指数函数的图像与性质 ppt课件
合集下载
高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
指数函数ppt课件

04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系
指数函数图像与性质ppt课件

探究:
为什么要规定a 0且a 1呢?
0
1
a
分类讨论
(1) 若a 0 , ax 不一定有意义,
如:a
2, x
1 ,ax
1
(2) 2
2,显然无意义;
2
(2) 若a 0 , x 0 时ax 0,x 0时ax均无意义;
(3) 若 a 1 ,1x 1,没有研究的必要 .
范例
例1.已知指数函数 f (x) ax(a>0且a≠1)的
函 数 y a x (a 1)
y ax (0 a 1)
图象
定义域 值域
单调性 过定点
函数值变 化情况
R
(0,+∞)
在R上是增函数 (0,1)
x > 0时,y > 1 x < 0时,0< y <1
R
(0,+∞)
在R上是减函数 (0,1)
x > 0时,0< y <1 x < 0时,y > 1
普通高中课程标准实验教科书·人教A版数学必修一(2.1.2)
2
1
0
1
关于y轴对称
x
观察右边图象,回答下列问题:y
(
1
)x
y
(1 3
)x
2
问题一:
图象分布在哪几个象限?
y=3X
Y y=2x
答四个图象都在第_Ⅰ_、_Ⅱ_象限。
问题二:
O
Y=1
X
图象的上升、下降与底数a有什么联系?
答:当底数_a >_1 时图象上升;当底数_0<_a_<_1时图象下降.
问题三: 图象中有一个最特殊的点?
人教B版(2019)数学必修(第二册):4.1.2 指数函数的性质与图像 课件(共104张PPT)

c=0.22.1,则a,b,c的大小关系是( )
A.a<c<b
B.b>a>c
C.b<a<c
D.c>a>b
【解析】选B.a=0.52.1∈(0,1),b=20.5>1,c=0.22.1, 0.52.1>0.22.1,所以a>c,所以b>a>c.
【加练·固】
已知
a
(
3
)
1 3
,
b
(
3 )
1 4
类型一 指数函数的概念 【典例】1.函数y=(a2-3a+3)·ax是指数函数,则a的值 为________. 2.指数函数y=f(x)的图像经过点(π,e),则f(-π) =________.
【思维·引】1.根据指数函数的解析式的特征列方程 求解. 2.设出指数函数的解析式,代入点的坐标求f(-π).
A.[3,9] C. [ 1,3]
3
B.[ 1,9]
3
D. [ 1,1]
93
3.已知函数f(x)=ax(a>0,a≠1)在区间[-1,1]上的最 大值与最小值的差是1,则实数a的值为________.
【思维·引】1.根据被开方数大于等于0求定义域. 2.先确定函数的单调性,再求最值. 3.分情况表示出最大值、最小值,列方程求a的值.
【加练·固】
函数y= 1-(1)x 的定义域为________.
3
【解析】因为函数有意义的充要条件是1- (1)x ≥0,则
3
(1)x ≤1,即x≥0,
3
所以函数的定义域为[0,+∞).
第2课时 指数函数的性质与图像的应用
指数函数的图像及性质ppt课件

3.在R上是增 3.在R上是减
象逐渐上升
象逐渐下降
函数
函数
特 征
4.图象分布在左 下和右上两个 区域内
4.图象分布在左 上和右下两个 区域内
质 4.当x>0时,y>1; 当x<0时,0<y<1.
4.当x>0时, 0<y<1;当x<0 时, y>1.
可编辑课件PPT 5.既不是奇函数又不是偶函数 13
y=1
(0,1)
象
0
x
y=ax y
y=1 (0,1)
0
x
1.定义域为R,值域为(0,+).
性 2.过点(0,1)即x=0时,y=1
3.在R上是增函数 3.在R上是减函数
例2.求下列函数的定义域、值域:
1
(1)y3x (2)y(0.2)52x 1
解 (1) 函数的定义域为{x|x 0},
值域为{y |y>0 ,且y1}. (2) 由2x10,得x1
3.3
可编辑课件PPT
1
问题1.某种细胞分裂时,由1个分裂成2个,2个 分裂成4个,……. 1个这样的细胞分裂 x 次 后,得到的细胞个数 y 与 x 的函数关系是什 么?
可编辑课件PPT
2
问题1
细胞分裂过程
细胞个数
第一次
2=21
第二次
表达式
4=22
第三次
……y…=…2x
8=23
第x次
……
2x
细胞个数y关于分裂次数x的表达为:
探讨:若不满足上述条件 y a x 会怎么样?
(1)若 a 0
则当x > 0时,a x 0
数学人教A版必修第一册4.2.2指数函数的图像与性质课件

轴且与轴无交点.
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x
…
-3
…
8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1
图
像
性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5
课件6:4.1.2 指数函数的性质与图像

∴ =在[-1,1]上单调递增,
∴
1
0< ≤≤.
由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],
∴
2 −2−3
1
2
∴ y=
≤
1 −4
=16.又∵
2
2 −2−3
1
2
2 −2−3
1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2
=
(2)
=
;
2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1
∴
1
0< ≤≤.
由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],
∴
2 −2−3
1
2
∴ y=
≤
1 −4
=16.又∵
2
2 −2−3
1
2
2 −2−3
1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2
=
(2)
=
;
2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你还能发 现指数函数图 象和底数的关 系吗?
y
y 1 x 2
y 1 x 3
在第一象限 沿箭头方向
底增大
y 3x y 2x
底互为倒2
0 y 1 x
x
3
观察右边图象,回答下列问题:
y (1)x 3
y=3X
问题一:
y (1)x
图象分别在哪几个象限? 2
解析: 设指数函数 f(x)=ax(a>0 且 a≠1), 由题意得 a2=4,∴a=2, ∴f(x)=2x, ∴f(-3)=2-3=18.
设问2:得到函数的图象一般步骤:
列表、描点、连线作图
在同一直角坐标系画出y 2 x
的图象,
y,
1 2
x
并思考:两个函数的图象有什么关系?
x
… -3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 …
① y x2
√⑤ y x
√② y 8 x
⑥ y 52x21
√③y(2a1)x ( a 1 且 a 1 )
2
④ y (4)x
⑦ y xx
⑧ y 10x
[题后感悟] 判断一个函数是否为指数函数只 需判定其解析式是否符合y=ax(a>0,且a≠1)这 一结构形式,其具备的特点为:
例题 已知指数函数 fxaxa0 ,a1
--66
--44
--22
22
44
66
8
7
6
y
1
x
5
2
4
3
2
1
-6
-4
-2
y 2x
2
4
6
认识
分组画出下列四个函数的图象: (1)y=2x (2)y=(1/2)x (3)y=3x (4)y=(1/3)x
y
y 1 x 2
y 1 x 3
y 3x y 2x
1
0
1
x
y
y
y 1 x
研究
截取
次数 1次 2次 3次 4次
x次
y (1)x 2
木棰 1 尺 1 尺 1 尺 1 尺
剩余 2
4
8
16
(1)x尺 2
提炼
y 2x, y (1)x 2
设 问 1 : 以 上 两 个 函 数 有 何 共 同 特 征 ? (1)均为幂的形式 ; (2)底数是一个正的常数 ; (3)自变量x在指数位.置 定义 : 一般地,函 y数 ax(a0,a1)叫做指数 函数,其x是 中自变量,函数域 的是 定义 R。
如 y(2)x在 x1处 无 意 义 ! 2
(3)a1时 对 于 x R , 都 有 a x 1 ! 是 一 个 常 量 ,没 有 研 究 的 必 要 !
在规定以后,对于任何x R,a x 都有意义,
且 a x >0. 因此指数函数的定义域是R,
值域是(0,+∞).
例题
(口答)判断下列函数是不是指 数函数,为什么?
的图像经过点 3 , , 求f0、 f1、 f3
的值.
分析:指数函数的图象经过点 3, ,
故 f 3 ,
1
即 a3
于是有
,解得a x
f x 3
3
想一
想
思考:确定一个指数函数
所以:
需要什么条件?
f 0π0 1,
f
1
1 π3
3 π,
f 3 π1 1.
π
例题:已知指数函数f(x)的图象过点(2,4),求 f(-3)的值.
y2 ax
(a1)
y 1 x 3
y
y 3x y 2x
y ax
(0a1)
1
1
1
0
x
0
1
0x
x
F:\指数函数比赛课件.rar指数函数性质图象.rar
指数函数 y a x 的图像及性质
a>1
0<a<1
图
y
y=ax
(a>1)
y=ax
y
(0<a<1)
(0,1)
y=1
象 y=1
(0,1)
当 x > 0 时,y > 01.
x
当 x < 0 时0,y > 1; x
定 义 域 : R 当 x < 0 时,. 0< y < 1
当 x > 0 时, 0< y < 1。
性
值 域: ( 0,+ ∞ )
恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 .
质 在 R 上是单调 增函数 在 R 上是单调 减函数
深入探究
一般地,函 y数 ax(a0,a1)叫做指 函数,其x是 中自变量,函数域 的是 定 R。
思考 (1)为什么定义域为R?
(2)为什么规定底数a >0且a ≠1呢?
认识:关于底数a范围的说明a:0,a1
(1)a0时 当 x>0时 , ax=0!
当 x0 时 , ax无 意 义 !
(2)a0时 对 于 x 的 某 些 数 值 , 可 使 a x 无 意 义 !
指数函数的图像 与性质
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
问题2、《庄子·天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
[题后感悟] 求指数型函数图象所过的定 点,只要令指数为0,求出对应的x与y的 值,即为函数图象所过的定点.
2.函数 y=a2x+b+1(a>0,且 a≠1, b∈R)的图象恒过定点(1,2),求 b 的值.
指数函数的图象 函数 y=ax-3+3(a>0,且 a≠1)恒过定点 ________.
利用指数函数y=axa>0且a≠1恒过定点0, 1的性质求解.
[解题过程] 原函数可变形为y-3=ax-3(a>0, 且a≠1), 将y-3看做x-3的指数函数, ∵x-3=0时,y-3=1,即x=3,y=4. ∴y=ax-3+3(a>0,且a≠1)恒过定点(3,4). 答案: (3,4)
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗?O
Y=1
X
答:当底数_a >_1 时图象上升;当底数_0<_a_<_1时图象下降.
底数a由小变大时函数图像在第一象限内按__逆__
时针方向旋转.
问题三: 图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1)_.
y 2 x … 0.13 0.25 0.35 0.5 0.71 1 1.4 2 2.8 4 8 …
x … -3 -2 -1.5 -1 -0.5
y ( 1 ) x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1
y
y 1 x 2
y 1 x 3
在第一象限 沿箭头方向
底增大
y 3x y 2x
底互为倒2
0 y 1 x
x
3
观察右边图象,回答下列问题:
y (1)x 3
y=3X
问题一:
y (1)x
图象分别在哪几个象限? 2
解析: 设指数函数 f(x)=ax(a>0 且 a≠1), 由题意得 a2=4,∴a=2, ∴f(x)=2x, ∴f(-3)=2-3=18.
设问2:得到函数的图象一般步骤:
列表、描点、连线作图
在同一直角坐标系画出y 2 x
的图象,
y,
1 2
x
并思考:两个函数的图象有什么关系?
x
… -3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 …
① y x2
√⑤ y x
√② y 8 x
⑥ y 52x21
√③y(2a1)x ( a 1 且 a 1 )
2
④ y (4)x
⑦ y xx
⑧ y 10x
[题后感悟] 判断一个函数是否为指数函数只 需判定其解析式是否符合y=ax(a>0,且a≠1)这 一结构形式,其具备的特点为:
例题 已知指数函数 fxaxa0 ,a1
--66
--44
--22
22
44
66
8
7
6
y
1
x
5
2
4
3
2
1
-6
-4
-2
y 2x
2
4
6
认识
分组画出下列四个函数的图象: (1)y=2x (2)y=(1/2)x (3)y=3x (4)y=(1/3)x
y
y 1 x 2
y 1 x 3
y 3x y 2x
1
0
1
x
y
y
y 1 x
研究
截取
次数 1次 2次 3次 4次
x次
y (1)x 2
木棰 1 尺 1 尺 1 尺 1 尺
剩余 2
4
8
16
(1)x尺 2
提炼
y 2x, y (1)x 2
设 问 1 : 以 上 两 个 函 数 有 何 共 同 特 征 ? (1)均为幂的形式 ; (2)底数是一个正的常数 ; (3)自变量x在指数位.置 定义 : 一般地,函 y数 ax(a0,a1)叫做指数 函数,其x是 中自变量,函数域 的是 定义 R。
如 y(2)x在 x1处 无 意 义 ! 2
(3)a1时 对 于 x R , 都 有 a x 1 ! 是 一 个 常 量 ,没 有 研 究 的 必 要 !
在规定以后,对于任何x R,a x 都有意义,
且 a x >0. 因此指数函数的定义域是R,
值域是(0,+∞).
例题
(口答)判断下列函数是不是指 数函数,为什么?
的图像经过点 3 , , 求f0、 f1、 f3
的值.
分析:指数函数的图象经过点 3, ,
故 f 3 ,
1
即 a3
于是有
,解得a x
f x 3
3
想一
想
思考:确定一个指数函数
所以:
需要什么条件?
f 0π0 1,
f
1
1 π3
3 π,
f 3 π1 1.
π
例题:已知指数函数f(x)的图象过点(2,4),求 f(-3)的值.
y2 ax
(a1)
y 1 x 3
y
y 3x y 2x
y ax
(0a1)
1
1
1
0
x
0
1
0x
x
F:\指数函数比赛课件.rar指数函数性质图象.rar
指数函数 y a x 的图像及性质
a>1
0<a<1
图
y
y=ax
(a>1)
y=ax
y
(0<a<1)
(0,1)
y=1
象 y=1
(0,1)
当 x > 0 时,y > 01.
x
当 x < 0 时0,y > 1; x
定 义 域 : R 当 x < 0 时,. 0< y < 1
当 x > 0 时, 0< y < 1。
性
值 域: ( 0,+ ∞ )
恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 .
质 在 R 上是单调 增函数 在 R 上是单调 减函数
深入探究
一般地,函 y数 ax(a0,a1)叫做指 函数,其x是 中自变量,函数域 的是 定 R。
思考 (1)为什么定义域为R?
(2)为什么规定底数a >0且a ≠1呢?
认识:关于底数a范围的说明a:0,a1
(1)a0时 当 x>0时 , ax=0!
当 x0 时 , ax无 意 义 !
(2)a0时 对 于 x 的 某 些 数 值 , 可 使 a x 无 意 义 !
指数函数的图像 与性质
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
问题2、《庄子·天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
[题后感悟] 求指数型函数图象所过的定 点,只要令指数为0,求出对应的x与y的 值,即为函数图象所过的定点.
2.函数 y=a2x+b+1(a>0,且 a≠1, b∈R)的图象恒过定点(1,2),求 b 的值.
指数函数的图象 函数 y=ax-3+3(a>0,且 a≠1)恒过定点 ________.
利用指数函数y=axa>0且a≠1恒过定点0, 1的性质求解.
[解题过程] 原函数可变形为y-3=ax-3(a>0, 且a≠1), 将y-3看做x-3的指数函数, ∵x-3=0时,y-3=1,即x=3,y=4. ∴y=ax-3+3(a>0,且a≠1)恒过定点(3,4). 答案: (3,4)
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗?O
Y=1
X
答:当底数_a >_1 时图象上升;当底数_0<_a_<_1时图象下降.
底数a由小变大时函数图像在第一象限内按__逆__
时针方向旋转.
问题三: 图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1)_.
y 2 x … 0.13 0.25 0.35 0.5 0.71 1 1.4 2 2.8 4 8 …
x … -3 -2 -1.5 -1 -0.5
y ( 1 ) x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1