浙教版2021年中考数学总复习《特殊三角形》(含答案)

合集下载

浙教版八年级数学上册特殊三角形知识点归纳及练习

浙教版八年级数学上册特殊三角形知识点归纳及练习

A.2 个 B.4 个 C.6 个 D.8 个
9.如图所示,已知△ABC 中,AB=6,AC=9,AD⊥BC 于 D,M 为 AD 上任一点,则 MC2=MB2 等 于( ) A.9 B.35 C.45 D.无法计算 10.若△ABC 是直角三角形,两条直角边分别为 5 和 12,在三角形内有一 点 D,D 到△ABC 各边的距离都相等,则这个距离等于 ( ) A.2 B.3 C.4 D.5
①等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对 __________);
②等腰三角形三线合一,这三线是指 ________________、________________、________________,也就是说这三线为同一条线 段;
③等腰三角形是________图形,它的对称轴有_________条。 2.等腰三角形的判定:
22.如图,已知点 B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交 AC 于 点 F,AD 交 CE 于点 H.(1)说明:△BCE≌△ACD;(2)说明:CF=CH;(3)判断△CFH 的形状 并说明理由.
19.如图,△ABC 是等边三角形,ABCD 是等腰直角三角形,其中∠BCD=90°,求∠BAD 的 度数.
20.如图,E 为等边三角形 ABC 边 AC 上的点,∠1=∠2,CD=BE,判断△ADE 的形状.
21.如图所示,已知:在△ABC 中,∠A=80°,BD=BE,CD=CF.求∠EDF 的度数.
例 2:如图,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是( )
A.20°
B.30°
C.35°
D.40°
例 3:如图所示,在等腰△ABC 中,AD 是 BC 边上的中线,点 E 在 AD 上。求证:BE=CE。

特殊三角形复习浙教版PPT课件

特殊三角形复习浙教版PPT课件
第2章 特殊三角形 复习课
1. 什么是等腰三角形 有两边相等的三角形叫做等腰三角形
练1已知等腰三角形的两边长分别是4和6, 则它的周长是 14或16 .
练2已知等腰三角形的两边长分别是3和6, 则它的周长是 15 .
练3已知等腰三角形一腰上的中线将它的周长
分成15cm和6cm两部分,则等腰三角形的底
勾股定理:
B
直角三角形两条直角边的平方和等于斜边的平方.
a
c
∵ ΔABC是RtΔ
已知是Rt Δ, 得出边的关系
C
A
b
∴ a2+b2=c2
勾股定理的逆定理: 如果三角形中两边的平方和等于第三边的平方, 那么这个三角形是直角三角形.
B
∵ a2+b2=c2
c 已知边的关系, 判断出是Rt Δ ∴ ΔABC是RtΔ
练7:已知等腰三角形的一个角是1300, 则它的顶角是 1300 .
练8:已知等腰三角形的顶角是底角的2倍, 则它的底角是 450 .
等腰三角形三线合一 等腰三角形顶角的平分线,底边上的中线,底边 上的高互相重合
A
用数学式子表示:
12
在△ABC中
(1)∵AB=AC,AD⊥BC, ∴∠_1__=∠_2__,_B_D__=_C_D__;
(2)∵AB=AC,AD是中线, B
∴∠_1 =∠_2 ,_A__D_⊥_B_C__;
D
C
(3)∵AB=AC,AD是角平分线, ∴_A_D__⊥_B_C__,_B_D__=_C_D__。
4. 如果一个三角形有两个角相等,那么这个 三角形是 等腰三角形 .
A ∵ ∠B=∠C (已知)
∴ AB=AC(等角对等边)
结束语

浙教八年级上册数学特殊三角形经典习题(含答案)

浙教八年级上册数学特殊三角形经典习题(含答案)

浙教数学八年级上册特殊三角形历年中考典型习题一、等腰三角形1.如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证:NB=NC.2.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2 ,使得△PP1P2的周长最小,作出点P1,P2 ,叙述作图过程(作法),保留作图痕迹.3.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.4.如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果∠BAE=40°,那么∠B=,∠C=°;(2)如果△ABC的周长为13 cm,AC=6 cm,那么△ABE的周长=cm;(3)你发现线段AB与BD的和等于图中哪条线段的长?并证明你的结论.5.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.6.如图,∠AOB=30̊,OC平分∠AOB,P为OC上一点,PD∥OA交OB于D,PE垂直OA于E,若OD=4cm,求PE的长.7.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:EF=CF.8.如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.9.如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形.(2)求证:AE =21AB .10.如图所示,D 、E 分别是 △ABC 的边 BC 、AC 上的点,且 AB =AC ,AD =AE . (1)若 ∠BAD =20̊,则∠EDC = ; (2)若 ∠EDC =20̊,则∠BAD = ;(3)设∠BAD =ɑ ,∠EDC =β,你能由(1)(2)中的结果找到 ɑ、β 所满足的关系吗?请说明理由.11.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.12.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形。

浙教版2021年中考数学总复习 学生版《特殊三角形》

浙教版2021年中考数学总复习 学生版《特殊三角形》

浙教版2021年中考数学总复习《特殊三角形》一、选择题1.下列交通标志中,是轴对称图形的是( )2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或203.满足下列条件的△ABC,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=9:12:15 C.∠C=∠A﹣∠B D.b2﹣a2=c24.如图,已知点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④5.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.606.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.102° B.100° C.88° D.92°7.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm8.如图,在四边形ABCD中,AD=5,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为()A. B. C. D.二、填空题9.点M(3,-4)关于x轴的对称点N的坐标是________.10.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.11.若CD是△ABC的高,AB=10,AC=6,BC=8,则CD的长为.12.等腰△ABC中,BD⊥AC,垂足为点D,且AD=AC,则等腰△ABC底角的度数为.三、解答题13.如图,已知△ABC中,∠C=90°,AB=10,BC=6,(1)计算AC的长度;(2)计算AB边上的中线CD的长度.(3)计算AB边上的高CE的长度.14.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.15.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.16.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.。

[中考专题]2021年浙江中考数学复习难题突破专题04:特殊三角形存

[中考专题]2021年浙江中考数学复习难题突破专题04:特殊三角形存

[中考专题]2021年浙江中考数学复习难题突破专题04:特殊三角形存难题突破专题四特殊三角形存在性问题特殊三角形的存在性问题主要是指寻找合格点形成特殊三角形,如等腰三角形、直角三角形和全等三角形。

解决这个问题的关键是正确分类和讨论,避免遗漏解决方案。

等腰三角形的1型存在性问题1如图z4-1,直线y=3x+3交x轴于点a,交y轴于点b,过a,b两点的抛物线交x轴于另一点c(3,0).(1)求点a,b的坐标.(2)找到抛物线对应的函数表达式图z4-1(3)抛物线的对称轴上有点Q吗△ ABQ是等腰三角形吗?如果存在,找到合格点Q的坐标;如果没有,请解释原因例题分层分析(1)如何找到主功能图像与坐标轴交点的坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点q的坐标为________;②△abq是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点q的坐标.问题解决方法分析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.2型直角三角形与全等三角形存在性问题图z4-22如图z4-2所示,已知直线y=kx-6和抛物线y=ax+BX+C在两点a和B相交,点a(1,-4)是抛物线的顶点,点b在x轴上.(1)找到抛物线对应的函数表达式(2)在(1)中二次函数的第二象限的图象上是否存在一点p,使△pob与△poc全等?若存在,求出点p的坐标;若不存在,请说明理由.(3)如果点q是Y轴上的一个点△ ABQ是一个直角三角形,求Q点的坐标。

示例分层分析(1)已知点a的坐标可确定直线ab对应的函数表达式,进一步能求出点b的坐标.点a是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2) △ ABQ是一个直角三角形,而直角三角形的顶点是不确定的,所以它用___________________________解题方法点析这个问题是一个综合性的问题。

浙教版八年级上第2章 特殊三角形期末复习(含答案)

浙教版八年级上第2章 特殊三角形期末复习(含答案)

期末复习(二) 特殊三角形01 知识结构特殊三角形⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧图形的轴对称⎩⎪⎨⎪⎧轴对称图形轴对称轴对称和轴对称图形的性质等腰三角形⎩⎪⎨⎪⎧轴对称性性质定理判定定理逆命题和逆定理⎩⎪⎨⎪⎧互逆命题互逆定理线段垂直平分线定理的逆定理直角三角形⎩⎪⎨⎪⎧性质定理判定定理勾股定理勾股定理的逆定理全等的判定角平分线的性质定理02 重难点突破重难点1 等腰三角形的性质及判定【例1】 (萧山区期中)如图,在△ABC 中,AD 平分∠BAC .(1)若AC =BC ,∠B ∶∠C =2∶1,试写出图中的所有等腰三角形,并给予证明; (2)若AB +BD =AC ,求∠B ∶∠C 的比值、 【思路点拨】 (1)根据等腰三角形的定义及“等角对等边”判定等腰三角形;(2)利用“截长法”或“补短法”添加辅助线,将AC -AB 或AB +BD 转化成一条线段,通过全等得到线段相等,从而得到角相等、解:(1)等腰三角形有3个:△ABC ,△ABD ,△ADC ,证明:∵AC =BC ,∴△ABC 是等腰三角形、 ∴∠B =∠BAC .∵∠B ∶∠C =2∶1,∠B +∠BAC +∠C =180°, ∴∠B =∠BAC =72°,∠C =36°. ∵∠BAD =∠DAC =12∠BAC =36°,∴∠B =∠ADB =72°,∠DAC =∠C =36°. ∴AB =AD ,DA =DC .∴△ABD 和△ADC 是等腰三角形、(2)在AC 上截取AE =AB ,连结DE , 又∵∠BAD =∠DAE ,AD =AD , ∴△ABD ≌△AED .∴∠AED =∠B ,BD =DE .∵AB +BD =AC ,AC =AE +EC , ∴BD =EC . ∴DE =EC .∴∠EDC =∠C .∴∠B =∠AED =∠EDC +∠C =2∠C . ∴∠B ∶∠C =2∶1.1、(上城区期中)如图,△AB C 、△ADE 中,C 、D 两点分别在AE 、AB 上,BC 与DE 相交于点F .若BD =CD =CE ,∠ADC +∠ACD =104°,则∠DFC 的度数为( C )A 、104°B 、118°C 、128°D 、136°2、如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在A B 、B C 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数、解:(1)证明:∵AB =AC , ∴∠B =∠C .在△BDE 和△CEF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△BDE ≌△CEF (SAS )、∴DE =EF ,即△DEF 是等腰三角形、 (2)∵∠A =40°,AB =AC , ∴∠B =∠C =70°.由(1)知,△BDE≌△CEF,∴∠BDE=∠CEF.∴∠DEF=180°-∠BED-∠CEF=180°-∠BED-∠BDE=∠B=70°.重难点2直角三角形的性质及判定【例2】在Rt△ABC中,∠BAC=90°,BF平分∠ABC,∠AEF=∠AFE.(1)求证:AD⊥BC(请用一对互逆命题进行证明);(2)写出你所用到的这对互逆命题、【思路点拨】由“直角三角形的两个锐角互余”得到∠ABF+∠AFB=90°,又因为∠ABF=∠CBF,∠AEF=∠BED,从而转化为∠CBF+∠BED=90°,从而AD⊥BC得证、解:(1)证明:在Rt△ABC中,∵∠BAC=90°,∴∠ABF+∠AFB=90°.∵BF平分∠ABC,∴∠ABF=∠CBF.∵∠AEF=∠AFE,∠BED=∠AEF,∴∠BED=∠AFE.∴∠CBF+∠BED=90°.∴∠BDE=90°.∴AD⊥BC.(2)互逆命题:直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形、3、(庆元县岭头中学月考)已知,如图,B、C、D三点共线,AB⊥BD,ED⊥CD,C是BD 上的一点,且AB=CD,∠1=∠2,请判断△ACE的形状并说明理由、解:△ACE是等腰直角三角形,理由:∵∠1=∠2,∴AC=CE.∵AB⊥BD,ED⊥CD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,⎩⎨⎧AC =CE ,AB =CD ,∴Rt △ABC ≌Rt △CDE . ∴∠ACB =∠CED .∵∠CED +∠ECD =90°, ∴∠ACB +∠ECD =90°. ∴∠ACE =90°.∴△ACE 是等腰直角三角形、重难点3 勾股定理及其逆定理【例3】 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,作∠ADB 的平分线DE 交AB 于点E .(1)求证:DE ∥BC ;(2)若AE =3,AD =5,点P 为线段BC 上的一动点,当BP 为何值时,△DEP 为等腰三角形?请求出所有BP 的值、【思路点拨】 (1)要证DE ∥BC ,可转化为证∠AED =∠ABC =90°,即证DE ⊥AB ,由等腰三角形“三线合一”的性质可推导得出;(2)△DEP 为等腰三角形,存在三种情况:DE =EP ,DP =EP ,DE =DP ,结合勾股定理可求得BP 的值、解:(1)证明:∵∠ABC =90°,点D 是AC 的中点,∴BD =AD =12AC .∵DE 是∠ADB 的平分线, ∴DE ⊥AB .又∵∠ABC =90°,∴DE ∥BC . (2)∵AE =3,AD =5,DE ⊥AB , ∴DE =AD 2-AE 2=4. ∵DE ⊥AB ,AD =BD , ∴BE =AE =3.①DE =EP 时,BP =42-32=7; ②DP =EP 时,BP =12DE =12×4=2;③DE =DP 时,过点D 作DF ⊥BC 于点F ,则DF =BE =3, 由勾股定理,得FP =42-32=7, 点P 在F 下边时,BP =4-7,点P 在F 上边时,BP =4+7,综上所述,BP 的值为7,2,4-7或4+7.4、如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度运动,设运动时间为t (s )、(1)当△ABP 为直角三角形时,求t 的值; (2)当△ABP 为等腰三角形时,求t 的值、解:(1)∵∠C =90°,AB =5 cm ,AC =3 cm ,∴BC =4 cm .①当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm , ∴t =4.②当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=32+(t -4)2, 在Rt △BAP 中,AB 2+AP 2=BP 2, ∴52+[32+(t -4)2]=t 2, 解得t =254.综上,当△ABP 为直角三角形时,t =4或254.(2)①当BP =BA =5 cm 时,t =5.②当AB =AP 时,BP =2BC =8 cm ,∴t =8.③当PB =P A 时,PB =P A =t cm ,CP =(4-t )cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2, ∴t 2=32+(4-t )2,解得t =258. 综上,当△ABP 为等腰三角形时,t =5或8或258.03 备考集训一、选择题(每小题3分,共30分)1、(上城区期中)下列四个图形中,是轴对称图形的是( C )2、下列各命题的逆命题成立的是( C )A 、全等三角形的对应角相等B、如果两个数相等,那么它们的绝对值相等C、两直线平行,同位角相等D、如果两个角都是45°,那么这两个角相等3、如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,那么∠DCB =( A )A、50°B、45°C、40°D、25°4、下列条件不可以判定两个直角三角形全等的是( B )A、两条直角边对应相等B、两个锐角对应相等C、一条直角边和它所对的锐角对应相等D、一个锐角和锐角所对的直角边对应相等5、(永嘉县校级期中)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( D )A、60°B、120°C、60°或150°D、60°或120°6、如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,如果△DAB的面积为10,那么DC的长是( B )A、4B、3C、5D、4.5第6题图第7题图7、如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC 于点D,连结BD,下列结论错误的是( D )A、∠C=2∠AB、BD平分∠ABCC、图中有三个等腰三角形D、S△BCD=S△BOD8、(萧山区期中)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB 于点D,PE⊥AC于点E,则PD+PE的长是( A )A、4.8B、4.8或3.8C、3.8D、59、(庆元县岭头中学月考)如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD 折叠,点B落在AC边上的E处,那么下列等式成立的是( B )A、AC=AD+BDB、AC=AB+BDC、AC=AD+CDD、AC=AB+CD第9题图第10题图10、(河北中考)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(D)A、1个B、2个C、3个D、3个以上二、填空题(每小题4分,共24分)11、等腰三角形的一个角是110°,则它的底角是35°、12、(永嘉县校级期中)如图是一个外轮廓为长方形的机器零件的平面示意图,根据图中的尺寸(单位:cm),计算两个圆孔中的A和B的距离为10cm.第12题图第13题图13、如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是10、14、(萧山区期中)如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32、第14题图第15题图15、(江山期末)如图,在边长为2的等边△ABC中,AD是BC边上的高,点E是AC中点,点P是AD上一动点,则PC+PE的最小值是3、16、(杭州期中)已知:如图,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC ;②∠BCE +∠BCD =180°;③AD =EF =EC ;④BA +BC =2BF .其中正确的结论有①②④(填序号)、三、解答题(共46分)17、(10分)如图,请将下面两个三角形分成两个等腰三角形、(要求重新画图,且标出每个等腰三角形的内角的度数)解:如图:18、(10分)(杭州中考)如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,AM =2MB ,AN =2NC .求证:DM =DN .证明:∵AM =2MB ,AN =2NC ,AB =AC , ∴AM =AN .∵AD 平分∠BAC , ∴∠MAD =∠NAD .在△AMD 和△AND 中,⎩⎨⎧AM =AN ,∠MAD =∠NAD ,AD =AD ,∴△AMD ≌△AND (SAS )、 ∴DM =DN .19、(12分)(萧山区期中)(1)用直尺和圆规作一个等腰三角形,使得底边长为线段a ,底边上的高的长为线段b ,要求保留作图痕迹;(不要求写出作法)(2)在(1)中,若a =6,b =4,求等腰三角形的腰长、解:(1)如图,等腰三角形ABC 即为所求作三角形,其中AB =a ,OC =b . (2)由题意知AC =BC ,AO =BO ,CO ⊥AB ,且CO =4,AB =6, ∴AO =3.∴AC =OA 2+OC 2=5,即等腰三角形的腰长为5.20、(14分)如图1,OA =2,OB =4,以A 点为顶点、AB 为腰在第三象限作等腰Rt △ABC . (1)求C 点的坐标; (2)如图2,P 为y 轴负半轴上一个动点,当P 点沿y 轴负半轴向下运动时,以P 为顶点,P A 为腰作等腰Rt △APD ,过D 作DE ⊥x 轴于E 点,求OP -DE 的值、解:(1)过C 作CM ⊥x 轴于M 点,∵∠MAC +∠OAB =90°,∠OAB +∠OBA =90°, ∴∠MAC =∠OBA .在△MAC 和△OBA 中,⎩⎨⎧∠CMA =∠AOB =90°,∠MAC =∠OBA ,AC =BA ,∴△MAC ≌△OBA (AAS )、 ∴CM =OA =2,MA =OB =4.∴OM =OA +AM =2+4=6. ∴点C 的坐标为(-6,-2)、(2)过D 作DQ ⊥OP 于Q 点,则DE =OQ . ∴OP -DE =OP -OQ =PQ .∵∠APO +∠QPD =90°,∠APO +∠OAP =90°, ∴∠QPD =∠OAP .在△AOP 和△PQD 中,⎩⎨⎧∠AOP =∠PQD =90°,∠OAP =∠QPD ,AP =PD ,∴△AOP ≌△PQD (AAS )、 ∴PQ =OA =2, 即OP -DE =2.。

数学(浙教版)第二章 特殊三角形 总复习 知识点+典型例题+同步练习(答案版)

数学(浙教版)第二章 特殊三角形 总复习   知识点+典型例题+同步练习(答案版)

第二章复习知识讲解一、轴对称图形1.对称轴的性质:轴对称图形的对称轴垂直平分连接两个对称点的线段。

2.成轴对称的两个图形是全等图形。

3.折叠问题二、等腰三角形的性质及判定(一)性质1.等边对等角。

2.三线合一(同一顶点)。

3.两腰上的中线相等。

4.两底角平分线相等。

(二)判定满足以上四条性质即可判定为等腰三角形。

注:等边三角形的性质与等腰三角形的性质相似,但判定不可。

(二)等边三角形的判定1.有一个角为60°的等腰三角形为等边三角形。

2.三条边相等或两角为60°的三角形为等边三角形。

三、逆命题与逆定理1.逆命题:原命题的条件和结论互换位置的命题称为该命题的逆命题。

2.逆定理:一定是真命题。

3.定理一定是真命题,但不是所有的真命题都是定理。

四、直角三角形的性质1. 两锐角互余。

2. 斜边上的中线为斜边的一半。

3. 30°角所对直角边为斜边一半。

且两直角边成3倍关系。

五、勾股定理1. a²+b²=c²,两直角边平方和等于斜边的平方。

2. 常见勾股数:3,4,5;5,12,13;6,8,10;9,12,13.3. 利用勾股定理会求第三边,会算距离,构建直角三角形,会算方向,会画出一些特殊线段。

六、直角三角形的判定1. 有两个角互余的角为直角三角形。

2. 如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(勾股定理的逆定理)3. 一条直角边和斜边对应相等的两个直角三角形全等。

(HL )七、补充点1. 垂直平分线逆定理:到线段两端点距离相等的点在线段的垂直平分线上。

2. 角平分线逆定理:角的内部,到角两边距离相等的点,在这个角的平分线上。

例1 有下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有( B )A.1个B.2个C.3个D.4个例2 下列说法中正确的是( C )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方典型例题C.在Rt △ABC 中,∠C =90°,所以222c b a =+ (a ,b ,c 分别为∠A , ∠B, ∠C 的对边)D.在Rt △ABC 中,∠B =90°,所以222c b a =+ (a ,b ,c 分别为∠A , ∠B, ∠C 的对边)例3 如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是(C )A.2B.2C.3D.23例4 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是11≤a≤12例5 已知等边三角形的高为23,则它的边长为 4例6 如图,已知∠BAC =130°,AB=AC ,AC 的垂直平分线交BC 于点D ,则∠ADB=50°例7 如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE=∠DEC=60°,AB=CE=3,则AD=62一、选择题1.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有( A )A. AD与BDB. BD与BCC. AD与BCD. AD,BD与BC2. 若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为( B )A. 5B. 7C. 5或7D. 63.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( C )A.44°B. 60°C. 67°D. 77°4.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距(D)A.25海里B.30海里C.35海里D.40海里5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为(C)A.(1,2)B.(2,2)C.(3,2)D.(4,2)6.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是(D)同步练习A.27B.18C.183D.937.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则在此网格中与△ABC成轴对称的格点三角形一共有(B )A. 2个B. 3个C. 4个D. 5个8.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有( B )A.1个B.2个C.3个D.4个9.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( D )A.50°B.130°C.55°或130°D.50°或130°10.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是(C)A.0B.1C.2D.311.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为( A )A. 10cmB. 8cmC. 12cmD. 20cm12.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( C )A.AE=EFB.E是AC的中点C.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等二、填空题24 1.如图,在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是52.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=33.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行10 米.4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为115.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠2,则△ABC的边BC的长为AGE=30°,若AE=EG=3三、解答题1. 如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.2.如图,已知在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D是AC上的一点,CD=1.5,点P从B点出发沿射线BC方向以每秒1个单位的速度向右运动.设点P的运动时间为t.连接AP(1)求AB的长度;45(2)当△ABP为等腰三角形时,求t的值.16,45(3)过点D做DE⊥AP于点E.在点P的运动过程中,能不能使得DE=CD?若能,请求出此时t的值,若不能请说明理由. 53.如图,在等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.等边三角形4.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD 的右侧..作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 90 °.(2)设∠BAC=α,∠BCE=β.①如图(2),当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.∠α+∠β=180②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.α=β。

浙教版特殊三角形知识点及训练

浙教版特殊三角形知识点及训练

浙教版特殊三角形知识点及训练三角形是初中数学中非常重要的一个几何图形,而特殊三角形更是具有独特的性质和特点。

在浙教版数学教材中,特殊三角形主要包括等腰三角形、等边三角形和直角三角形。

接下来,让我们一起深入了解这些特殊三角形的知识点,并通过相关训练来巩固和应用。

一、等腰三角形1、定义:有两条边相等的三角形叫做等腰三角形。

相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

2、性质:等腰三角形的两个底角相等(简写成“等边对等角”)。

等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

3、判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

二、等边三角形1、定义:三条边都相等的三角形叫做等边三角形。

2、性质:等边三角形的三个内角都相等,并且每一个角都等于 60°。

等边三角形是轴对称图形,有三条对称轴。

3、判定:三个角都相等的三角形是等边三角形。

有一个角是 60°的等腰三角形是等边三角形。

三、直角三角形1、定义:有一个角为 90°的三角形叫做直角三角形。

2、性质:直角三角形的两个锐角互余。

直角三角形斜边上的中线等于斜边的一半。

直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。

勾股定理:如果直角三角形的两条直角边长分别为 a、b,斜边长为 c,那么 a²+ b²= c²。

3、判定:如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

接下来,我们通过一些练习题来巩固这些知识点。

一、选择题1、等腰三角形的一个角是 80°,则它顶角的度数是()A 80°B 80°或 20°C 80°或 50°D 20°2、下列条件中,不能判定一个三角形是直角三角形的是()A 三个角的度数之比为 1∶2∶3B 三条边的长度之比为 1∶2∶√5C 三条边的长度之比为 1∶1∶2D 三个角满足关系∠B +∠C =∠A3、已知等边三角形的边长为 2,则它的面积是()A √3B 2√3C 3√3D 4√3二、填空题1、等腰三角形的周长为 16,其中一边长为 6,则另两边的长为_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.等腰△ABC 中,BD⊥AC,垂足为点 D,且 AD= AC,则等腰△ABC 底角的度数为 三、解答题 13.如图,已知△ABC 中,∠C=90°,AB=10,BC=6, (1)计算 AC 的长度; (2)计算 AB 边上的中线 CD 的长度. (3)计算 AB 边上的高 CE 的长度.

14.如图,△ABC 中 BD、CD 平分∠ABC、∠ACB,过 D 作直线平行于 BC,交 AB、AC 于 E、F,求 证:EF=BE+CF.
15.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB, OA=36 海里,OB=12 海里,黄岩岛位于 O 点,我国海监船在点 B 处发现有一不明国籍的渔船, 自 A 点出发沿着 AO 方向匀速驶向黄岩岛所在地点 O,我国海监船立即从 B 处出发以相同的速度 沿某直线去拦截这艘渔船,结果在点 C 处截住了渔船. (1)请用直尺和圆规作出 C 处的位置; (2)求我国海监船行驶的航程 BC 的长.
浙教版 2021 年中考数学总复习
《特殊三角形》
一、选择题 1.下列交通标志中,是轴对称图形的是( )
2.一个等腰三角形的两边长分别为 4,8,则它的周长为(

A.12
B.16
C.20
D.16 或 20
3.满足下列条件的△ABC,不是直角三角形的是( ) A.a:b:c=3:4:5 B.∠A:∠B:∠C=9:12:15 C.∠C=∠A﹣∠B D.b2﹣a2=c2 4.如图,已知点 D,E 分别在△ABC 的边 AC 和 BC 上,AE 与 BD 相交于点 F,给出下面四个条 件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC 是 等腰三角形的是( )
16.解:(1)猜想:AP=CQ, 证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°, ∴∠ABP=∠QBC. 又 AB=BC,BP=BQ, ∴△ABP≌△CBQ, ∴AP=CQ; (2)由 PA:PB:PC=3:4:5,可设 PA=3a,PB=4a,PC=5a, 连接 PQ,在△PBQ 中 由于 PB=BQ=4a,且∠PBQ=60°, ∴△PBQ 为正三角形.∴PQ=4a. 于是在△PQC 中 ∵PQ2+QC2=16a2+9a2=25a2=PC2 ∴△PQC 是直角三角形.

A.102°
B.100°
C.88°
D.92°
7.如图,盒内长、宽、高分别是 6cm、3cm、2cm,盒内可放木棒最长的长度是( )
A.6cm
B.7cm
C.8cm
D.9cm
8.如图,在四边形ABCD中,AD=5,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为( )
A.
B.
C.
D.
二、填空题
16.如图,P 是等边三角形 ABC 内的一点,连接 PA,PB,PC,以 BP 为边作∠PBQ=60°,且 BQ=BP,连接 CQ. (1)观察并猜想 AP 与 CQ 之间的大小关系,并证明你的结论; (2)若 PA:PB:PC=3:4:5,连接 PQ,试判断△PQC 的形状,并说明理由.
1.答案为:B. 2.C 3.答案为:B. 4.C 5.A 6.D 7.B. 8.B 9.答案为:(3,4); 10.答案为:21. 11.答案为:4.8. 12.答案为:15°或 45°或 75°.
9.点 M(3,-4)关于 x 轴的对称点 N 的坐标是________.
10.如图,在△ABC 中,AB=AC,∠A=32°,以点 C 为圆心,BC 长为半径作弧,交 AB 于点 D,交 AC 于点
E,连结 BE,则∠ABE 的大小为
度.
11.若 CD 是△ABC 的高,AB=10,AC=6,BC=8,则 CD 的长为 .
A.①②B.①④C.②③D.③④
5.在一个直角三角形中,若斜边的长是 13,一条直角边的长为 12,那么这个直角三角形的面积是
()
A.30
B.40
C.50
D.60
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠
MKN=44°,则∠P的度数为(
பைடு நூலகம்
参考答案
13.解:
14.解:∵△ABC 中 BD、CD 平分∠ABC、∠ACB, ∴∠1=∠2,∠5=∠6, ∵EF∥BC,∴∠2=∠3,∠4=∠6, ∴∠1=∠3,∠4=∠5, 根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC, 故 EF=ED+DF=BE+CF.
15.解:(1)作 AB 的垂直平分线与 OA 交于点 C; (2)连接 BC,由作图可得:CD 为 AB 的中垂线,则 CB=CA.由题意可得:OC=36﹣CA=36﹣CB. ∵OA⊥OB,∴在 Rt△BOC 中,BO2+OC2=BC2,即:122+(36﹣BC)2=BC2,解得 BC=20. 答:我国海监船行驶的航程 BC 的长为 20 海里.
相关文档
最新文档