八年级数学因式分解2

合集下载

新北师大版八年级数学下册《四章因式分解2.提公因式法公因式为多项式的提公司因式法》教案_2

新北师大版八年级数学下册《四章因式分解2.提公因式法公因式为多项式的提公司因式法》教案_2

4.2提公因式法第1课时提单项式因式分解导学案学习目标:1.经历探索寻找多项式各项的公因式的过程,能确定多项式的公因式。

2.会用提取公因式法进行因式分解。

预习案:1、什么叫分解因式?2、整式乘法与分解因式之间的关系。

3、分析下列计算是整式乘法中的哪一种并求出结果:4、阅读教材P95~96内容问题1:多项式ma +mb +mc 有哪几项?问题2:每一项的因式都分别有哪些?问题3:这些项中有没有公共的因式,若有,公共的因式是什么?观察下列各式的结构有什么共同特点?①ax-ay ② ma +mb+mc③ 2πR + 2πr 归纳:多项式中都含有的,叫做这个多项式各项的公因式. 自学反馈:确定下列各多项式中的公因式1) a c+ b c 2)3 x2 +9xy 3) a 2 b – 2a b 2 + ab 4) 4xy2-6xy+8x 3y5、多项式中的公因式是如何确定的?探究案:例:找公因式: 3x 2y 2– 6xy 3 2 x2+ 6 x 3跟踪训练1:写出下列多项式各项的公因式:归纳总结:如果一个多项式的各项含有,那么就可以把这个提出来,从而将多项式化成两个因式的形式,这种因式分解的方法叫做.3(2)x 7(3)x x 24(637)x x x 22(8121)ab a b b c 872x 222axy y x a 32224x x x 233642a b a b ab例1 :将下列各式分解因式:例2 :把9x 2-6xy+3xz 分解因式. 3a 2-9ab 用提公因式法分解因式的步骤跟踪训练2:把下列各式分解因式:例3:小颖解的有误吗?把8a 3b 2 –12ab 3 c + ab 分解因式.解:8 a 3b 2 –12ab 3c + ab= ab ·8a 2b - ab ·12b 2 c +ab ·1= ab(8a 2b - 12b 2c)跟踪训练3:把下列各式分解因式:例4:因式分解– 24x 3–12x 2+28x 跟踪训练4:把下列各式分解因式:5、提公因式法分解因式与单项式乘多项式有什么关系?5、现有甲、乙、丙三位同学各做一题,他们的解法如下:你认为他们的解法正确吗?试说明理由。

专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)

专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)

专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

专题02 平方差公式(提升版)【典型例题】类型一、公式法——平方差公式 例1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解. 【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:(1); (2)(3); (4);【答案】解:(1)原式(2)原式=2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--= (3)原式 (4)原式例2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4).【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】先化简,再求值:(2a +3b )2﹣(2a ﹣3b )2,其中a =.【答案】解:原式=(2a +3b +2a ﹣3b )(2a +3b ﹣2a +3b ) =4a ×6b =24ab ,当a =,即ab =时,原式=24ab =4. 类型二、平方差公式的应用例3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x 4﹣y 4=(x ﹣y )(x +y )(x 2+y 2),当x =9,y =9时,x ﹣y =0,x +y =18,x 2+y 2=162,则密码018162.对于多项式4x 3﹣xy 2,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x 3﹣xy 2进行因式分解,得到4x 3﹣xy 2=x (2x +y )(2x ﹣y ),然后把x =10,y =10代入,分别计算出2x +y =及2x ﹣y 的值,从而得出密码. 【答案与解析】解:原式=x (4x 2﹣y 2)=x (2x +y )(2x ﹣y ), 当x =10,y =10时,x =10,2x +y =30,2x ﹣y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x y x x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣.【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.同步练习一.选择题1.分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22.下列多项式相乘,不能用平方差公式的是( ) A.(﹣2y ﹣x )(x +2y ) B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y +x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C.D. 4. 下列各式,其中因式分解正确的是( ) ①;② ③ ④ A.1个 B.2个 C.3个 D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积应等于( ) A .B .C .D .二.填空题 7. ; .8. 若,将分解因式为__________.9. 分解因式:_________.10. 若,则是_________.11.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 . 12.已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 .三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)()()2292323a b a b a b -+=+-()()5422228199a ab a a bab -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭5121211202311_________m m aa +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422nx xx x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-14.已知(2a +2b +3)(2a +2b ﹣3)=72,求a +b 的值.15.设,,……,(为大于0的自然数).(1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】 一.选择题 1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】;;. 4. 【答案】C ;【解析】①②③正确. . 5. 【答案】C ;【解析】6. 【答案】C ; 【解析】 22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a bab a a b a b a b -=+-=++-()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭二.填空题 7. 【答案】;【解析】.8. 【答案】;【解析】.9. 【答案】;【解析】原式=. 10.【答案】4; 【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1, =(24﹣1)(24+1)(28+1)+1, =(28﹣1)(28+1)+1, =216﹣1+1,=216因为216的末位数字是6, 所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y =﹣2,x +y =2,∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4. 三.解答题 13.【解析】解:(1)-1998×2000 =(2)111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m aa a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x++-=+-=-21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-(3)14.【解析】解:已知等式变形得:[2(a +b )+3][2(a +b )﹣3]=72,即4(a +b )2﹣9=72, 整理得:(a +b )2=,开方得:a +b =±. 15.【解析】解:(1) 又为非零的自然数, ∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数. (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.为一个完全平方数的2倍时,为完全平方数.()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (21)5050=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
A.
一元一次方程
B.
C. x2-1=0
D. 2x+1=3x 一元二次方程
一元一次方程
2.(2020·海南中考)分式方程 的解是(
A. x=-1
B. x=1 C. x=5
x-2=3
D. x=2
x=5
) C
解分式方程时,不要忘记检验哦.
用平方差公式分解因式 由于整式的乘法与因式分解是方向相反的变形,把整 式乘法的平方差公式(a+b)(a-b)=a2-b2的等号两边互换位 置,就得到了 a2-b2=(a+b)(a-b)
语言叙述:两个数的平方差,等于这两个数的和与这 两个数的差的积.
用完全平方公式分解因式 把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 的等号两边互换位置,就可以得到 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 语言叙述:两个数的平方和加上(或减去)这两个数 的积的2倍,等于这两个数的和(或差)的平方.
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
可以看作a2-b-12.
1 -4
b4-b2-12 =(b2-4)(b2+3) =(b+2)(b-2)(b2+3).
13 1×3+1×(-4)=-1
2.(2020·乐山)已知y≠0,且x2-3xy-4y2=0,则 的值是
__4_或__-_1__.
分析:因为x2-3xy-4y2=0, 即(x-4y)(x+y)=0, 可得x=4y或x=-y, 所以 =4或 =−1.

因式分解(2)——公式法(人教版)八年级数学上册PPT课件

因式分解(2)——公式法(人教版)八年级数学上册PPT课件
原式=(x-y)(a2-b2) =(x-y)(a+b)(a-b).
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)

(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)

(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2

八年级数学因式分解

八年级数学因式分解

数学因式分解是将一个数或多项式分解成乘积的过程。

这种技能在代数和数学中很重要,因为它可以简化复杂的表达式,使它们更容易处理和理解。

以下是一些常见的因式分解方法:
整数因式分解:将一个整数分解成它的质因数乘积的形式。

例如,72可以分解为2^3 \times 3^2。

多项式因式分解:将一个多项式分解成它的不可约因子的乘积。

例如,x^2 - 4可以分解为(x-2)(x+2)。

完全平方数差分公式:a^2-b^2=(a+b)(a-b)。

完全立方数差分公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

公因式分解:找到多项式中的公共因子并将其提取。

例如,2x^3+4x^2可以分解为2x^2(x+2)。

分组分解:将多项式拆分为两个部分,并在每个部分中寻找公共因子,然后将这些因子提取出来。

例如,2x^3+3x^2+4x+6可以分解为(2x^3+3x^2)+(4x+6)=x^2(2x+3)+2(2x+3)=(x^2+2)(2x+3)。

以上是一些常见的因式分解方法,但还有许多其他技巧和公式可用于因式分解。

八年级因式分解的知识点

八年级因式分解的知识点

八年级因式分解知识点总结因式分解是数学中一个重要的知识点,不仅在初中阶段就开始学习,还贯穿了高中乃至大学的数学学习。

因此,掌握好八年级的因式分解知识点,对于后续数学学习的顺利进行具有重要的作用。

本文将就八年级因式分解的知识点进行总结,希望对于大家的学习有所帮助。

一、公因数与最大公因数公因数是指同时能够整除两个或多个数的因数,在因式分解中有着重要的作用。

求两个或多个数的最大公因数的方法,可以通过列举其公因数,然后筛选出最大的一个。

例如,求两个数72和96 的最大公因数。

首先列出它们的公因数,有1、2、3、4、6、8、12、24 八个数,在这个基础上,筛选能够整除72 和96 的最大整数,即24,因此,72 和96 的最大公因数为24。

二、公式在因式分解中,常用到一些公式,例如差平方公式、和平方公式等。

这些公式的掌握对于因式分解的顺利进行具有非常重要的作用。

1. 差平方公式$(a+b)\cdot(a-b)=a^2-b^2$2. 和平方公式$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$三、因式分解在因式分解中,一个重要的概念是质因数分解。

质因数分解是指将一个正整数分解成若干个质数的积的形式。

例如,24=2×2×2×3,即24的质因数分解为$2^3\cdot3$。

在因式分解中,常用到一些方法,例如提公因式、分组、取因式等。

这些方法的运用可以简化计算过程,提高计算效率。

四、例题下面列举两个例题,帮助大家更好地理解因式分解的知识点。

1. $6x^2+5x-6$的因式分解式是解:先求出这个多项式的根,即$x_1=\frac{-5+\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=-\frac{2}{3}$,$x_2=\frac{-5-\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=1$。

因此,将原式分解成$(2x+3)(3x-2)$。

沪科版数学八年级下册《因式分解法》教学设计2

沪科版数学八年级下册《因式分解法》教学设计2

沪科版数学八年级下册《因式分解法》教学设计2一. 教材分析《因式分解法》是沪科版数学八年级下册的一章内容,主要介绍了因式分解的方法和应用。

本章内容是学生学习代数的重要基础,也是解决各种数学问题的有效工具。

教材通过丰富的实例和练习,帮助学生理解和掌握因式分解的方法,并能够灵活运用到实际问题中。

二. 学情分析学生在学习本章内容前,已经掌握了整式的乘法、幂的运算等基础知识,具备一定的代数基础。

但部分学生对于因式分解的概念和方法可能还比较陌生,需要通过大量的练习和引导来逐步理解和掌握。

同时,学生对于解决实际问题的能力还有待提高,需要通过实例分析和练习来加强。

三. 教学目标1.知识与技能:学生能够理解因式分解的概念和方法,掌握常用的因式分解技巧,并能够灵活运用到实际问题中。

2.过程与方法:学生能够通过观察、分析和归纳,探索并发现因式分解的方法和规律。

3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,培养合作和探究的精神,提高解决实际问题的能力。

四. 教学重难点1.重点:学生能够理解和掌握因式分解的概念和方法。

2.难点:学生能够灵活运用因式分解法解决实际问题。

五. 教学方法1.引导法:通过问题和实例引导学生观察、分析和归纳,激发学生的思维和探索能力。

2.实践法:通过大量的练习和操作,让学生动手实践,巩固和加深对因式分解的理解和掌握。

3.合作法:学生分组讨论和合作,培养团队合作和交流能力。

六. 教学准备1.教学课件:制作精美的课件,展示问题和实例,引导学生观察和分析。

2.练习题:准备适量的练习题,让学生进行操练和巩固。

3.教学资源:准备相关的教学资源,如视频、文章等,供学生自主学习和拓展。

七. 教学过程1.导入(5分钟)教师通过引入实例或问题,激发学生的兴趣和好奇心,引导学生思考和探索因式分解的概念和方法。

2.呈现(15分钟)教师通过展示问题和实例,引导学生观察和分析,呈现因式分解的方法和步骤。

同时,教师进行讲解和解释,帮助学生理解和掌握因式分解的概念和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Biblioteka ag平台那么多人玩怎么追杀
[单选]下列资产中,属于不可确指的资产的是()。A.商标B.专利C.商誉D.土地使用权 [单选]慢性支气管炎急性发作期及慢性迁延期的治疗不恰当的为()A.应长期连续应用抗生素,以求彻底治愈B.迁延期患者应坚持用止咳、祛痰药,以求彻底控制C.长期用药易致二重感染和细菌耐药D.急性感染控制后,及时停药E.抗生素可用做气雾疗法,加强局部消炎作用 [单选]部件装配图是表示设备中某一()的结构、形状、大小和连接装配关系及必要的加工、检验要求等内容的图样。A、组件B、部件C、零件D、局部 [单选]在企业有盈利,需要追加外部投资的情况下,下列有关外部融资需求的表述正确的是()。A.销售增加,必然引起外部融资需求的增加B.销售净利率与外部融资需求成正比关系C.股利支付率与外部融资需求成正比关系D.资产周转率的提高必然引起外部融资额增加 [单选]在切割机退卷架上的布基卷用完前,要提前按好准备使用的布基卷()。A.卷轴B.卡盘C.螺钉D.楔钉 [单选]下面可以作为知识产权投资入股的是()A、专利许可使用权B、专利权C、著作改编权D、连锁经营权 [单选]目前是生产中应用最广泛的换热设备,与其他换热器相比,主要优点是单位体积所具有的传热面积大以及传热效果好。此外,结构较简单,制造的材料范围较广,操作弹性较大等。这种换热器是()。A.套管换热器B.蛇管换热器C.列管换热器D.U型管换热器 [判断题]防火门、防火窗应划分为甲、乙、丙三级,其耐火极限:甲级应为1.50h,乙级应为1.00h,丙级应为0.50h。()A.正确B.错误 [单选,A2型题,A1/A2型题]缺铁性贫血治疗最重要的是()A.补充铁剂B.病因治疗C.脾切除D.少量输血E.肌内注射维生素B12 [多选]根据我国《民法通则》以及相关的法律规范的规定,能够引起债的发生的法律事实,即债的发生根据,主要有()。A.不当得利B.无因管理C.合同D.侵权行为E.不可抗力 [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤壁局限性或弥漫性扩张,形态为囊状、梭形或不规则形 [单选]()接口是HLR和MC间的接口。A.AB.BC.CD.N [单选]按《铁路技术管理规程》附件的编号,绿色许可证是()。A.附件1B.附件2C.附件3D.附件4 [填空题]出窑废气中NOX浓度的高低主要取决于窑内气体中()、()及气体在高温区内()三个因素。 [单选,A2型题,A1/A2型题]关于退行性主动脉瓣病变下列描述不正确的是()A.病理改变可为钙化、黏液样变B.多为轻度狭窄C.一般左冠瓣重于右冠瓣和无冠瓣D.可累及心脏传导系统E.与性别有关,一般男性多于女性 [填空题]焦炉煤气着火时应使用()()()灭火剂进行灭火。 [单选]我国目前采用超率累进税率的是()。A.土地增值税B.个人所得税C.企业所得税D.消费税 [单选]男性,64岁。因食管癌行手术治疗,留置胃管。手术后4d患者咳嗽,痰略带黄色,发热38.4℃,气急,右下肺闻及较多细湿啰音。X线胸片示右肺下大片炎性病变。推测其最可能的病原体是()A.金黄色葡萄球菌B.军团杆菌C.铜绿假单胞菌D.肠道革兰氏阴性杆菌E.流感嗜血杆菌 [单选]实行()的建设项目,应在办理备案手续后和项目开工前完成环境影响评价文件报批手续。A.报告制B.核准制C.注册制D.备案制 [单选]某研究所在装运存有放射性物质的铅箱时,一只箱子从车上掉下来,吴明(8岁)看见后,即取出箱中的放射性物质玩耍,结果因过量吸收放射性物质而得病。吴明的治疗费和其他必要费用应由谁承担?()A.吴明的监护人B.某研究所C.主要由某研究所承担,吴明的监护人适当分担D.主要 [多选]在建设项目施工中,施工单位与其他主体产生合同之债的情形有()等。A.施工单位与材料供应商订立合同B.施工现场的砖块坠落砸伤现场外的行人C.施工单位将本应汇给甲单位的材料款汇入了乙单位帐号D.材料供应商向施工单位交付材料E.施工单位向材料供应商支付材料款 [单选]鄱阳湖生态经济区建设分为几个阶段?()A、两个阶段B、三个阶段C、四个阶段 [单选]患者,男,50岁。自觉两目模糊,视物不清,伴有头痛,眩晕,舌红少苔,脉细弦。治疗应首选()A.升麻B.葛根C.薄荷D.柴胡E.菊花 [不定项选择]现代废水处理技术,按作用原理可分为()。A.物理法B.化学法C.物理化学法D.生物法 [单选,共用题干题]患者,女,29岁,白化病。欲与一患白化病男性结婚,婚前前来进行咨询。如已结婚并妊娠,以下恰当的处理是()。A.产前诊断B.男胎、女胎均可保留C.建议终止妊娠D.保留男胎E.保留女胎 [单选]表示建筑物局部构造和节点的施工图是()。A.标准图B.剖面图C.详图D.平面图 [多选]瓦斯抽采钻孔施工过程中,操作人员要(),确保钻孔施工过程顺利进行。A.按照操作规程要求操作钻机B.按钻孔施工参数要求精心施工C.严格控制钻进速度D.全程值守 [单选,A2型题,A1/A2型题]下列不是判断糖尿病治疗效果指标的是()。A.空腹血糖B.餐后血糖C.糖基化血浆白蛋白D.糖基化血红蛋白E.IA2、GAD-Ab [单选]下列卵巢子宫内膜异位囊肿声像图分型,哪一项是错误的A.单纯囊肿型B.多囊型C.实性团块型D.囊内团块型E.囊内均匀点状回声型 [填空题]涂装施工时环境相对湿度应(),或钢板温度高于露点温度()。 [多选]对目标管理理解正确的有()。A.由组织的员工共同参与制订具体目标B.强调在工作中进行自我控制C.强调自我评价D.重视成果E.以管理者为核心 [单选]一个团体旅客,其中有40个成人,10个儿童(均应购买儿童票),按照对团体旅客优惠办法的规定,应购买()。A、36个成人票,10个儿童票B、38个成人票,8个儿童票C、37个成人票,10个儿童票D、40个成人票,6个儿童票 [多选]申请办理国内高校(培养单位)学位证书认证需提供哪些基础材料?()A.国内学位证书原件及复印件B.身份证原件C.学籍学位有关补充材料D.招生底册 [单选,A2型题,A1/A2型题]关于溶血性贫血患者的血象,下列说法错误的是()。A.嗜多色性红细胞增多B.网织红细胞减少C.血涂片中可见幼红细胞D.出现点彩红细胞E.成熟红细胞中出现Howell-Jolly小体 [单选]经济发展方式(),已经成为制约我国经济社会发展的一个突出问题。A.落后B.粗放C.单一D.守旧 [单选]属轮机部负责的应急救生设备有()。A.救生艇发动机、水密门B.救生艇发动机、逃生孔C.应急消防泵,救生艇发动机D.水密门、逃生孔 [单选]目前,生产部门大量采用地球化学分析的方法,来()认识生油气层。A.估计B.定性C.定量D.线性 [问答题,简答题]定(减)径机如何进行变形分配(制定孔型减径系列)? [单选]对放射线具有较高的敏感性的脏器是()A.骨B.卵巢C.食管D.肝脏E.宫体 [单选]关于资产负债表的格式,下列说法不正确的是()。A.资产负债表主要有账户式和报告式B.我国的资产负债表采用报告式C.账户式资产负债表分为左右两方,左方为资产,右方为负债和所有者权益D.负债和所有者权益按照求偿权的先后顺序排列
相关文档
最新文档