浙教版【2020年】中考数学模拟试题(含答案)

合集下载

【2020精品中考数学提分卷】浙江杭州考模拟数学试卷A市+答案

【2020精品中考数学提分卷】浙江杭州考模拟数学试卷A市+答案

2020年浙教版数学中考模拟试卷一、选择题(每题3分,共30分)1.当a=-1 时,(-a2)3的结果是()A.-1 B.1 C.a6D.以上答案都不对2.清明小长假是广大游客走出家门放松心情、感受祖国大好河山的好时机,为丰富游客出行体验,小长假前夕,遵义市启动了2018年“醉美遵义,四季主题游”之春季踏青赏花游。

三天假期,遵义市共接待游客230.11万人次,实现旅游综合收入12.66亿元,把12.66亿用科学计数法表示为()A.B.C.D.3.如图,△ABC中,DE△BC,=,则OE:OB=()A.B.C.D.4.若a=7,b的相反数是2,则a+b的值()(A)-9(B)-9或+9(C)+5或-5(D)+5或-95.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2017年底某市汽车拥有量为16.9万辆.己知2015年底该市汽车拥有量为10万辆,设2015年底至2017年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A .10(1+x )2=16.9B .10(1+2x )=16.9C .10(1﹣x )2=16.9D .10(1﹣2x )=16.96.下列各式去括号正确的是( )A .a -(b -c )=a -b -cB .a +(b -c )=a+b -cC .22()a a b c a a b c --+=--+D .2(35)65a a a a +-=+- 7.如果不等式(a +1)x >a +1的解集为x <1,则a 必须满足( ) A .a <0 B .a≤1 C .a >-1 D .a <-18.如图,四边形ABCD 是菱形,△A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .B .C .D .9.如图所示,抛物线y=ax 2+bx+c 的顶点为B (﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,以下结论:△b 2﹣4ac=0,△2a ﹣b=0,△a+b+c <0;△c ﹣a=3,其中正确的有( )个.A .1B .2C .3D .410.如图,从白塔山山顶A 外测得正前方的长江两岸B 、C 的俯角分别为30°,75°,白塔山的高度AD 是600m ,则长江的宽度BC 等于( )A .300(+1)mB .1200(﹣1)mC .1800(﹣1)mD .2400(﹣1)m二、填空题(每题4分,共240分)11.一组数据-1,1,0,5,-3的极差是________. 12.如图所示,内切,切点分别为,,,切于点,交,于点,,若的周长为,,则的周长是________.13.现有三张分别画有正三角形、平行四边形、菱形图案的卡片,它们除图案外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的每一张卡片的图案既是轴对称图形又是中心对称图形的概率是_____.14.若3311m m m m m --=--,则m= ______ . 15.如图,于,于,若,,则________.16.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,则点B的横坐标是_____.三、解答题(7小题,共66分)17.在某中学开展的“我为四川地震灾区献爱心”捐书活动中,校团委为了了解九年级同学的捐书情况,用简单的随机抽样方法从九年级的10个班中抽取50名同学,对这50名同学所捐的书进行分类统计后,绘制了如下统计表:(1)在图中,补全这50名同学捐书情况的频数分布直方图;(2)若九年级共有475名同学,请你估计九年级同学的捐书总册数及学辅类书的册数.捐书情况统计表18.如图,一次函数y=﹣x+m与x轴、y轴分别交于A、B两点,与正比例函数y=kx交于点C(1,).(1)求k、m的值;(2)求△OAC的面积.19.如图,与有公共顶点,.(1)请你写一个适当的条件,使,则需添加的条件可以是________或________,并选择其中之一证明.(2)由(1)能否得出其他的相似三角形?如果能,请说明理由.20.如图是某电脑公司年的销售额(万元)关于时间(月)之间的函数图象,其中前几个月两变量之间满足反比例函数关系,后几个月两变量之间满足一次函数关系,观察图象,回答下列问题:该年度________月份的销售额最低;求出该年度最低的销售额;若电脑公司月销售额不大于万元,则称销售处于淡季.在年中,该电脑公司哪几个月销售处于淡季?21.如图,四边形ABCD是矩形,E是BD上的一点,△BAE=△BCE,△AED=△CED,点G是BC,AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=3EF,DF=1时,求GF的值.22.如图,在平面直角坐标系中,直线分别交轴、轴于点、.点的坐标是,抛物线经过、两点且交轴于点.点为轴上一点,过点作轴的垂线交直线于点,交抛物线于点,连结,设点的横坐标为.(1)求点的坐标.(2)求抛物线的表达式.(3)当以、、、为顶点的四边形是平行四边形时,求的值.23.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.参考答案1.【考点】幂的乘【分析】根据幂的乘方法则计算即可,注意符号问题.解:(-a2)3=-a6,当a=-1时,原式=-(-1)6=-1.故选A.【点睛】本题是对幂的乘方法则的考查,此题比较简单,注意掌握指数的变化是解此题的关键.2.【考点】科学记数法【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:12.66亿=1266000000,所以12.66亿用科学记数法表示为1.266×109,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】【分析】先根据DE△BC,得出△ADE△△ABC,进而得出,再根据DE△BC,得到△ODE△△OCB,进而得到.解:△DE△BC,△△ADE△△ABC,△,又△,△,△DE△BC , △△ODE△△OCB , △.故选B .【点睛】考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似,这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,在应用时要善于从复杂的图形中抽象出这些基本图形. 4.【考点】相反数,绝对值【分析】首先根据相反数,绝对值的概念分别求出a 、b 的值,然后代入a+b ,即可得出结果.解:由题意得;a=±7,b=-2 则=7-2=5或=-7-2=-9 故选D【点评】解答本题的关键是掌握绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是05.【考点】一元二次方程的应用【分析】设2015年底至2017年底该市汽车拥有量的平均增长率为x ,则2016年底该市汽车拥有量为10(1+x),2017年底该市汽车拥有量为10(1+x)2 ,由此即可列出方程.. 解:设2015年底至2017年底该市汽车拥有量的平均增长率为x , 根据题意,可列方程:10(1+x )2=16.9,b a +b a +故选A.【点睛】本题考查了一元二次方程的应用,读懂题意,正确找出等量关系,根据等量关系列出方程是解决这类题目的基本思路. 6.【考点】去括号法则【分析】去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 解:A 、a -(b -c )=a –b+c ,故选项错误; B 、a+( b -c )=a+b -c ,正确;C 、22()a a b c a a b c --+=-+-,故选项错误; D 、a+2(3a -5)=a+6a -10,故选项错误. 故选B .【点评】本题考查了去括号法则。

浙江省2020年中考数学模拟试题及答案

浙江省2020年中考数学模拟试题及答案

浙江省2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列运算正确的是()A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3•a2=a6 D.(﹣2a2)3=﹣8a62.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定3. 已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.134.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1085.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2 B.600 cm2C.100πcm2D.200πcm26.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.B.C.D.7.如图,ABCD为平行四边形,BC=2AB,∠BAD的平分线AE交对角线BD于点F,若△BEF的面积为1,则四边形CDFE的面积是()A.3 B.4C.5 D.68.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或109.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥ABC.MN=CB D.CM=AC10.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数 C.平均数、方差 D.众数、方差11.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个12.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A. B.C. D.二、填空题(本题共6小题,满分18分。

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。

2020年浙江省中考数学第三次模拟考试试卷附解析

2020年浙江省中考数学第三次模拟考试试卷附解析

2020年浙江省中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列语句中,属于命题的是( ) A .任何一元二次方程都有实数解 B .作直线AB 的平行线 C .1与2相等吗D .若229a =,求a 的值 2.用直接开平方法解方程2(3)8x -=,得方程的根为( ) A .322x =+B .322x =-C .1323x =+,2323x =-D .1322x =+,2322x =-3.若|1|1||x x -=+,则2(1)x -等于( ) A . 1x -B .1x -C .1D .814.一个物体由多个完全相同的小立方体组成,它的三视图如图所示,那么组成这个物体的小立方体的个数为( ) A .2B .3C .4D .55.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( ) A .SSS B .SAS C .ASA D .AAS 6.如图中的物体的形状属于( )A . 棱柱B .圆柱C .圆锥D .球体二、填空题7.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性相同,则它停在 5 号板上的概率为 .8.如图,△ABC 中,AD是 BC 上中线,M 是AD 的中点,BM 延长线交AC 于 N,则AN= .NC9.已知函数①21y x x=-,函数 (填序号)有最小值,当x 时,该函数最2+5=-;②2y x小值是.10.一批款式、型号均相同的胆装单价在 100元/件至 150 元/件之间,小李拿了 900 元钱去买,可买件这样的服装.11.已知矩形的对角线长为4cm,一条边长为2cm,则面积为 .12.已知□ABCD中,∠ABC的平分线交AD于点E,且AE=2,DE=1,则□ABCD的周长等于______.13.在□ABCD中,∠A比∠B大20°,则∠C为度.14.已知一个样本1,3,2,5,x,其平均数是3,则x= .15.已知△ABC的三边长分别是8 cm,10 cm ,6 cm,则△ABC的面积是 cm2.16.如图,AD=AE,DB=EC,则图中一共有对全等三角形.17.如图所示,是用笔尖扎重叠的纸得到的关于直线l成轴对称的两个图形,连结CE交l于0,则⊥,且 = ,AB的对应线段是,EF的对应线段是,∠DC0的对应角是.18.已知∠A=40°,则∠A 的余角是 .19.当m= ,n= 时,32m x y与3xy-是同类项.3n20.如图,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).三、解答题A BCD21.如图所示的相似四边形中,求未知边 x 、y 的长度和角度α的大小.22.某1电影院有 1000 个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提 高x 元,将有 200x 张门票.不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x 的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)23.已知:如图,在□ABCD 中,对角线AC 平分∠DAB.求证:AB =BC.24.如图,已知□ABCD .(1)写出□ABCD 四个顶点的坐标;(2)画出□A 1B 1C 1D 1,使□A 1B 1C 1D 1与□ABCD 关于y 轴对称,并写出 □A 1B 1C 1D 1四个顶点的坐标;(3)画出□A2B2C2D2,使□A2B2C2D2与□ABCD关于原点中心对称,并写出□A2B2C2D2的四个顶点的坐标;(4)□A1B1C1D1与□A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.25.若不等式2123x ax b-<⎧⎨->⎩的解集为11x-<<,求(1)(1)a b+-的值.26.第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?27.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?28.已知,如图,点B,F,C,E在同一直线上,AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.试说明:(1)△ABC≌△DEF;(2)GF=GC.EDCBA29.已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ; (2)222DE AE AD =+.30.现在各学校都采用政府统一采购行为,教育局对各个学校的校服征订也采用了统一征订的办法.在教育局的样品室里摆放着12个样品,有l2种不同的价位,分别为50,60,70,80,90,100,110,120,130,140,150,160元.现要对全校1500名学生统一征订校服,由于价格相差甚远,学校于是采取征求家长意见,制作了一张调查表,对家长的意见进行调查,请问,你该怎样设计这张调查表格(要求家长用打“√”的形式来表达).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.C5.A6.A二、填空题7.18.819.2①,一 110.6~911.212.1013.10014.415.2416.417.l ,CE ,OC ,O)E ,GH .CD ,∠FE018.50°19.1,120.4三、解答题 21.由于两个四边形相似,它们的对应边成比例,对应角相等, 所以18467y x==,解得 x=31.5,y=27. α= 360°- (77°+83°+ 117°) =83°.22.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜.23.提示:∠DAC =∠BAC =∠BCA .24.(1)A(-1,3),B(-3,2),C(-2,1),D(0,2); (2)A l (1,3),B l (3,2),C l (2,1),D l (0,2); (3)A 2(1,-3),B 2(3,-2),C 2(2,-l),D 2(0,-2) (4)关于x 轴对称25.-626.(1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为827.(1)601.6x =甲cm ,597.3x =乙cm ;(2)265S =甲.84cm 2,2221.41S =乙cm 2 ;(3)略; (4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛28.(1)略 (2)∵△ABC ≌△DEF ,∴∠DFC=∠ACF29.证明:(1) ∵ DCE ACB ∠=∠ ∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ ∵ EC DC AC BC ==, ∴ △BCD ≌△ACE (2)∵ BC AC ACB =︒=∠,90, ∴ ︒=∠=∠45BAC B ∵ △BCD ≌△ACE ∴ ︒=∠=∠45CAE B∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 222DE AE AD =+30.。

浙江省杭州2020年中考模拟试卷数学试题(含答案)

浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

【2020年】浙江省中考数学模拟试卷(含答案)

【2020年】浙江省中考数学模拟试卷(含答案)

2020年浙江省中考数学模拟试卷含答案一、选择题(本大题有10小题,每小题3分,共30分) 1.|-2|=( )A. 2B. 2-C. 2±D. 122.下列计算正确的是()A. 325()a a =B.632aa a ÷= C.()222ab a b =D.222()a b a b +=+ 3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北.据统计,2016年“的的打车”账户流水总金额达到4730000000元,用科学记数法表示数为( ) A.84.7310⨯ B.94.7310⨯ C.104.7310⨯ D.114.7310⨯ 4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于() A. 43B. 34C. 45D. 355. 不等式组⎩⎨⎧<-≥-05.0101x x 的最小整数解是( ) A.1 B.2 C.3 D.46. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A. 130°B. 140°C. 150°D. 160°7. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )8. 在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成 绩 45 46 47 48 49 50 人 数124251主视方向 A . B . C . D .这此测试成绩的中位数和众数分别为( )A. 47, 49B. 48, 49C. 47.5, 49D. 48, 509. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D . 10. 如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数ky x =在第一象限的图像经过点B ,与OA 交于点P ,若OA 2-AB 2=18,则点P 的横坐标为( )A .9 B.6 C.3 D.32二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x x 43-=_________.12. 二次根式12x -中,x 的取值范围是 . 13. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=22.5°,AB =6 cm ,则阴影部分面积为__________cm 2。

2020年中考数学第二次模拟考试(浙江)-数学(参考答案)

2020年中考数学第二次模拟考试(浙江)-数学(参考答案)

2020届九年级第二次模拟考试【浙江卷】数学·参考答案11.()()ab a b a b +- 12.200° 13.甲 14.51m 15.3-16.8717.【解析】(1)()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2.(2)()2(5)(23)223+---+x x x x x232=231015246-+--+-x x x x x x 32=2615-++-x x x .18.【解析】(1)∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,AB ACB ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠CAF =∠BAE =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =280013︒-︒=75°,故答案为75. 19.【解析】(1)如图,△A 1B 1C 1为所作,线段BC 扫过的面积=7×4=28; (2)如图,△A 2B 2C 2为所作.20.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.21.【解析】证明:(1)∵点F,G,H分别是AD,AE,DE的中点,∴FH∥AE,GH∥AD,∴四边形AGHF是平行四边形;(2)当四边形EGFH是正方形时,连接EF,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=12BC=12AD=5cm,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=5cm,∴矩形ABCD 的面积=211010502ABAD cm ⨯=⨯⨯=. 22.【解析】(1)由题意,得A 、B 两地间的距离为30km .故答案为30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x +b 2,由题意,得22223002k b k b =+⎧⎨=+⎩,解得:223060k b =-⎧⎨=⎩,∴y =–30x +60. (3)由函数图象,得(30+20)x =30,解得x =0.6. 故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx +b ,由题意得30150.75b k b =⎧⎨=+⎩,解得:k 20b 30=-⎧⎨=⎩,y 甲1=﹣20x +30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x +b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩,∴y 甲2=﹣20x +40, 当20303010301510x x x -+-≤⎧⎨-⎩„时,∴25≤x ≤56;306015102x x -+-⎧⎨⎩„„,解得:76≤x ≤2.∴25≤x ≤56或76≤x ≤2.23.【解析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,22为半径的圆上,所以点C 满足条件,故答案为C . (2)①如图3–1中,作NH ⊥x 轴于H .∵N(32,–12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3–2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=3,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3–3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E3,1),∴点E在直线y=–3x+2上,设直线交⊙O′于E、F,可得F(3,32),观察图象可知满足条件的点F的横坐标x的取值范围3≤x F≤3.24.【解析】(1)在抛物线y=239344x x--中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得239x x3044--=,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=163,得y=231691634343⎛⎫⨯-⨯-⎪⎝⎭=193,∴M(163,193),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(163,193)代入得1111k b01619k b33-+=⎧⎪⎨+=⎪⎩,解得11k1b1=⎧⎨=⎩,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得2224k b0b3+=⎧⎨=-⎩,解得223k4b3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3;(2)如图2,过点E 作EH ∥y 轴交BC 于H ,设E (t ,239344t t --),H (t ,334t -), ∴HE =233933444t t t ⎛⎫---- ⎪⎝⎭=2334t t -+ ∴12BCE S OB HE =⨯V =2134324t t ⎛⎫⨯-+ ⎪⎝⎭=2362t t -+=23(2)62t --+∵32-<0, ∴当t =2时,S △BCE 的最大值=6,此时E (2,92-),作点B 关于直线y =x +1的对称点B 1,连接B 1G ,过点F 作B 2F ∥B 1G ,且B 2F =B 1G ,∴B 1(﹣1,5),∵FG 2FG 在直线y =x +1上,∴F 可以看作是G 向左平移4个单位,向下平移4个单位后的对应点, ∴B 2(﹣5,1),当B 2、F 、E 三点在同一直线上时,BEFG 周长最小,设直线B 2E 解析式为y =mx +n ,将B 2(﹣5,1),E (2,92-)分别代入,得5m n 192m n 2-+=⎧⎪⎨+=-⎪⎩,解得11144114 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线B2E解析式为y=11411414x--,联立方程组111411414y xy x=+⎧⎪⎨=-⎪⎩,解得11565xy⎧=-⎪⎪⎨⎪=⎪⎩.∴F(115-,65-).(3)如图,分三种情况:在1y x=+中,令0x=,则1y=(0,1)D∴(1,0),(4,0)(0,3)A B C--Q,1,4,1,3,4AD OB OD OC DC∴=====2210AC AO OC∴=+=,设AC边上的高为h,根据等面积法得,1122AC h CD AO⨯=⋅⋅210510AO DChAC⋅∴===4,3OB OC==Q且OB⊥OC,4tan3OBBCDOC∴∠==①CM =MN 时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q∴设3CG a =,则3,4NG a MG a ==, 由勾股定理得,5MN MC a ==,,MNO DNP DPN MGN ∠=∠∠=∠QMGN DPN ∴∠:VMG MN DP PN∴=,即45246105a aa =- 解得,81012a -=,0a =(舍去) 405105CM a -∴==②当MC CN =时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q 设3CG a =,则4MG a =5CM CN a ∴==2GN CN CG a ∴=-=25MN a ∴=45DN DC CN a ∴=-=-DPN MGN ∆QV :DP DNMG MN∴=210455425aa a-∴=,解得:0a=(舍去),425a-=,42CM=-Q;③当CN MN=时,如图,作CQ MN⊥,NG CM⊥,4tan3BCD∠=Q设3CG a=,则4,5NG a CN MN a===3,6MG a CM a∴==45DN a∴=-MN CQ CM NG⋅=⋅Q245CQ a∴=DPN CQN∆QV:DP DNQC CN∴=,即2104552455aaa-=,解得,0a=(舍去),4105a=-2410652CM a∴==-;④当CM CN=时,过M作MG DC⊥,过点D作DP⊥MN于点P4tan 3BCD ∠=Q 设3CG a =,则4,5MG a CM CN a ===45DN a ∴=+tan MG DPPND NG NP∴∠==4553a NP a a=+NP ∴=在Rt DPN ∆中,222DN DP NP =+222(45)a ∴+=+解得,a a ==(舍去)54CM a ∴==-+综上,CM ,4245或4.。

2020年浙江省中考数学摸底测试试卷附解析

2020年浙江省中考数学摸底测试试卷附解析

2020年浙江省中考数学摸底测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,点 P在⊙O上,下列各条件中能判定直线 PT与⊙O相切的是()①tan3O=,3tan3T=;②OP=2,PT=4,OT=5;③305oO'∠=,059.5T∠=;④OP=1,2PT=,3OT=A.①B.①③C.①④D.①③④2.若圆的一条弦把圆周角分度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A.45°B.90°C.135°D.270°3.下列四个点中,可能在反比例函数y=kx(k>0)的图象上的点是()A.(2,-3)B.(-4,-5)C.(-3,2)D.(2,0)4.如图,已知AB=AD,BC=CD,AC,BD相交于点E,下列结论中错误..的是()A.AC⊥BD B.AC平分BD C.AC平分∠DCB D.BD平分∠ABC5.根据右边流程图中的程序,当输入数值x为2-时,输出数值y为()A.4 B.6 C.8 D.106.圆的切线()A.垂直于半径B.平行于半径C.垂直于经过切点的半径D.以上都不对7.不等式4(2)2(35)x x-≥-的正整数解的个数为()A.0个B.1个C.2 个D.3 个8.暗箱中有大小质量都相同的红色、黑色小球若干个,随机摸出一个球是红球的概率是0.6,已知黑色小球有12个,则红球的数量为()A .30B .20C .18D .109.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%10.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1311.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个12.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320二、填空题13.如图所示,函数y kx =-(k ≠0)与4y x=-的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为 C ,则△BOC 的面积为 .14. 在□ABCD 中,若添加一个条件 , 则四边形ABCD 是矩形;若添加一个条件 , 则四边形ABCD 是菱形.15.写出一个判断角相等的定理: .16.把命题“直角都相等”,改写成“如果……那么……”的形式: .17.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是 (填“真”或“假”)命题.18.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3= .19.a 是数据l ,2,3,4,5的中位数,b 是数据2,3,3,4的方差,则点P (a ,b )关于x 轴的对称点的坐标为 .20.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB∥CD;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.21.一个口袋中装有 4个白球,2 个红球,6 个黄球,摇匀后随机从中摸出一个球是白球的概率是.22.如图所示,△ABC中,D,E是BC边上的两点,且BD=DE=EC,则AD是三角形的中线,AE是三角形的中线.23.若∠1的对顶角是∠2,∠2的补角是∠3,且∠3=54°,则∠l= .24.如图是悉尼奥运会金牌分布的扇形统计图,由图可知,美国的金牌数约占总数的%,已知中国获得金牌28枚,由此估计美国的金牌数是枚.25.小明今年x岁,那么代数式x+3 的意义可以解释为.三、解答题26.如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)27.用反证法证明“三角形三内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个小于或等于60°.证明:假设求证的结论不成立,即 .∴∠A+∠B+∠C> ,这与相矛盾,∴假设不成立,∴ .28.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2:表2时间分组/时0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5人数20253015lO抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?29.已知115x y-=,求2423x xy yx xy y+---的值.3430.为了保护野生动物,某中学在全校所有学生中,对四种国家一级保护动物的喜爱情况进行问卷调查.要求每位学生只选一种自己最喜爱的动物,调查结果绘制成如下未完整的统计表和统计图,请你根据图表中提供的信息,解答以下问题:动物名称频数(学生人数)频率(1)请给表达式的空格填上数据,并把统计图补充完整;(2)从图表中你发现最喜爱哪种动物的学生人数最多?(3)为了更好地保护野生动物,请你提出一条合理的建议.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.D5.B6.C7.B8.C9.D10.C11.A12.C二、填空题13.214.如AC=BD等;如AB=BC等15.全等三角形的对应角相等;在一个三角形中,等边对等角等等16.如果两个角都是直角,那么这两个角相等17.如果两个角是另两个相等的角的余角,那么这两个角相等;真18.60°19.(3,1 2 )20.1221.1322.ABE,ACD23.126°24.12.95,3925.小明今年x岁,再过 3 年小明的年龄为(x+3)岁三、解答题26.解:∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°∴DE =AE =23.在Rt △BEC 中,∠CBE =60°,∴CE =BE ·tan60°=∴CD =CE -DE =23≈2.95≈3即这块广告牌的高度约为3米.27.没有一个内角小于或等于60°,180°,三角形的内角和为 180°,三角形三内角中至少有一个小于或等于60°28.(1)100;(2)40.5~60.5小时;(3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.29.3430. 解:(1)(2)大熊猫.(3)如:①禁止乱捕滥杀野生动物.②禁止人为破坏野生动物的生存环境.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版2020年中考数学模拟试题含答案姓名:__________班级:__________考号:__________一、选择题(本大题共10小题)1.陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m 2.如图是由五个相同的小正方体搭成的几何体,则它的主视图是()A.B.C.D.3.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20° C.25°D.30°4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A. B. C. D.5.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.196.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、307.如果一个三角形的三边长分别为1、k、4.则化简|2k﹣5|﹣的结果是()A.3k﹣11 B.k+1 C.1 D.11﹣3k8.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是 ( )A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1) 9.若x、y是两个实数,且,则x y y x等于()A. B. C. D.10.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.、填空题(本大题共6小题)11.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.12.若x=1是一元二次方程x2+x+c=0的一个解,则c2= .13.已知关于x的方程的解是正数,则m的取值范围是_________________________14.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB。

若PB=4,则PA的长为15.如图,将边长为6的正方形ABCD绕点C顺时针旋转30°得到正方形A′B′CD′,则点A的旋转路径长为.(结果保留π)16.如图,点O是边长为4的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1,B1C1交BC于点D,B1C1交AC于点E,则DE= .二、解答题(本大题共8小题)17.计算:.18.国务院办公厅在2015年3月16日发布了《中国足球发展改革总统方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:(1)被调查的学生共有______人.(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为______度;(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?19.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B (1,n)两点.(1)求反比例函数和一次函数的表达式;(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)21.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD.CE=CD .DE22.如图,△ABC内接于⊙O,AC为⊙O的直径,P B是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.23.如图,抛物线y=﹣x2+bx+c与x轴交于A.B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA.EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.浙教版中考模拟试题答案解析一、选择题1.分析:根据用正负数表示两种具有相反意义的量的方法,可得:高出海平面8848m,记为+8848m;则低于海平面约415m,记为﹣415m,据此解答即可.解:∵高出海平面8848m,记为+8848m;∴低于海平面约415m,记为﹣415m.故选:B.2.分析:根据主视图的定义,观察图形即可解决问题.解:主视图是从正面看得到图形,所以答案是D.故选D.3.分析:由直尺的两边平行得出内错角相等解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选C.4.解:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.5.分析:根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.6. 解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.7.分析:由于三角形的三边长分别为1、k、4,根据三角形的三边关系,1+4>k,即k<5,4﹣1<k,所以k>3,根据k的取值范围,再对代数式进行化简.解:∵三角形的三边长分别为1、k、4,∴,解得,3<k<5,所以,2k﹣5>0,k﹣6<0,∴|2k﹣5|﹣=2k﹣5﹣=2k﹣5﹣[﹣(k﹣6)]=3k﹣11.故选A.8.解:方法一:验证法:A中等式不满足第一个图形,故排除A;B中等式不满足第一个图形,故排除B;C中等式不满足第二个图形,故排除C;故选D.方法二:观察三个图形中数字的变化,可知1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,故M与m,n的关系是M=m(n+1),故选D.答案 D9.分析:根据x、y的取值范围,去绝对值符号并分别讨论求得方程组的解,再代入代数式计算求解即可.解:当x≥0,y≥0时,原方程组为:,方程组无解;当x≥0,y≤0时,原方程组为:,解得x=3,y=﹣2;当x≤0,y≥0时,原方程组为:,方程组无解;当x≤0,y≤0时,原方程组为:,方程组无解;综上得,原方程组的解为:.∴x y y x=3﹣2×(﹣2)3=﹣.故答案选C.10.分析:结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.二、填空题11.分析:由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形卡纸制作一个圣诞帽,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.12.分析:根据一元二次方程的解的定义,把x=1代入方程x2+x+c=0即可求得c的值,进而求得c2的值.解:根据一元二次方程的解得定义,把x=1代入方程x2+x+c=0得到2+c=0,解得c=﹣2,则c2=22=4,若x=1是一元二次方程x2+x+c=0的一个解,则c2=4.故本题答案为则c2=4.【点评】本题逆用一元二次方程解的定义得出c的值,在解题时要重视解题思路的逆向分析.13.分析:首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.14.解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.15.分析:如图,作辅助线;首先求出AC的长度,然后运用弧长公式即可解决问题.解:如图,连接AC、A′C.∵四边形ABCD为边长为6的正方形,∴∠B=90°,AB=BC=6,由勾股定理得:AC=6,由题意得:∠ACA′=30°,∴点A的旋转路径长==,故答案为.16.分析:令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,根据等边三角形的性质以及内心的性质找出△FOB为等腰三角形,并且△BFO∽△B1FD,根据相似三角形的性质找出B1D的长度,再通过找全等三角形以及解直角三角形求出C1E的长度,由此即可得出DE的长度.解:令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,如图所示.∵将△OBC绕点O逆时针旋转30°得到△OB1C1,∴∠BOF=30°,∵点O是边长为4的等边△ABC的内心,∴∠OBF=30°,OB=AB=4,∴△FOB为等腰三角形,BN=OB=2,∴BF===OF.∵∠OBF=∠OB1D,∠BF O=∠B1FD,∴△BFO∽△B1FD,∴.∵B1F=OB1﹣OF=4﹣,∴B1D=4﹣4.在△BFO和△CMO中,有,∴△BFO≌△CMO(ASA),∴OM=BF=,C1M=4﹣,在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,∴∠C1EM=90°,∴C1E=C1M•sin∠C1ME=(4﹣)×=2﹣2.∴DE=B1C1﹣B1D﹣C1E=4﹣(4﹣4)﹣(2﹣2)=6﹣2.故答案为:6﹣2.三、解答题17.分析:原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及平方根定义计算即可得到结果.解:原式=2+3﹣﹣﹣3+1=1.18.分析:(1)根据统计图中的数据可以求得本次调查的人数;(2)根据条形统计图中的数据可以求得在扇形统计图中,表示“比较了解”的扇形的圆心角度数;(3)根据统计图中的数据可以求得从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率.解:(1)由题意可得,被调查的学生有:60÷20%=300(人),故答案为:300;(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为:360°×=108°,故答案为:108;(3)由题意可得,从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是:=0.4,即从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是0.4.19.分析:(1)把A (﹣3,1)代入y=,把A (﹣3,1),B(1,﹣3)代入y=kx+b,即可得到结果;(2)直线AB与y轴交于点C,求得C(0,﹣2),求出AC==3,由于点P在x轴上,设P(a,0)根据AC=PB和两点间的距离公式得3=,解得a=4,或a=﹣2,即可得到结果.解:(1)把A (﹣3,1)代入y=,得,解得m=﹣3,∴反比例函数的表达式为,当x=1时,,∴B(1,﹣3);把A (﹣3,1),B(1,﹣3)代入y=kx+b,∴,解得:,∴一次函数的表达式为y=﹣x﹣2;(2)∵直线AB与y轴交于点C,∴C(0,﹣2),∴AC==3,∵点P在x轴上,∴设P(a,0)∵AC=PB,∴3=,解得:a=4,或a=﹣2,∴P(4,0)或(﹣2,0).20.分析:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.21.解:(1)∵OB=OE,∴∠OEB=∠OBE∵四边形ABCD是平行四边形,∴OB=OD;∵OB=OE,∴OD=OE,∴∠OED=∠ODE;∵在△BED中,∠OEB+∠OBE+∠OED+∠ODE=180∴∠OEB+∠OED=,即∠BED=90,故DE⊥BE。

相关文档
最新文档