四川省攀枝花市2013年中考数学试题(扫描版)

合集下载

攀枝花市十九中小2013年中考数学模拟试题

攀枝花市十九中小2013年中考数学模拟试题

2013年全新中考数学模拟试题一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是 【 】 A. 21-B. 21C. -2D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。

就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。

212000000用科学记数法应记为 【 】 A. 72.1210⨯ B. 82.1210⨯ C. 92.1210⨯ D. 90.21210⨯ 3. 下列运算正确的是 【 】 A .22a a a =⋅ B .33()ab ab = C .632)(a a = D .5210a a a=÷4.如图,直线l 1∥l 2,则α为 【 】A .150°B .140°C .130°D .120°5.二元一次方程组20x y x y +=⎧⎨-=⎩的解是 【 】A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6..如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】A .12B .9C .6D .47.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .20. B. 1508 C. 1550 D. 15588.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的 【 】第4题第6题A. B. C. D.二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算818-的结果是 。

四川省攀枝花市2013年中考数学模拟试卷(四)(解析版) 新人教版

四川省攀枝花市2013年中考数学模拟试卷(四)(解析版) 新人教版

2013年某某省某某市中考数学模拟试卷(四)一、选择题(每小题3分,共30分)1.(3分)(2012•某某)﹣5的相反数是()A.﹣5 B.C.5D.﹣考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故选:C .点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2012•某某)如图的几何体是由5个完全相同的正方体组成的,这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左边看去,左边是两个正方形,右边是一个正方形,即可得出答案,故选;B.点评:本题考查了由三视图判断几何体和简单组合体的三视图,关键是掌握几何体的三视图及空间想象能力.3.(3分)(2012•某某)下列运算正确的是()A.a2•a3=a6B.a5+a5=a10C.a6÷a2=a3D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘除法法则,合并同类项法则,幂的乘方法则,逐一检验.解答:解:A、a2•a3=a2+3=a 5,本选项错误;B、a5+a5=2a5,本选项错误;C、a6÷a2=a6﹣2=a4,本选项错误;D、(a3)2=a6,本选项正确;故选D.点评:本题考查了同底数幂的乘除法法则,合并同类项法则,幂的乘方法则.关键是熟练掌握每个法则.4.(3分)(2012•某某)下列交通标志是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合是解题的关键.5.(3分)(2012•某某)每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:册数01 2 3 4人数313 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2考点:众数;中位数.分析:在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;解答:解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.点评:本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.6.(3分)(2012•某某)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<1考点:一次函数与一元一次不等式.专题:数形结合.分析:直接根据函数的图象与y轴的交点为(0,1)进行解答即可.解答:解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.点评:本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.7.(3分)(2012•某某)如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值X围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<2考点:反比例函数与一次函数的交点问题.专题:压轴题;探究型.分析:先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.解答:解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A(2,1),∴B(﹣2,﹣1),∵由函数图象可知,当0<x<2或x<﹣2时函数y1的图象在y2的上方,∴使y1>y2的x的取值X围是x<﹣2或0<x<2.故选D.点评:本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值X围是解答此题的关键.8.(3分)(2012•某某)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.A B:BC=1:4 C.A B:BC=5:2 D.A B:BC=5:8考点:平行四边形的性质;等腰三角形的判定与性质.专题:计算题;压轴题.分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到∠AEB=∠EBC,再由BE平分∠ABC得到∠ABE=∠EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF 得到AF=DE,当EF=AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠EBC,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,同理可得:DC=DF,∴AE=DF,∴AE﹣EF=DF﹣EF,即AF=DE,当EF=AD时,设EF=x,则AD=BC=4x,∴AF=DE=(AD﹣EF)=1.5x,∴AE=AB=AF+EF=2.5x,∴AB:BC=2.5:4=5:8.故选D.点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用.9.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c>0 B.b c<0 C.0<<1 D.a﹣b+c<0考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.解答:解:A、根据图象的开口方向向下知a<0.又该抛物线与y轴交于正半轴,则c>0,所以ac<0.故本选项错误;B、∵根据图象知,对称轴x=﹣>0,a<0,∴b>0,又∵c>0,∴bc>0.故本选项错误;C、对称轴x=﹣.根据图象知,对称轴0<<1.故本选项正确;D、根据图象知,当x=﹣1时,y>0,即a﹣b+c>0.故本选项错误;故选C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.10.(3分)现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,则2※3+m※1=6,则不等式<m的解集是()A.x<﹣2 B.x<﹣1 C.x<0 D.x>2考点:解一元一次不等式;解一元一次方程.专题:压轴题;新定义.分析:先根据新定义得到2×3+2﹣3+m×1+m﹣1=6,解得m=1,则不等式化为<1,然后通过去分母、移项可得到不等式的解集.解答:解:∵2※3+m※1=6,∴2×3+2﹣3+m×1+m﹣1=6,∴m=1,∴<1,去分母得3x+2<2,移项得3x<0,系数化为1得x<0.故选C.点评:本题考查了解一元一次不等式:先去分母和括号,再移项、合并,然后把未知数的系数化为1得到不等式的解集.也考查了阅读理解能力.二、填空题(每小题4分,共24分)11.(4分)(2013•崇左)函数中,自变量x的取值X围是x≥2.考点:函数自变量的取值X围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(4分)(2012•某某)如图,一块直角三角板的两个顶点分别在直尺的对边上.若∠1=30°,那么∠2= 60 度.考点:平行线的性质.分析:由题意得:a∥b,∠ACB=90°,根据平角的定义,可求得∠3的度数,又由两直线平行,同位角相等,即可求得∠2的度数.解答:解:如图,由题意得:a∥b,∠ACB=90°,∵∠1=30°,∴∠3=180°﹣∠ACB﹣∠1=180°﹣90°﹣30°=60°,∴∠2=∠3=60°.故答案为:60.点评:此题考查了平行线的性质与平角的定义.此题难度不大,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.13.(4分)(2012•某某)我市某公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为10% .考点:一元二次方程的应用.专题:增长率问题.分析:设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是40(1+x)万元,今年的纳税额是40(1+x)2万元,据此即可列出方程求解.解答:解:设该公司缴税的年平均增长率为x,依题意得40(1+x)2解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.点评:本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出式子是解题的关键.14.(4分)(2012•某某)一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是15 .考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=20%,解得,a=15个.故答案为15.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.15.(4分)(2012•某某)如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成的第3个三角形,…,则第n个三角形的周长为26﹣n.考点:三角形中位线定理.专题:规律型.分析:根据三角形的中位线定理建立周长之间的关系,按规律求解.解答:解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长×=32×,第三个三角形的周长为=△ABC的周长××=32×()2,…第n个三角形的周长=32×()n﹣1=26﹣n,故答案为:26﹣n.点评:本题考查了三角形的中位线定理,解决本题的关键是利用三角形的中位线定理得到第n个三角形的周长与第一个三角形的周长的关系.16.(4分)(2012•某某)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.考点:三角形的外接圆与外心;圆周角定理;锐角三角函数的定义.专题:计算题;压轴题.分析:作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出sin∠D=,代入求出CD即可.解答:解:作圆O的直径CD,连接BD,∵弧BC对的圆周角有∠A、∠D,∴∠D=∠A=60°,∵直径CD,∴∠DBC=90°,∴sin∠D=,即sin60°=,解得:CD=2,∴圆O的半径是,故答案为:.点评:本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是得出sin∠D=,题目比较典型,是一道比较好的题目.三、解答题17.计算:.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的化简、零指数幂、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.解答:解:原式=3+1﹣1=3.点评:本题考查了实数的运算,涉及二次根式的化简、零指数幂、特殊角的三角函数值等知识点,属于基础题.18.先化简,再求值:,其中a是方程2x2﹣2x﹣9=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:将原式被除式括号中两项通分并利用同分母分式的减法法则计算,分子整理后分解因式,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,由a是方程2x2﹣2x﹣9=0的解,将x=a代入方程,得到关于a的等式,整理后代入化简后的式子中即可求出原式的值.解答:解:原式=[﹣]÷﹣a2=•﹣a2=a ﹣a2,∵a是方程2x2﹣2x﹣9=0的解,∴将x=a代入方程得:2a2﹣2a﹣9=0,∴a2﹣a=,即a﹣a2=﹣,则原式=﹣.点评:此题考查了分式的化简求值,以及一元二次方程的解,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(2012•某某)如图,在由边长为1的小正方形组成的网格中,三角形ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)(3)求∠BCC1的正切值.考点:作图-旋转变换;扇形面积的计算;锐角三角函数的定义.专题:探究型.分析:(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;(3)直接根据锐角三角函数的定义即可得出结论.解答:解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA==2,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1==2π.答:扫过的图形面积为2π.(3)在Rt△BCC1中,tan∠BCC1===.答:∠BCC1的正切值是.点评:本题考查的是作图﹣旋转变换、扇形的面积公式及锐角三角函数定义,熟知图形旋转后所得图形与原图形全等的性质是解答此题的关键.20.(2012•某某)自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图某某息解答下列问题:(1)该校本次调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?考点:条形统计图;扇形统计图;概率公式.专题:计算题.分析:(1)结合条形统计图和扇形统计图,利用A组频数42除以A组频率42%,即可得到该校本次调查中,共调查了多少名学生;(2)利用(1)中所求人数,减去A、B、D组的频数即可;C组频数除以100即可得到C组频率;(3)根据概率公式直接解答.解答:解:(1)该校本次一共调查了42÷42%=100名学生…3分,(2)喜欢跑步的人数=100﹣42﹣12﹣26=20人…2分,喜欢跑步的人数占被调查学生数的百分比=100%=20%…2分,补全统计图,如图:(3)在本次调查中随机抽取一名学生他喜欢跑步的概率=…3分.点评:本题考查了条形统计图、扇形统计图、概率公式,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(2012•某某)某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.(1)设A种货车为x辆,运输这批货物的总运费为y万元,试写出y与x的关系表达式;(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;(3)试说明哪种方案总运费最少?最少运费是多少万元?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设A种货车为x辆,则B种货车为(50﹣x)辆,则表示出两种车的费用的和就是总费用,据此即可求解;(2)仓库有甲种货物360吨,乙种货物290吨,两种车的运载量必须不超过360吨,290吨,据此即可得到一个关于x的不等式组,再根据x是整数,即可求得x的值,从而确定运输方案;(3)运费可以表示为x的函数,根据函数的性质,即可求解.解答:解:(1)设A种货车为x辆,则B种货车为(50﹣x)辆.根据题意,得y=0.5x+0.8(50﹣x),即y=﹣0.3x+40(2)根据题意,得解这个不等式组,得20≤x≤22∵x是整数∴x可取20、21、22即共有三种方案,A(辆)B(辆)一20 30二21 29三22 28(3)由(1)可知,总运费y=﹣0.3x+40,∵k=﹣0.3<0,∴一次函数y=﹣0.3x+40的函数值随x的增大而减小.所以x=22时,y有最小值,即y=﹣0.3×22+40=33.4(万元)选择方案三:A种货车为22辆,B种货车为28辆,总运费最少是33.4万元.点评:本题考查二元一次方程组的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程组和不等式组即可求解.22.(2012•某某)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.考点:全等三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.解答:解:(1)①结论:BD=CE,BD⊥CE;②结论:BD=CE,BD⊥CE…1分理由如下:∵∠BAC=∠DAE=90°∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分在△ABD与△ACE中,∵∴△ABD≌△ACE(SAS)∴BD=CE…1分延长BD交AC于F,交CE于H.在△ABF与△HCF中,∵∠ABF=∠HCF,∠AFB=∠HFC∴∠CHF=∠BAF=90°∴BD⊥CE…3分(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分点评:本题考查了全等三角形的判定与性质.SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理.注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状;另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等.23.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;考点:二次函数综合题.分析:(1)直接把点A(﹣3,0),B(1,0)代入二次函数y=ax2+bx+2求出a、b的值即可得出抛物线的解析式;(2)设点P坐标为(m,n),则n=﹣m2﹣m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.根据三角形的面积公式得出△P AC的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC为边,在线段BC两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,根据全等三角形的判定定理得出△Q1CD≌△CBO,△CBO≌△BQ2E,故可得出各点坐标.解答:解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴解得,∴二次函数的关系解析式为y=﹣x2﹣x+2;(2)存在.∵如图1所示,设点P坐标为(m,n),则n=﹣m2﹣m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.则PM=﹣m2﹣m+2,PN=﹣m,AO=3.∵当x=0时,y=﹣×0﹣×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=AO•PM+CO•PN﹣AO•CO=×3×(﹣m2﹣m+2)+×2×(﹣m)﹣×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣=﹣时,S△PAC有最大值.∴n=﹣m2﹣m+2=﹣×(﹣)2﹣×(﹣)+2=,∴存在点P(﹣,),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).点评:本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.24.如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD于H,BC=BH=2.动点F从点D出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F作FE⊥AD交折线D ﹣C﹣B于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点C1、D1.设F点运动的时间是x秒(x>0).(1)当点E和点C重合时,求运动时间x的值;(2)在整个运动过程中,设△EFD1或四边形EFD1C1与梯形ABCD重叠部分面积为S,请直接写出S与x之间的函数关系式和相应自变量x的取值X围;(3)平移线段CD,交线段BH于点G,交线段AD于点P.在直线BC上存在点I,使△PGI为等腰直角三角形.请求出线段IB的所有可能的长度.考点:相似形综合题.专题:压轴题.分析:(1)过C作GC∥AB交AD于G,通过勾股定理就可以求出AH=1,AB=,再得出四边形ABCG是平行四边求出DH,过C作CM⊥AD交AD于M,求出DM的值即可;(2)分四种情况讨论,如图4,当0<x≤3.5时,如图5,3.5<x≤4时,作GM⊥AD于M,如图6,当4<x≤5时,作GM⊥AD于M,如图7,当5<x≤6时,可以分别求出S与x之间的环数关系式;(3)分三种情况:当点P为直角顶点时,当点I为直角顶点时,当点G为直角顶点时,利用全等三角形的性质就可以求出结论.解答:解:(1)过C作GC∥AB交AD于G,∴∠CGD=∠A,∵∠A+∠D=90°,∴∠CGD+∠D=90°,∴∠DCG=90°.在Rt△AHB中,tanA=2,BH=2,∴AH=1,AB=,∵BC∥AD,CG∥AB,∴四边形ABCG是平行四边形,∴AG=BC=2,CG=AB=,∴CD=2,GD=5,∴DH=6.过C作CM⊥AD交AD于M,∴DM=4,当点E和点C重合时x=4.(3)如图4,当0<x≤3.5时,S= D1F•EF=x• x= x2;如图5,3.5<x≤4时,作GM⊥AD于M,S= D1F•EF﹣ D1A•GM.D1A=2x﹣7设GM=a,则AM= a,∵a,∴,∴a=,即GM=.∴S= x2﹣(2x﹣7)×;=﹣ x2+ x﹣;如图6,当4<x≤5时,作GM⊥AD于M,S=(C1E+D1F)×2﹣ D1A•GM=(x﹣4+x)×2﹣(2x﹣7)×=﹣ x2+ x﹣;如图7,当5<x≤6时,S=(BE+AF)•EF=(6﹣x+7﹣x)×2=13﹣2x.(3)①如图1当点P为直角顶点时,作IO⊥AD于O,∴∠POI=90°.∠GPI=90°.∴∠GPH+∠IPO=90°,∠IPO+∠PIO=90°,∴∠GPH=∠PIO.∵△PGI是等腰直角三角形,∴GP=IP.∵BH⊥AD,∴∠BHP=90°,∴∠BHP=∠POI.在△GHP和△POI中,,∴△GHP≌△POI,∴HP=OI,GH=PO.∵GP∥CD,∴∠GPH=∠D.∵∠A+∠D=90°,∴∠A+∠GPH=90°,∵∠A+∠ABH=90°,∴∠ABH=∠GPH.∵tanA=2,∴tan∠ABH=tan∠GPH=,∴GH=HP=IO=1,∴IB=2+1=3;②如图2,当点I为直角顶点时,作IO⊥AD于O,同理可以得出:△BGI≌△OPI,∴IP=IO.∵IO=BH=2,∴IB=2;③如图3,当点G为直角顶点时,同理可以得出:△BGI≌△HPG,∴BI=GH,GB=HP.∵GH=HP,∴GH=BG,∴GH=BH=,∴BI=.综上所述,IB的长度是3,2,.点评:本题考查了平行四边形的性质的运用,轴对称的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用,分段函数的解法的运用,三角函数值的运用,勾股定理的运用,等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时寻找分段函数的分段点是难点,解答时考虑不同情况的S的值如何的表示是关键.。

2013年四川省攀枝花市中考模拟第七次联考数学试题

2013年四川省攀枝花市中考模拟第七次联考数学试题

2013年四川省攀枝花市中考模拟第七次联考数学试题一、选择题(每小题3分,共30分)1.6-的绝对值等于 ( ) (A )6.(B )16. (C )16-. (D )6-. 2.北京奥运圣火在全球传递的里程约为137000km ,用科学记数法表示为 ( ) (A )31.3710⨯km . (B )313710⨯km .(C )51.3710⨯km . (D )513710⨯km . 3.下列计算正确的是 ( ) (A )33x x x ⋅=. (B )32x x x ÷=. (C ). 32x x x -= (D )336x x x +=. 4.图中所示几何体的俯视图是( )5.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的 数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数 分别是 ( ) (A )0,20. (B )50,30. (C )50,50. (D )135,50.6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉 祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀 后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福 娃)的概率是 ( ) (A )15. (B )25. (C )12. (D )35. 7. 将一副直角三角尺如图放置,已知AE BC ∥,则AFD ∠的度数是 ( ) (A )45.(B )50. (C )60.(D )75.8.二次函数y = x 2+10x -5的最小值为( ) (A)-35. (B)-30. (C)-5. (D)20.9. 如图,点P 是双曲线4(0)y x x=>上一个动点, 点Q 为线段OP 的中点,则⊙O 的面积不可能是( )(A )4π. (B )3π. (C )2π. (D )π. 10.如图,△ABC 中,∠A=30°,23tan =B ,AC=32,则AB 的长为( ) A .33+ B .322+C .5D .29(第9题)(第7题)EDCBA二、填空题(每小题4分,共24分)11. 函数y=中,自变量x的取值范围是.12.分解因式:32a ab-=.13. 不等式组21318xx->-⎧⎨+<⎩的解集为.14.已知一次函数y=ax+b(a,b是常数,且a≠0).x与y的部分对应值如下表:那么不等式ax+b>0的解集是.15.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan∠CBE的值是16.如图,直线bxy+-=与双曲线xy1=(x>0)交于A、B与x轴、y轴分别交于E、F两点,连结OA、OB,若O AEO BFAO BSSS∆∆∆+=,则=b.三、解答;17.求值:︒∙︒+︒-︒45tan45cot60cos230sin218.若022=--xx,求:()3132222+-+--xxx x的值19.如图,已知ABC△,以BC为直径,O为圆心的半圆交AC于点F,点E为CF弧的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD BE⊥,垂足为点H。

四川省攀枝花市第二初级中学等三校2013届九年级数学5月联考试题

四川省攀枝花市第二初级中学等三校2013届九年级数学5月联考试题

某某省某某市第二初级中学等三校2013届九年级5月联考数学试题第Ⅰ卷(单项选择题,共30分) 温馨提示:1.答第Ⅰ卷前,考生务必把自己的某某、某某号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应标号涂黑。

如需改动,用椽皮擦干净后,再选涂其它答案。

不能答在试卷上。

3.考试结束后,将本试题卷带走并妥善保管,答题卡交回。

一.选择题(本大题共10题,每题3分,满分30分) 1.下列实数中,是无理数的为( )A. B.13 C. 3 D.92.下列运算正确的是 ( ) A.2a+a=3a 2B.94)9)(4(-⋅-=-- C.(3a 2)3=9a 6 D.a 2•a 3=a 53.下列四个图案中,轴对称图形的个数是( )A.1B.2C.3D.44.一元二次方程2x 2-4x+1=0根的情况是 ( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定5.某鞋店试销一种新款女鞋,销售情况如下表所示: 型号 22 23 24 25 数量(双)351015832鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A .平均数B .众数C .中位数D .方差6.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b),把余下的部分剪拼成一个矩形,通过计算两个图形的面积,验证了一个等式,则这个等式是( )A .()()b a b a b a -+=-22B .()2222b ab a b a ++=+C .()2222b ab a b a +-=-D .()()2222b ab a b a b a -+=-+7.在同一直角坐标系中,函数y=3x 与y=x1-图象大致是( )8.下图是由一些火柴棒搭成的图案:照此方式摆下去,第6个图案用多少根火柴棒:( )A.24B.25C.26D.279.关于x 的不等式组a x x x x ++-+<>235352只有5个整数解,则a 的取值X 围是()A.-6<a <-211 B.-6≤a <-211 C.-6<a ≤-211 D.-6≤a ≤-21110.已知二次函数y=+bx+c (a ≠0)的图象如图所示,下列结论:①abc>0; ②b<a+c; ③4a+2b+c>0; ④2c<3b;⑤a+b>m(am+b),(m ≠1的实数)其中正确的结论有( ) A.2个 B.3个 C.4个 D.5个 第Ⅱ卷(非选择题,共90分)二.填空题(本大题共6题,每题4分,满分24分) 11.不等式-2x+4﹥0的解集是12.2008年奥运圣火在某某的传递路线长是17400米,用科学记数法表示为米. 13.如图,在△ABC 中,∠C=90°,若BD ∥AE ,∠DBC=20°,则∠CAE 的度数是14.已知关于x 的方程(a+2)x 2-3x+ 1=0,如果从-2,-1,0,1,2五个数中任取一个数作为此方程中的a ,那么所得方程有实数根的概率是15.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是16.如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,ABC △的面积=cm 2.三.解答题(本大题共8题,17 ~ 19题每题6分,20 ~ 22题每题8分,23、24题每题12分,满分66分) 17.计算:045sin 2)12(121--++18.解方程:x x ─ 1 ─2 x ─ 2x ─ 1 = 019.在四边形ABCD 中,AB ∥CD ,∠D=900,∠DCA=300,CA 平分∠DCB ,AD=4cm,求AB 的长度?20.某环保小组为了解世博园的游客在园区内购买瓶装饮料 数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的数据整理后绘成图.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料 的游客人数占A 出口的被调查游客人数的_______%.(2)试问A 出口的被调查游客在园区内人均购买了多少瓶饮料? (3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料 的数量如表一所示 若C 出口的被调查人数比B 出口的被 调查人数多2万,且B 、C 两个出口的被调查游客在园区 内共购买了49万瓶饮料,试问B 出口的被调查游客人数出 口BC 人均购买饮料数量(瓶) 32表 一为多少万?21.如图,直线323+-=x y 与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将△DAB 沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.22.4月20日,我省某某市泸县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘饥,甲地需要25台,乙地需要23台;A 、B 两省获知情况后慷慨相助,分别捐赠该型号挖掘饥26台和22台并将其全部调往灾区。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc

几何体1、(绵阳市2013年)把右图中的三棱柱展开,所得到的展开图是( B )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B。

2、(2013年南京)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。

3、(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一4、(2013河南省)如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

【答案】B5、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为(),高为=6、(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错,D中底面不符合,只有A符合。

7、(2013•温州)下列各图中,经过折叠能围成一个立方体的是()8、(2013•巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()9、(2013菏泽)下列图形中,能通过折叠围成一个三棱柱的是( )A .B .C .D .考点:展开图折叠成几何体.分析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.解答:解:A .另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.10、(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()B C...13、(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()14、(2013台湾、25)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?( )A .B .C .D .考点:几何体的表面积.分析:根据立体图形的面积求法,分别得出几何体的表面积即可. 解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.点评:此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.15、(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16、(2013•咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.。

四川省攀枝花市2013年中考第六次联考模拟数学试题(无答案)

四川省攀枝花市2013年中考第六次联考模拟数学试题(无答案)

2013年四川省攀枝花市中考模拟第六次联考数学试题班级 姓名一、选择题(共10个小题,每小题3分,共30分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。

1. 0.5-的倒数是( )A .2- B .0.5 C .2 D .0.5-2. 下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<- 3. 下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C .某彩票中奖率为0036,说明买100张彩票,有36张中奖。

D .打开电视,中央一套正在播放新闻联播。

4. 已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D . 1525. 某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( ) A .()2001731127x += B .()0017312127x -=C .()2001731127x -=D .()2001271173x +=6. 如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513C .6013D .75137. 如图,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( )A .50 B .80或50 C .130 D .50 或130 8. 方程24321x xx x x ++=++的解为( ) A .124,1x x == B .12173173,66x x +-== CB7题图C .4x =D .124,1x x ==-9. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( ) A .66 B .48 C .48236+ D .5710. 二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图像是( )二、填空题(共6小题,每小题4分,共24分)11. 用科学计数法表示0.0000023 = 。

2013年四川省攀枝花市中考模拟第六次联考数学试题

2013年四川省攀枝花市中考模拟第六次联考数学试题

2013年四川省攀枝花市中考模拟第六次联考数学试题班级 姓名一、选择题(共10个小题,每小题3分,共30分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。

1. 0.5-的倒数是( )A .2- B .0.5 C .2 D .0.5- 2. 下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<- 3. 下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C .某彩票中奖率为0036,说明买100张彩票,有36张中奖。

D .打开电视,中央一套正在播放新闻联播。

4.已知y =,则2xy 的值为( ) A .15- B .15 C .152-D . 1525. 某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x +=6. 如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .75137. 如图,100AOB ∠= ,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( )A .50 B .80 或50 C .130 D .50 或1308. 方程24321x xx x x ++=++的解为( ) A .124,1x x == B.12x x ==C .4x =D .124,1x x ==-7题图9. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( ) A .66 B .48 C.36 D .5710. 二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图像是( )二、填空题(共6小题,每小题4分,共24分)11. 用科学计数法表示0.0000023 =。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档