BC的延长线于F,过点A作AE⊥EF,连接AC,∵∠ABC=90°,AE⊥EF,EF⊥BC,∴四边形ABFE是矩形,∴∠E=∠F=90°,AE=BF,EF=AB=8,∵AD=AB,BC=CD,AC=AC,∴△ACD≌△ACB,∴∠ADC=∠ABC=90°,∴∠ADE+∠CDF=90°,且∠ADE+∠EAD=90°,∴∠EAD=∠CDF,且∠E=∠F=90°,∴△ADE∽△DCF,(10分)∴12 CD CF DFAD DE AF===,∴AE=2DF,DE=2CF,∵DC2=CF2+DF2,∴16=CF2+(8-2CF)2,∴DE=4(不合题意舍去),DE=125,∴BF=BC+CF=325=AE,由(1)可知:DNAM=AEAB=45.(12分)。

2019-2020学年九年级数学上学期期末原创卷B卷(湖北)(参考答案)

2019-2020学年九年级数学上学期期末原创卷B卷(湖北)(参考答案)

2019-2020学年上学期期末原创卷B 卷九年级数学·参考答案11.412.(1,-1) 13.−2<x <0或x >31415.16 17.【解析】∵将△ABC 绕点B 逆时针旋转50°后得到△A ′BC ′,∴50'CBC ∠=︒,△ABC ≌△A ′BC ′,(2分) ∵△ABC ≌△A ′BC ′, ∴30'A BC ABC ∠=∠='︒,∴80'A BC A BC BC'C ∠=∠+∠=''︒.(4分) ∵A ′C ′∥BC ,∴180A BC A ''∠+∠=︒,(6分) ∴18080100A ∠=︒-︒='︒, ∴100A A ∠='=∠︒.(8分) 18.【解析】(1)∵方程有两个实数根,22[2(1)]4(5)8160m m m ∆=-+-+=-≥,∴2m ≥.(4分)(2)由根与系数的关系,得:122(1)x x m +=+,2125=+x x m ,∵12(1)(1)28x x --=,1212()270x x x x -+-=,(6分)∴252(1)270m m +-+-=, ∴1264m m ==-,, ∵2m ≥,∴6m =.(8分)19.【解析】如图,作AB ⊥CF 于B ,由题意得:∠ACB =60°,AC =120米,则∠CAB =30°, ∴1602BC AC ==米,(2分)∴cos30AB AC ︒==∵,∴消防车的警报声对学校会造成影响,(4分)造成影响的路程为272=≈米,(6分) ∵600007243600÷≈秒, ∴对学校的影响时间为4秒.(8分)20.【解析】(1)如图,过C 作CM ⊥AB ,CN ⊥y 轴,垂足为M 、N ,∵CA =CB =5,AB =6, ∴AM =MB =3=CN ,在Rt △ACD 中,CD ,(2分) ∴AN =4,ON =OA -AN =8-4=4,∴C (3,4)代入y =kx得:k =12.(4分) (2)∵BC =BD =5, ∴AD =6-5=1,设OA =a ,则ON =a -4,C (3,a -4),D (1,a ), ∵点C 、D 在反比例函数的图象上, ∴3(a -4)=1×a ,(6分) 解得:a =6,∴C (3,2).(8分)21.【解析】(1)由题意,15010y x =-,010x ≤≤且x 为正整数.(4分)(2)设每星期的利润为w 元,则3()400w x y =+-()()1015010x x =+-()210 2.51562.5x =--+,(6分)∵x 为非负整数,∴当2x =或3时,利润最大为1560元,答:当售价为42元或43元时,每周的利润最大,最大利润为1560元.(8分) 22.【解析】(1)∵∠C =90°,AB =10,BC =6,∴8AC =.(2分)(2)由题意可知,当0≤t ≤2时,点P 在AB 上,当2<t ≤4时,点P 在BC 上(不包含B ), ∴当0≤t ≤2时,BP =10–5t ,当2<t ≤4时,BP =3·(t –2)=3t –6.(4分) (3)分两种情况讨论:①当0≤t ≤2时,过点P 作PE ⊥AC 于点E ,由题意得:AP =5t ,CQ =3t ,则AQ =8–3t , ∵sin ∠PAE =35PE BC AP AB ==,∴PE =3t , ∴2119(83)312222S AQ PE t t t t =?-?-+. ②当2<t ≤4时, ∵BP =3t –6, ∴CP =12–3t , ∴2119(83)(123)3048222S AQ CP t t t t =?-?=-+, 综上所述:22912(02)293048(24)2t t t S t t t ⎧-+≤≤⎪⎪=⎨⎪-+<≤⎪⎩.(7分)(4)分四种情况讨论:①由题意可得,当PQ ⊥BC 时,t =0或t =4; ②当PQ ⊥AB 时,如图,∵AP =5t ,AQ =8–3t , ∴4cos 5AP AC PAQAQ AB ?==, ∴54835t t =-,解得:3237t =; ③当PQ ⊥AC 时,如图,∵AP=5t,AQ=8–3t,∴4 cos5AQ ACPAQAP AB?==,∴834 55tt-=,解得:87t=;④当PQ∥AB时,易得△CPQ∽△CBA,如图,∵CP=12–3t,CQ=3t,∴CP CQCB CA=,即123368t t-=,解得:167t=,综上所述,当t=0或t=4或3237t=或87t=或167t=时,PQ与△ABC的一边平行或垂直.(10分)23.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD 是⊙O 的切线.(3分) (2)∵AD ⊥CD ,CD =2,AD =4.∴AC ==由(1)可知∠DCA =∠B ,∠D =∠ACB =90°, ∴△ADC ∽△ACB ,∴AD ACAC AB ==, ∴AB =5.(6分)(3)AC BC =,(8分)如图2,连接BE ,在AC 上截取AF =BC ,连接EF 、EB .∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC , ∴△ECB ≌△EFA , ∴EF =EC ,∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形,∴FC =,∴AC AF FC BC =+=.(10分) 24.【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠DAF =∠DCE =∠ADC =90°, ∵DF =DE ,∴Rt △ADF ≌Rt △CDE .(3分)(2)①如图,作NH ⊥AB 于H .设FH =a .∵Rt △ADF ≌Rt △CDE , ∵∠ADF =∠CDE , ∵∠ADF =∠EDF ,∴∠ADF =∠EDF =∠CDE =30°, ∴∠AFD =60°, ∵∠NHF =90°, ∴∠FNH =30°,∴HN ,∵∠NAH =45°,∠AHN =90°, ∴∠NAH =∠ANH =45°,∴HA =HN a ,∴AF =()a ,AD AF =()a ,∴S 2=12·AF ·NH =12·(a =32+a 2, ∵∠ADN =∠CDM ,AD =DC ,∠DAN =∠DCM =45°, ∴△ADN ≌△CDM , ∴S △ADN =S △DCM ,∴S 1=S △ADC -2S △ADN =12[(a ]2-2×12(a =3a 2,∴22213236S S a +==.(8分) ②如图,作NH ⊥AB 于H .∵∠FHN =∠FAD =90°, ∴HN ∥AD , ∴∠ADF =∠HNF ,设tan ∠ADF =tan ∠FNH =k ,设NH =AH =b ,则FH =kb , ∴AF =b +kb ,∴AD =1b bk kb k k ++=⋅, ∴S 2=12(1+k )b 2,S 1=S △ADC -2S △ADN =211()2k b k +⋅-2×112k b b k +⋅⋅,(10分) ∵S 2=2S 1,∴12(1+k )b 2=2·[211()2k b k +-2×112k b b k +⨯⋅] 整理得:k 2+2k -2=0,解得:k-1或1(舍弃), ∴tan ∠ADF =k1.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年湖北省武汉市东西湖区九年级第一学期期末数学试卷一、选择题(共10小题).1.(3分)以下列各组线段为边,能组成三角形的是()A.1,2,3B.5,6,10C.2,6,11D.2,3,62.(3分)如图,在△ABC中,∠B=60°,∠A=80°.延长BC至点D,则∠ACD的大小为()A.140°B.150°C.160°D.170°3.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.4.(3分)已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.1cm B.8cm C.10cm D.8cm或10cm 5.(3分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O 自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形7.(3分)在平面直角坐标系中,点(﹣2,a)关于y轴对称的点的坐标为()A.(﹣2,﹣a)B.(2,a)C.(﹣a,2)D.(2,﹣a)8.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°9.(3分)图中有三个正方形,最大正方形的边长为6,利用轴对称的相关知识,得到阴影部分的面积为()A.17B.26C.28D.3410.(3分)如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°二、填空题(共6小题).11.(3分)一个五边形共有条对角线.12.(3分)如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个).13.(3分)如图,在△ABC中,BD,CE分是AC、AB边上的高,且相交于点F,若∠ABC =50°,∠ACB=70°,则∠BFC的度数为.14.(3分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,AD =10,DE=6,则BE=.15.(3分)如图,∠BAC的平分线与BC的垂直平分线相交于D,DE⊥AB,DF⊥AC,则BE=.16.(3分)如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.(1)线段AB,AC,CE三者之间的长度有什么关系.(2)线段AB+BD与DE有怎样的关系呢?20.(8分)如图,△ABC的∠B,∠C的平分线BE,CF相交于点G,求证:∠BGC=90°+∠A.21.(8分)如图,在△ABC中,AD⊥BC于D,G是BA延长上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)判断△ABC形状并证明;(2)猜想并证明,当E在AC何处时,AF=2BD.22.(10分)在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,求证:CD=DE;(2)如图2,过点C作CH⊥DE,垂足为H,若CD=BD,EH=3,求CE﹣BE的值.23.(10分)如图,△ABC和△ADE中,AB=AD,AC=AE,∠BAC=∠DAE,BC交DE 于点O,∠BAD=α.(1)如图1,求证:∠BOD=α;(2)如图2,若AO平分∠DAC,求证:AC=AD;(3)在(2)条件下,若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则α=.24.(12分)在平面直角坐标系中,直线AB交y轴于点A,交x轴于B点,且OA=OB.点D是线段BO上一点,BF⊥AD交AD的延长线于点F.(1)如图1,若OE∥BF交AD于点E.点O作OG⊥BF,交BF的延长线于点G,求证:AE=BG;(2)如图2,若AD是∠OAB的角平分线,OE∥BF交AD于点E,交AB于点Q,求的值;(3)如图3.若OC∥AB交BF的延长线于点C.请证明:∠CDF+2∠BDF=180°.参考答案一、选择题(共10小题).1.(3分)以下列各组线段为边,能组成三角形的是()A.1,2,3B.5,6,10C.2,6,11D.2,3,6解:A、∵1+2=3,∴不能组成三角形,故此选项错误;B、∵5+6>10,∴能组成三角形,故此选项正确;C、∵2+6<11,∴不能组成三角形,故此选项错误;D、∵2+3<6,∴不能组成三角形,故此选项错误;故选:B.2.(3分)如图,在△ABC中,∠B=60°,∠A=80°.延长BC至点D,则∠ACD的大小为()A.140°B.150°C.160°D.170°解:由三角形的外角性质可知,∠ACD=∠B+∠A=140°,故选:A.3.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项正确.故选:D.4.(3分)已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.1cm B.8cm C.10cm D.8cm或10cm 解:等腰三角形的两边长分别为2cm和4cm,当腰长是4cm时,则三角形的三边是2cm,2cm,4cm,2cm+2cm=4cm不满足三角形的三边关系;当腰长是4cm时,三角形的三边是4cm,4cm,2cm,三角形的周长是10cm.故选:C.5.(3分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O 自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.6.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形解:设多边形的边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.7.(3分)在平面直角坐标系中,点(﹣2,a)关于y轴对称的点的坐标为()A.(﹣2,﹣a)B.(2,a)C.(﹣a,2)D.(2,﹣a)解:∵关于纵轴的对称点,纵坐标不变,横坐标变成相反数.∴点(﹣2,a)关于y轴对称的点的坐标是(2,a).故选:B.8.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°解:∵矩形对边AD∥BC,∴CF∥DE,∴图1中,∠CFE=180°﹣∠DEF=180°﹣20°=160°,∵矩形对边AD∥BC,∴∠BFE=∠DEF=20°,∴图2中,∠BFC=160°﹣20°=140°,由翻折的性质得,图3中∠CFE+∠BFE=∠BFC,∴图3中,∠CFE+20°=140°,∴图3中,∠CFE=120°,故选:B.9.(3分)图中有三个正方形,最大正方形的边长为6,利用轴对称的相关知识,得到阴影部分的面积为()A.17B.26C.28D.34解:如图,∵正方形ABCD的边长为6,∴AB=BC=AD=D=6,∵四边形MNJB是正方形,∴BM=MN=AM=3,设正方形EFHG的边长为a,则AG=GH=CH=a,∵AC=6,∴3a=6,∴a=2,∴S阴=32+(2)2=9+8=17,故选:A.10.(3分)如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°解:如图所示,过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DF=DE,又∵∠ACD=136°,∠BCD=44°,∴∠ACB=92°,∠DCF=44°,∴CD平分∠BCF,又∵DF⊥AC于F,DG⊥BC于G,∴DF=DG,∴DE=DG,∴BD平分∠CBE,∴∠DBE=∠CBE,∵AD平分∠BAC,∴∠BAD=∠BAC,∴∠ADB=∠DBE﹣∠BAD=(∠CBE﹣∠BAC)=∠ACB=×92°=46°,故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一个五边形共有5条对角线.解:n边形共有条对角线,∴五边形共有=5条对角线.12.(3分)如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为AC =CD.(答案不唯一,只需填一个).解:添加的条件是AC=CD,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,∴∠BCA=∠ECD,∵在△ABC和△DCE中,∴△ABC≌△DCE,故答案为:AC=CD.13.(3分)如图,在△ABC中,BD,CE分是AC、AB边上的高,且相交于点F,若∠ABC =50°,∠ACB=70°,则∠BFC的度数为120°.解:∵BD,CE分别是AC,AB边上的高,∴∠AEC=∠ADB=90°,∵∠ABC=50°,∠ACB=70°,∴∠A=60°,∴∠EFD=180°﹣∠A=180°﹣60°=120°(四边形内角和为360°),∴∠BFC=∠EFD=120°(对顶角相等).故答案为:120°.14.(3分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,AD =10,DE=6,则BE=4.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=CD,AD=CE=10,∴BE=CD=CE﹣DE=10﹣6=4;故答案为:4.15.(3分)如图,∠BAC的平分线与BC的垂直平分线相交于D,DE⊥AB,DF⊥AC,则BE=CF.解:如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,故答案为:CF.16.(3分)如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为112度.解:如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=∠BAC=×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=(180°﹣∠BAC)=×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案为:112.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.解:∵AD平分∠CAB,∠BAC=40°,∴∠DAB=∠BAC=20°,∵∠B=75°,∴∠ADB=180°﹣∠DAB﹣∠B=180°﹣20°﹣75°=85°.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【解答】证明:∵BE=CF∴BE+EC=CF+EC∴BC=EF在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠A=∠D.19.(8分)如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.(1)线段AB,AC,CE三者之间的长度有什么关系.(2)线段AB+BD与DE有怎样的关系呢?解:(1)AB=AC=CE,∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE;(2)AB+BD=DE,理由是:∵AB=AC=CE,∵AC+CD=AB+BD,∴DE=EC+CD=AB+BD,即AB+BD=EC+CD=DE.20.(8分)如图,△ABC的∠B,∠C的平分线BE,CF相交于点G,求证:∠BGC=90°+∠A.【解答】证明:在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BE平分∠ABC,CF平分∠ACB,∴∠GBC=∠ABC,∠GCB=∠ACB,∴∠GBC+∠GBC=(∠ABC+∠ACB)=90°﹣∠A,∴∠BGC=180°﹣(∠GBC+∠GBC)=90°+∠A.21.(8分)如图,在△ABC中,AD⊥BC于D,G是BA延长上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)判断△ABC形状并证明;(2)猜想并证明,当E在AC何处时,AF=2BD.解:(1)结论:△ABC等腰三角形.理由:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEF(ASA),∴AF=BC=2BD.22.(10分)在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,求证:CD=DE;(2)如图2,过点C作CH⊥DE,垂足为H,若CD=BD,EH=3,求CE﹣BE的值.【解答】(1)证明:∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)解:∵CD=BD,∴∠B=∠DCB,由(1)知:∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴CE﹣BE=DE﹣DF=EF=2HE=2×3=6.23.(10分)如图,△ABC和△ADE中,AB=AD,AC=AE,∠BAC=∠DAE,BC交DE 于点O,∠BAD=α.(1)如图1,求证:∠BOD=α;(2)如图2,若AO平分∠DAC,求证:AC=AD;(3)在(2)条件下,若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则α=40°或20°.【解答】(1)证明:设AD交OB于K.在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠B=∠D,∵∠AKB=∠DKO,∴∠BOD=∠BAD=α(2)过A作AM⊥BC于M,作AN⊥DE于N∵△ABC≌△ADE,∴S△ABC=S△ADE,∴,∵BC=DE,∴AM=AN∴AO平分∠BOE,∵AO平分∠DAC,∴∠DAO=∠CAO,∴∠BAO=∠EAO在△ABO和△AEO中,,∴△ABO≌△AEO(ASA)∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,(3)由(2)可知∠AOB=∠AOF,∴∠AOF≠∠OAF(否则CA∥CB),∴只有AO=AF或OA=OF,①当AO=AF时,∠AOF=∠AFO=∠AOB=α+30°,∴∠AOB+∠AOF+∠FOC=180°,∴2(α+30)+α=180°,∴α=40°.②当OA=OF时,∠OAF=∠OFA=α+30°,∴∠AOB=∠AOF=180°﹣2(α+30°),∴2[180°﹣2(α+30)]+α=180°,∴α=20°,综上所述,α=40°或20°24.(12分)在平面直角坐标系中,直线AB交y轴于点A,交x轴于B点,且OA=OB.点D是线段BO上一点,BF⊥AD交AD的延长线于点F.(1)如图1,若OE∥BF交AD于点E.点O作OG⊥BF,交BF的延长线于点G,求证:AE=BG;(2)如图2,若AD是∠OAB的角平分线,OE∥BF交AD于点E,交AB于点Q,求的值;(3)如图3.若OC∥AB交BF的延长线于点C.请证明:∠CDF+2∠BDF=180°.【解答】(1)证明:∵BF⊥AD,DG⊥BF,OE∥BF,∴∠DEA=∠OGB=90°,∵∠OAE=∠DOE=∠OBG,OA=OB,∴△AOE≌△BOG(AAS),∴AE=BG;(2)解:如图2中,作BH⊥OQ交OQ的延长线于H.∵AD是∠OAB的角平分线,∴∠OAD=22.5°,∴∠ADO=67.5°,∵AD⊥OE,∴∠BOH=∠OAD=22.5°,∵OA=OB,∠AEO=∠H=90°,∴△OAE≌△BOH(AAS),∴OE=BH,AE=OH,∵AF⊥OH,OH⊥BH,∴∠ADO=∠OBH=67.5°,∵∠OBA=45°,∴∠HBQ=∠DOE=22.5°,∵∠OED=∠H=90°,∴△OED≌△BHQ,∴DE=QH,∴AD﹣OQ=AE+DE﹣(OH﹣HQ)=2DE,∴==.(3)解:如图3中,作OE平分∠AOB交AD于E.∵OC∥AB,∴∠COB=∠ABO=∠AOE=45°,∵OA=OB,∠OAE=∠OBC,∴△AOE≌△OBC(ASA),∴OE=OC,∵∠EOD=∠DOC,OD=OD,∴△ODE≌△ODC(SAS),∴∠ODE=∠ODC,∵∠ODE=∠BDF,∴∠ODC=∠BDF,∵∠CDF+∠ODC+∠BDF=180°,∴∠CDF+2∠BDF=180°.。

相关文档
最新文档