《最短路径问题》轴对称ppt课件
合集下载
13.4.1最短路径问题优秀课件

A BC NhomakorabeaDl
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点?
A
l
A′
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
想一想: 对于问题2,如何将点
B
B“移”到l 的另一侧B′处,满足
典例精析
练习1.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P 为直线EF上的任一点,则AP+BP的最小值是( )
A. 7
B. 6
C. 5
D. 4
典例精析 (两线一点型)
例2:如图,牧马营地在点P处,每天牧马人要赶着马群先到草地a上吃 草,再到河边b处饮水,最后回到营地.请你设计一条放牧路线,使其所 走总路程最短.
第十三章 轴对称
13.4 课题学习 最短路径问题
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟
转化思想.(重点)
情景引入
请问牛郎织女在河边哪个地方相会,能让他两人走的总路程 最短?
迢迢牵牛星,皎皎河汉女。 纤纤擢素手,札札弄机杼。 终日不成章,泣涕零如雨; 河汉清且浅,相去复几许! 盈盈一水间,脉脉不得语。
BC =B′C,BC′=B′C′.
B
∴ AC +BC= AC +B′C = AB′,
A
∴ AC′+BC′= AC′+B′C′. 在△AB′C′中,
C
C′
l
AB′<AC′+B′C′,
∴ AC +BC<AC′+BC′.
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点?
A
l
A′
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
想一想: 对于问题2,如何将点
B
B“移”到l 的另一侧B′处,满足
典例精析
练习1.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P 为直线EF上的任一点,则AP+BP的最小值是( )
A. 7
B. 6
C. 5
D. 4
典例精析 (两线一点型)
例2:如图,牧马营地在点P处,每天牧马人要赶着马群先到草地a上吃 草,再到河边b处饮水,最后回到营地.请你设计一条放牧路线,使其所 走总路程最短.
第十三章 轴对称
13.4 课题学习 最短路径问题
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟
转化思想.(重点)
情景引入
请问牛郎织女在河边哪个地方相会,能让他两人走的总路程 最短?
迢迢牵牛星,皎皎河汉女。 纤纤擢素手,札札弄机杼。 终日不成章,泣涕零如雨; 河汉清且浅,相去复几许! 盈盈一水间,脉脉不得语。
BC =B′C,BC′=B′C′.
B
∴ AC +BC= AC +B′C = AB′,
A
∴ AC′+BC′= AC′+B′C′. 在△AB′C′中,
C
C′
l
AB′<AC′+B′C′,
∴ AC +BC<AC′+BC′.
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册

∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
最短路径问题-(PPT课件) 公开课

第十三章 轴对称
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
人教八年级数学上册《轴对称作图最短路径问题》课件(共23张PPT)

如图,A为马厩,B为帐篷,牧马人某一天要从马厩 牵出马,先到草地边某一处牧马,再到河边给马喝 水,然后回到帐篷,请你帮助他确定这一天的最短 路线。
有四个班的同学分别在M、
N两处参加劳动,另外四个 班的同学分别在道路AB、 AC两处劳动,现要在道路 AB、AC的交叉区域内设 一个荼水供应点P ,使P到
两条道路的距离相等,且
使 PM= PN,请你找出点 A
P的位置,并说明理由。
B
P
M N
C
轴对称变换的特征: 由一个平面图形可以得到它关于一条直 线l对称的图形,这个图形与原图形的 形状、大小完全一样; 新图形上的每一点,都是原图形上的某 一点关于直线l的对称点; 连接任意一对对应点的线段被对称轴垂 直平分。
路线:小明——P——A
A
P
小明
如果另一侧放着一些小木棍,小明先去捡球, 还要跑到另一侧去取木棍,则小明又应按怎 样的路线跑,去捡哪个位置的球,小木棍, 才能最快跑到目的地A处。
路线:按BDEA
DE
A
B
C
小明
■如图,OA、OB是两条相交的公路,点P 是一个邮电所,现想在OA、OB上各设立 一个投递点,要想使邮电员每次投递路 程最近,问投递点应设立在何处?
水管最短?
A
张村
B 李庄
C
A′
如图所示,水泵站修在 C 点可使所 用的水管最短.
思考: 为什么在C点的位置修建泵站,
就能使所用的管线最短呢?
总结: 实际上是通过轴对称变换,把
A,B在直线同侧的问题转化为在直 线的两侧,从而可利用“两点之间线 段最短”加以解决。
拓展应用,巩固提高
八年级某班同学做游戏,在活动区域边放了一 些球,则小明按怎样的路线跑,去捡哪个位 置的球,才能最快拿到球跑到目的地A处。
最短路径问题课件ppt

将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
·B A·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A
·
C′ C
B
·
l
B′
探索新知
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
B′
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(Ⅰ)两点在一条直线异侧
已知:如图,A,B在直线L的两侧, 在L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。
P
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
思考???
为什么这样做就能得到最短距 离呢?
根据:两点之间线段最短.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.
·B A·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A
·
C′ C
B
·
l
B′
探索新知
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
B′
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(Ⅰ)两点在一条直线异侧
已知:如图,A,B在直线L的两侧, 在L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。
P
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
思考???
为什么这样做就能得到最短距 离呢?
根据:两点之间线段最短.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.
第十三章 轴对称课题学习 最短路径问题 课件.ppt

ko
证明AC +BC “最短”
追问1 证明AC +BC最短时,为什么要在直线l 上任取一点C′(与点C不重合),证明AC+BC< 任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A
C′ C
B l
B′
ko
证明AC +BC “最短”
八年级 上册
第十三章 轴对称 课题学习 最短路径问题
湖北省通山县教育局教研室 袁观六
ko
创设问题情境
问题1 如图,从A地到B地有三条路可供选择,你 会选择哪条路距离最短?说说你的理由.
D EF
A
B
C
两点之间,线段最短
ko
创设问题情境
问题2 如图,要在燃气管道l上修建一个泵站,分 别向A、B两村供气,泵站修在管道的什么地方,可使所 用的输气管线最短?
A村
P
l
B村
连接AB,线段AB与l的交点即为泵站修建的位置
ko
将实际问题抽象成数学问题
问题2 相传,古希腊亚历山大里亚城里有一位久负 盛名的学者,名叫海伦.有一天,一位将军专程拜访海 伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的河边l饮马,然后 到B地.到河边什么地方饮马可使他所走的路线全程最 短?
B
A
ko
将实际问题抽象成数学问题
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
B
A
ko
将实际问题抽象成数学问题
(1)将A,B 两地抽象为两个点,将河l 抽象为一条 直线.
人教版数学最短路径问题公开课PPT课件

∵∠C=90°,∠B=30° ∴AB=2AC
3.在直角三角形中, 如果一条直角边等于斜边 的一半,那么它所对的锐角等于30°。
A
∵∠C=90°,AB=2AC
∴∠B=30°
C
B
最短 路径 问题
复习引入
A
B
线段公理: 两点之间,线段最短.
A
l
B 垂线段性质:
垂线段最短.
问题1
如图,牧马人从A地出发,到一条笔直的河 边 l 饮马,然后到B地.牧马人到河边的什么地 方饮马,可使所走的路径最短?
你能把这个问题转化
为数学问题吗?
分析:
A 如图假定任选位置造桥MN, 连接AM和BN,从A到B的路径是 AM+MN+BN,那么折线AMNB在什 么情况下最短呢?
由于河宽是固定的,因此当 AM+NB最小时,AM+MN+NB最小.
Ma b
N B
分析:
A
A'
Ma
A
C
l直的方向平移到点 A′,使AA′等于河宽,则AA′=MN,AM=A′N,问题转 化为:当点N在直线b的什么位置时,A′N+NB最小?
b
N
N′
AA′=MN=M′ N′.
B
∴AM+MN+BN=AA′+A′B, AM′+M′N′+BN′=AA′+A′N′+BN′.
在△A′N′B中,由线段公理知A′N′+BN′ >A′B,
∴AM′ +M′N′ +BN′ > AM+MN+BN.
问题2 归纳
解决实 际问题
A
A'
《最短路径问题》轴对称51页PPT

END
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
《最短路径问题》轴对称
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究 相传,古希腊亚历山大里亚城里有一位久负盛名的学者, 名叫海伦.有一天,一位将军专程拜访海伦,求教一个百 思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地 .到河边什么地方饮马可使他所走的路线全程最短?
A
B
l
将军饮马问题
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题” 你能将这个问题抽象为数学问题吗?
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
探究
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
能不能把点在同侧的问题转化 为点在异侧的问题呢? 提示:将点B“移”到l 的另一侧 B′处,得满足直线l 上的任意一 点C,都保持CB 与CB′的长度相 等 你.想到怎么做了吗?
AC ′+BC ′= AC ′+B ′C ′, ∵ AC ′+B ′C ′>AB ′, ∴ AC ′+BC ′> AC +BC, 即AC+BC最短.
归纳总结
将军饮马问题
条件特点 简称为:两定一动 直线同侧的两个定点和直线上一个动点 问题特点 求线段和最小 求解思路 利用轴对称,化折为直 求解原理 两点之间,线段最短
,同时向 A,B 两个居民小区送电 .
(2) 如果居民小区 A,B 在主干线 l 的同旁,如图(2) 所示
,那么分支点 M 在什么地方时总线路最短?在图上标注位置,
并说明理由 .
作的对称
点可以吗
?
B’
练习
如图,P,Q是△ABC的边AB,AC上的两定点,在BC上求 作一点M,使△PMQ的周长最短.
如图,A、B两地在一条河 的两岸,现要在河上建一座 桥MN,桥造在何处才能使 从A到B的路径AMNB最短 ?(假设河的两岸是平行的 直线,桥要与河垂直)
你能把这个问题抽象成一 个数学问题吗?
抽象
可以把河的两岸看成两条平行线a和b, N为直线b上的一个动点,MN 垂直于直线b,交直线a于点M, 当点N在直线b的什么位置时,AM+MN+NB最小?
归纳总结 条件特点
造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 . 提示1:利用轴对称,化折为直.
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
作点B 关于直线l 的对称点B ′;
B’
你能证明此时 AC+BC最短吗?
连接AB ′,与直线l 相交于点C 则点.C 即为所求.
证明 证明此时AC+CB 最短
证明:如图,在直线l 上任 取一点C ′(与点C 不重合) ,连接AC ′,BC ′,B ′C ′. 由轴对称的性质知, BC =B ′C,BC ′=B ′C ′. ∴AC +BC= AC +B ′C = AB ′,
提示2:分别作A点关于OM, ON的对称点.
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 答.案:分别作点A关于OM ,ON的对称点A′,A″;连 接A′,A″,分别交OM, ON于点B、点C,则点B、 点C即为所求.
提示:这本质上是“两定一动 ” 求线段和最小的将军饮马问题 .
练习 如图,一个旅游船从大桥AB的P 处前往山脚下的Q 处接游客,然 后将游客送往河岸BC上,再返回P 处,请画出旅游船的最短路径 . 提示1:先把问题抽象为数学问题.
提示2:这本质上是“两定一动” 求线段和最小的将军饮马问题.
造桥选址问题
A
B
l
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
你能要自己的语言重新描述一下问题吗?
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
C
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
将军饮马问题的变式
如图,牧区内有一家牧民,点A处有一个马厩,点B处是他的家 , 是草地的边沿, 是一条笔直的河流 . 每天,牧民要从马厩 牵出马来,先去草地上让马吃草,再到河边饮马,然后回到家B 处 . 请在图上画出牧民行走的最短路线 ( 保留作图痕迹 ) .
最短路径问题
知识回顾 如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近 ?你的理由是什么?
选第②条 两点之间,线段最短
两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在l上求一点P ,使得PA+PB最小.
这是为什么呢? 两点之间,线段最短
连接AB,线段AB与直线l的交点P ,就是所求.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M ,同时向 A,B 两个居民小区送电 . (1) 如果居民小区 A,B 在主干线 l 的两旁,如图(1)所示 ,那么分支点 M 在什么地方时总线路最短?在图上标注位置, 并说明理由.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M
分析
这又是求线段和最小的问题 ,你能想到什么呢?
能变成这种基 本类型就好了
AM,MN,NB这三条线段的长度都会变化吗? 只有AM和NB会变,MN是不变的. 所以当AM+NB最小时,AM+MN+NB最小.
思考
怎么把这个问题转化为基本类型呢?
将AM沿着垂直于河岸的方向 平移一个河宽的距离到A'N.
现在就变成基本类型了.
怎么确定取最小时的N点呢?
你能证明这个结论吗?
连接A’B,与直线b的交点就 是所求.
证明 证明:如图,在直线b上取一个不与N重合的点N’,作 M’N’⊥a于点M’,连接AM’,BN’,A’N’. 由平移的性质可知, AM’=A’N’,AM=A’N ∵A’N’+N’B>A’B ∴AM’+N’B>AM+NB ∴AM’+N’B>AM+NB ∴AM’+M’N’+N’B>AM+MN+NB