指数函数的图像及性质知识要点

合集下载

指数函数知识点归纳

指数函数知识点归纳

指数函数知识点归纳一、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,指数函数的底数\(a\)必须满足\(a > 0\)且\(a ≠ 1\)。

当\(a = 1\)时,\(y = 1^x = 1\),是一个常函数,不是指数函数;当\(a < 0\)时,比如\(a =-2\),那么当\(x =\frac{1}{2}\)时,\((-2)^{\frac{1}{2}}\)在实数范围内无意义。

二、指数函数的图像当\(a > 1\)时,指数函数\(y = a^x\)的图像是上升的,经过点\((0, 1)\)。

因为\(a > 1\),所以当\(x\)的值越来越大时,\(y\)的值增长得越来越快。

当\(0 < a < 1\)时,指数函数\(y = a^x\)的图像是下降的,同样经过点\((0, 1)\)。

此时,当\(x\)的值越来越大时,\(y\)的值越来越趋近于\(0\)。

例如,\(y = 2^x\)和\(y =(\frac{1}{2})^x\)的图像就分别呈现出上升和下降的趋势。

三、指数函数的性质1、定义域:\(R\)(即实数集)2、值域:\((0, +∞)\)这是因为对于任何实数\(x\),\(a^x\)的值总是大于\(0\)的。

3、过定点:\((0, 1)\)无论\(a\)的值是多少,当\(x = 0\)时,\(a^0 = 1\)。

4、单调性:当\(a > 1\)时,函数在\(R\)上单调递增;当\(0 < a < 1\)时,函数在\(R\)上单调递减。

四、指数运算的性质1、\(a^m × a^n = a^{m + n}\)例如:\(2^3 × 2^2 = 2^{3 + 2} = 2^5\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))比如:\(\frac{3^5}{3^2} = 3^{5 2} = 3^3\)3、\((a^m)^n = a^{mn}\)举例:\((2^2)^3 = 2^{2×3} = 2^6\)4、\(a^0 = 1\)(\(a ≠ 0\))任何非零数的\(0\)次幂都等于\(1\)。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。

本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。

一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。

指数函数在生活中的例子有人口增长、细菌繁殖等。

二、性质1.定义域:指数函数的定义域是所有实数。

2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。

3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。

4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。

5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。

6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。

三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。

2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。

四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。

2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。

3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。

五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。

指数函数知识点归纳

指数函数知识点归纳

指数函数知识点归纳指数函数是一种常见的数学函数,它以底数为常数且大于零的实数来表示自变量的幂。

指数函数有着重要的数学性质和应用。

在这篇文章中,我们将归纳指数函数的一些重要知识点。

1.定义和表示:指数函数可以写成f(x)=a^x的形式,其中a是底数,x是指数。

2.基本性质:(1)当底数a大于1时,指数函数呈现增长态势,即函数值随着自变量的增加而增加;(2)当底数a等于1时,指数函数保持恒定,即f(x)=1;(3)当底数a介于0和1之间时,指数函数呈现减少态势,即函数值随着自变量的增加而减少。

3.导数:指数函数的导数与其本身成正比。

具体地,f'(x) = a^x * ln(a),其中ln(a)是以自然对数e为底的对数。

4.指数函数的图像和性质:(1)当底数a大于1时,指数函数的图像在x轴的右侧逐渐上升;(2)当底数a等于1时,指数函数的图像是一条恒定值的水平直线;(3)当底数a介于0和1之间时,指数函数的图像在x轴的右侧逐渐下降;(4)指数函数的图像通过点(0,1),即f(0)=15.指数函数的性质:(1)指数函数具有不断增长或不断减少的性质;(2)指数函数的图像关于y轴对称;(3)当底数a大于1时,函数值在正无穷大和负无穷大之间无限逼近;(4)当底数a介于0和1之间时,函数值在0和正无穷大之间无限逼近。

6.指数函数和对数函数的关系:指数函数和对数函数是互为反函数的。

即,f(x) = a^x 和 g(x) = loga(x)是一对互为反函数的指数函数和对数函数。

函数f(x) = a^x的定义域是实数集R,值域是正实数集R+;函数g(x) = loga(x)的定义域是正实数集R+,值域是实数集R。

7.指数函数的应用:指数函数在各个领域有着广泛的应用,例如经济增长模型、无线电活动强度计算、化学反应速率、放射性衰变等。

指数函数在实际问题中能够提供一种简洁而有效的数学模型。

综上所述,指数函数是一种基于底数为常数的幂函数,具有增长、恒定或减少的性质。

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结高一是学习数学的关键时期,其中涉及到很多重要概念和知识点,其中之一就是指数函数。

指数函数是数学中一个非常重要的概念,它包含了很多基本概念和公式,今天我将对高一指数函数的知识点进行归纳总结。

一、指数函数的定义与性质指数函数是以常数e(自然对数的底数)为底的幂函数,通常写作f(x) = a^x。

其中,a称为底数,x称为指数。

指数函数具有以下性质:1.当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

2.指数函数的图像都经过点(0,1)。

3.当x为无穷大时,指数函数无界。

当x为负无穷大时,指数函数趋近于0。

4.指数函数在x轴上没有零点,但可以接近于零。

二、指数函数的图像与性质指数函数的图像特点非常明显,它表现出一种特殊的形态,具有以下特点:1.当底数a大于1时,指数函数的图像呈现逐渐上升的曲线。

2.当底数0<a<1时,指数函数的图像呈现逐渐下降的曲线。

3.指数函数的图像随着底数的变化而发生形态的改变,当底数为1时,指数函数的图像变为y=1,成为一条水平直线。

4.指数函数的图像在过点(0,1)处的切线斜率恒为底数a。

三、指数函数的基本性质和运算规律指数函数有一些基本性质和运算规律,这些规律对于解题非常有帮助:1.指数函数的幂运算性质:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。

2.指数函数的幂函数运算性质:(a^m)^n = a^(m*n)。

3.指数函数的乘方的运算性质:(a*b)^n = a^n * b^n。

4.指数函数的除法的运算性质:(a/b)^n = a^n / b^n。

5.指数函数的负指数幂的运算性质:a^(-n) = 1 / a^n。

6.指数函数与自然对数函数的关系:a^x = e^(x * ln(a))。

7.指数函数的对数函数:ln(a^x) = x * ln(a),其中ln表示以e为底的对数。

指数函数的图象与性质-高中数学知识点讲解

指数函数的图象与性质-高中数学知识点讲解

指数函数的图象与性质1.指数函数的图象与性质【知识点的认识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y=a x a>1 0<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0 时,y>1;当x>0 时,0<y<1;x<0 时,0<y<1 x<0 时,y>1在R 上是增函数在R 上是减函数2、底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当 0<a<l 时,底数越小,函数图象在第一象限越靠近x 轴.②底数对函数值的影响如图.1③当a>0,且a≠l 时,函数y=a x 与函数y =(푥的图象关于y 轴对称.푎)3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:1/ 2若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.2.指数函数的单调性与特殊点【知识点归纳】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0 <a<1 的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x 如果a>1,则函数单调递增;(2)如果 0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X 的增大,Y 值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X 的增大,内层函数的Y 值就在不断的减小,而内层函数的Y 值就是整个复合函数的自变量X.因此,即当内层函数自变量X 的增大时,内层函数的Y 值就在不断的减小,即整个复合函数的自变量X 不断减小,又因为外层函数也为减函数,所以整个复合函数的Y 值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X 的增大,内层函数的Y 值也在不断的增大,即整个复合函数的自变量X 不断增大,又因为外层函数为减函数,所以整个复合函数的Y 值就在减小.反之亦然,因此可得“异减”.2/ 2。

指数函数图像及性质

指数函数图像及性质

指数函数图像及性质
指数函数图像的特征就是“J”形的曲线,它可用来表示水平和垂直运动的加速度和内能释放。

指数函数可以表示非常多种物理或生物学现象。

指数函数图像具有以下性质:
1. 指数函数图像以指数增长和指数衰减。

即曲线是从左向右张开的,以及从右向左收缩的。

2. 一般情况下,指数函数图像会通过坐标原点(0,0),如果不是,则说明指数函数图像是一条平行曲线。

3. 在每一个定义域,指数函数图像的斜率最大值为1,但是随着x的增加,它的斜率越来越小,趋近于0。

4. 在不同的定义域,指数函数图像的形状也有所不同,一般数学家会把它们分成“快速增长函数”和“减速函数”,其中前者的最大斜率大于1而后者的最大斜率小于1。

5. 对于指数函数图像,从右向左看斜率是负值,而从左向右看又会变成正值。

6. 有时候,指数函数图像会拐到右上或者右下方,这时候说明指数函数正在发挥它的作用。

7. 指数函数的绝对值有三种情况,即增加,减少和突然增加,这种情况受到外部因素的影响。

8. 指数函数图像在平行于y轴的负半轴上,其值会无限接近0,而在平行于y轴的正半轴上,其值会无限增长。

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是数学中常见的一种函数类型,它的图像和性质在数学学习中具有重要的意义。

本文将从图像和性质两个方面,对指数函数进行详细的分析和说明。

一、指数函数的图像指数函数的一般形式为y=a^x,其中a为底数,x为指数。

在探究指数函数的图像时,我们可以固定底数a的值,观察指数x的变化对应的函数值y的变化。

1. 当底数a>1时,指数函数呈现增长趋势。

例如,当a=2时,指数函数y=2^x的图像是逐渐上升的曲线。

随着指数x的增大,函数值y呈现出迅速增长的特点。

这说明指数函数在底数大于1的情况下,随着指数的增加,函数值呈现指数级增长。

2. 当底数0<a<1时,指数函数呈现衰减趋势。

例如,当a=0.5时,指数函数y=0.5^x的图像是逐渐下降的曲线。

随着指数x的增大,函数值y呈现出逐渐趋近于0的特点。

这说明指数函数在底数小于1的情况下,随着指数的增加,函数值呈现指数级衰减。

3. 当底数a=1时,指数函数呈现恒定趋势。

无论指数x取任何值,函数值y始终等于1。

这说明指数函数在底数为1时,函数值不随指数的变化而变化。

通过观察指数函数的图像,我们可以发现指数函数具有明显的特点:底数大于1时,函数呈现增长趋势;底数小于1时,函数呈现衰减趋势;底数为1时,函数呈现恒定趋势。

二、指数函数的性质除了图像特点外,指数函数还具有一些重要的性质,这些性质在数学学习中有着广泛的应用。

1. 指数函数的定义域为实数集R,值域为正实数集R+。

这意味着指数函数在实数范围内都有定义,并且函数值始终为正数。

2. 指数函数的性质与底数a的大小有关。

当底数a>1时,函数呈现增长趋势;当底数0<a<1时,函数呈现衰减趋势;当底数a=1时,函数值始终为1。

3. 指数函数具有幂运算的性质。

即指数函数的乘法可以转化为指数的加法,指数函数的除法可以转化为指数的减法。

例如,对于指数函数y=a^x和y=b^x,它们的乘积可以表示为y=(ab)^x,它们的商可以表示为y=(a/b)^x。

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是一类重要的数学函数,在数学和其他学科的研究中具有广泛的应用。

本文将介绍指数函数的图像和性质,帮助读者更好地理解和应用这一函数。

1. 定义指数函数是以指数为自变量,底数大于0且不等于1的函数。

一般形式为f(x) = a^x,其中a为底数,x为指数。

指数可以是实数,函数值则可以是正数、负数或零。

2. 指数函数的图像由于底数大于0且不等于1,指数函数的图像不会通过原点(0,0)。

当指数x为0时,函数值为1,因此图像会经过点(0,1)。

当指数x为正值时,函数值逐渐增大;当指数x为负值时,函数值逐渐减小。

图像可以根据底数的不同呈现不同的特点。

3. 底数大于1的指数函数当底数a大于1时,指数函数的图像呈现上升趋势,即从左至右逐渐增大。

随着指数x的增大,函数值也会变得越来越大。

当a越接近1时,曲线的增长速度会变得越来越缓慢。

例如,y = 2^x的图像在x轴的右侧逐渐升高,但增长速度逐渐减慢。

4. 底数介于0和1之间的指数函数当底数a介于0和1之间时,指数函数的图像呈现下降趋势,即从左至右逐渐减小。

随着指数x的增大,函数值会越来越接近于0。

当a越接近0时,曲线的下降速度会越来越慢。

例如,y = (1/2)^x的图像在x轴的右侧逐渐下降,但下降速度逐渐变缓。

5. 指数函数的水平位移指数函数的图像可以通过水平位移产生变化。

将指数函数右移h个单位,可以得到f(x-h)。

这样做会使整个图像向右平移h个单位。

同样,向左移动h个单位可以得到f(x+h),将整个图像向左平移h个单位。

6. 指数函数的垂直位移指数函数的图像也可以通过垂直位移产生变化。

将指数函数上移k个单位,可以得到f(x)+k。

这样做会使整个图像上移k个单位。

同样,向下移动k个单位可以得到f(x)-k),整个图像下移k个单位。

7. 指数函数的对称性对于底数a大于1的指数函数,以y轴为对称轴,具有对称性。

即f(x) = a^x的图像关于y轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲指数函数的图像及性质
一、学习目标
1.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质
2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用.
3. 逐步渗透数形结合的数学思想方法
二、重点难点
1.教学重点:利用函数的单调性求最值
2.教学难点:函数在给定区间上的最大(小)值
第一部分知识梳理
讨论:
1
2()
2
x x
y y
==
与的图象关于y轴对称,所以这两个函数是偶函数,对吗
②利用电脑软件画出
11
5,3,(),()
35
x x x x
y y y y
====的函数图象.
问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.
从图上看x
y a
=(a>1)与x
y a
=(0<a<1)两函数图象的特征.
问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
问题3:指数函数x
y a
=(a>0且a≠1),当底数越大时,函数图象间有什么样的关系x
5.利用函数的单调性,结合图象还可以看出:
(1)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或
(2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R;
(3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a =
(4)当a >1时,若1x <2x ,则1()f x <2()f x ;
例1:(P 66例7)比较下列各题中的个值的大小
(1) 与
( 2 )0.10.8-与0.20.8-
( 3 ) 与 、已知0.70.90.80.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c .
2. 比较1
132
a a 与的大小(a >0且a ≠0). x y d =的图象,判断,,,a
b
c
d 与1的大小关系;
(2)设31212,,x x y a y a +-==其中a >0,a ≠1,确定x 为何值时,有:
①12y y = ②1y >2y
(3)用清水漂洗衣服,若每次能洗去污垢的34
,写出存留污垢y 与漂洗次数x 的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B 版101页第6题). 归纳小结:本节课研究了指数函数性质的应用,关键是要记住a >1或0<a <时x y a =的图象,在此基
础上研究其性质 .本节课还涉及到指数型函数的应用,形如x y ka =(a >0且a ≠1).。

相关文档
最新文档