直线参数方程-知识讲解
三直线的参数方程

1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
当M→0M与 e(直线的单位方向向量)同向时,t 取 正数 ; 当M→0M与 e 反向时,t 取 负数 ;当点 M 与点 M0 重 合时,t 为 零 .
【课后练习】
写出经过点 P(1,-5),倾斜角是π3的直线参数方程, (1)利用这个参数方程求这条直线与直线 x-y-2 3=0 的交点 与点 P 的距离, (2)求这条直线和圆 x2+y2=16 的两个交点与点 P 的距离之积.
解:直线的参数方程为xy==-1+5+tcotssinπ3,π3,
即x=1+21t,
①
y=-5+
3 2 t.
将①代入直线方程 x-y-2 3=0,
得 1+12t+5- 23t-2 3=0,解得 t=4 3. 根据直线参数方程中参数 t 的几何意义知两条直线的交点与 P
点的距离为 4 3.
又将①代入圆的方程 x2+y2=16, 得1+21t2+-5+ 23t2=16, 即 t2+(1-5 3)t+10=0,则 t1+t2=5 3-1, t1·t2=10(t1,t2 为关于 t 的一元二次方程的两根),从而直线和圆 的两交点与点 P 的距离之积为 10.
例 3.已知直线的参数方程为xy==2--14+t 3t (t 为参数),它与曲线
(y-2)2-x2=1 交于 A,B 两点. (1)求|AB|的长; (2)求点 P(-1,2)到线段 AB 中点 C 的距离.
直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
直 线的参数方程

直线的参数方程
直线的参数方程:
1、定义:直线的参数方程是一种表示直线的数学表达式,它是由一个普通方程式参数化而来,能够用简单的数学公式描述一条直线。
2、形式:直线的普通方程式为Ax+By+C=0,参数方程式表示为
\begin{cases}x=at+b\\y=ct+d\end{cases},其中a,b,c,d是常数,这条线的开始点和终止点分别是A(b,d),B(a+b,c+d),这条线的斜率为
m=\frac{c}{a}。
3、应用:直线的参数方程式可以用来解决一些数学的实际问题,如确定直线的斜率、表示直线空间平面内的位置关系以及描述两点之间的距离、判断两点间的方位以及计算直线上任意一点到直线两端点的距离等等。
4、解法:可以通过以下方法求解参数方程式:
(1)找出直线上的两点A、B;
(2)计算出直线的斜率m=\frac{y_2-y_1}{x_2-x_1};
(3)把斜率带入参数方程式,求出a和c的值,即:a=m, c=-m;(4)用A点求出b和d的值,即:b= x_1, d= y_1;
(5)完成求解。
《直线线的参数方程》课件

描述电磁场:参 数方程可以描述 电磁场的分布和 变化,如电场强 度、磁场强度等。
描述波函数:参 数方程可以描述 波函数的分布和 变化,如声波、 光波等。
直线线的参数方 程的推导
通过点斜式方程推导参数方程
点斜式方程: y=kx+b
引入参数t: x=x0+tcosθ,
y=y0+tsinθ
代入点斜式方 程:
y=k(x0+tcos θ)+b
化简得到参数 方程:
x=x0+tcosθ, y=y0+tsinθ
通过两点式方程推导参数方程
两点式方程:Ax+By+C=0 两点坐标:(x1,y1)和(x2,y2) 代入两点式方程:A(x1)+B(y1)+C=0和A(x2)+B(y2)+C=0 解方程组得到参数t:t=(x2-x1)/(y2-y1)
实例:求直线l:x+2y-3=0的参数 方程
添加标题
添加标题
参数方程:x=at+b,y=ct+d
添加标题
添加标题
解析几何:利用参数方程求解直线 的斜率、截距等几何性质
直线线的参数方程在物理学中的应用实例
描述运动轨迹:在物理学中,直线线 的参数方程可以用来描述物体的运动 轨迹,例如抛体运动、圆周运动等。
参数方程与直角坐标方程的转换
参数方程:x=f(t), y=g(t)
直角坐标方程: x=x, y=y
转换方法:将参数 方程中的t用x和y表 示,得到直角坐标 方程
转换公式:x=f(t), y=g(t) => x=f(t), y=g(t)
直线线的参数方 程的应用
参数方程在几何图形中的应用
直线的标准参数方程

直线的标准参数方程直线是平面几何中的基本图形之一,它具有许多重要的性质和应用。
在直角坐标系中,直线的方程有多种表示形式,其中标准参数方程是一种常用的形式。
本文将介绍直线的标准参数方程的定义、推导方法和应用示例。
一、定义。
直线的标准参数方程是指用参数形式表示直线的方程。
设直线L上有一点P(x, y),则点P到直线L上某一固定点A的距离与点P到直线L的方向垂直的距离成比例。
这里引入参数t,点P的坐标可以表示为x=x0+mt,y=y0+nt,其中m和n是常数,称为参数。
二、推导方法。
1. 已知直线上的两点A(x1, y1)和B(x2, y2),求直线的标准参数方程。
设直线上任一点P(x, y),则向量AP=(x-x1, y-y1),向量AB=(x2-x1, y2-y1)。
由于向量AP与向量AB垂直,根据向量的垂直条件可得(x-x1, y-y1)·(x2-x1, y2-y1)=0,展开得到(x-x1)(x2-x1)+(y-y1)(y2-y1)=0,整理可得直线的标准参数方程。
2. 已知直线的斜率k和截距b,求直线的标准参数方程。
直线的斜率k定义为k=(y2-y1)/(x2-x1),截距b定义为y=kx+b。
将y=kx+b代入直线方程中,整理可得x=(x1-kt)/(1-k),y=(y1-kt)/(1-k),即为直线的标准参数方程。
三、应用示例。
1. 求直线通过两点A(1, 2)和B(3, 4)的标准参数方程。
根据推导方法1,代入已知点的坐标得到(x-1)(3-1)+(y-2)(4-2)=0,整理得到直线的标准参数方程。
2. 求直线的斜率为2,截距为3的标准参数方程。
根据推导方法2,代入已知斜率和截距得到x=(1-2t)/(1-2),y=(2-2t)/(1-2),即为直线的标准参数方程。
综上所述,直线的标准参数方程是一种常用的表示形式,通过已知直线上的点或斜率和截距可以求得直线的标准参数方程。
在实际问题中,标准参数方程可以方便地描述直线的性质和运动规律,具有重要的应用价值。
直线参数方程标准形式

直线参数方程标准形式直线是平面几何中的基本概念,而直线的参数方程标准形式是描述直线的一种重要方式。
在学习直线参数方程标准形式之前,我们首先要了解直线的一般方程和点斜式方程,这样才能更好地理解参数方程标准形式的概念和应用。
一、直线的一般方程和点斜式方程。
1. 直线的一般方程。
直线的一般方程通常表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不全为零。
这种形式的方程可以表示任意一条直线,但并不直观,不利于直线的直观理解和运用。
2. 直线的点斜式方程。
直线的点斜式方程通常表示为y y1 = k(x x1),其中(x1, y1)为直线上的一点,k 为直线的斜率。
点斜式方程直观地表示了直线的斜率和一点坐标,更容易理解和使用。
二、直线参数方程标准形式。
直线的参数方程标准形式是另一种描述直线的方式,它的形式为:x = x1 + at。
y = y1 + bt。
其中(x1, y1)为直线上的一点,a和b为参数。
直线的参数方程标准形式比点斜式方程更加灵活,可以更直观地描述直线的方向和位置。
三、直线参数方程标准形式的应用。
1. 直线的平行和垂直关系。
通过直线的参数方程标准形式,我们可以很容易地判断两条直线是否平行或垂直。
如果两条直线的参数a和b分别成比例,那么它们平行;如果两条直线的参数a和b的乘积为-1,那么它们垂直。
2. 直线的交点。
两条直线的交点可以通过它们的参数方程标准形式求解。
将两条直线的参数方程联立,解出交点的坐标,即可得到它们的交点。
3. 直线的平移和旋转。
直线的参数方程标准形式可以很方便地描述直线的平移和旋转。
对参数a和b进行变换,即可得到平移或旋转后的直线方程。
四、总结。
直线的参数方程标准形式是描述直线的一种重要方式,它比一般方程和点斜式方程更加灵活和直观。
通过参数方程标准形式,我们可以更方便地判断直线的性质、求解直线的交点,以及描述直线的平移和旋转。
因此,掌握直线参数方程标准形式对于理解和运用直线的性质具有重要意义。
直线的标准参数方程

直线的标准参数方程直线是我们在几何学中经常遇到的一种基本图形,它具有许多重要的性质和特点。
而直线的标准参数方程则是描述直线的一种重要方式,通过参数方程我们可以更加直观地理解直线在平面上的运动和性质。
在本文中,我们将深入探讨直线的标准参数方程,希望能够帮助读者更好地理解和运用这一概念。
首先,让我们来看一下直线的标准参数方程是如何定义的。
对于平面上的一条直线,如果我们取直线上的一个固定点作为起点,并沿着直线的方向引入一个参数 t,那么直线上任意一点的坐标可以表示为参数 t 的函数形式。
这种参数形式的表示就是直线的参数方程,通常用两个参数方程式 x=f(t) 和 y=g(t) 来表示。
在这里,x 和 y 分别表示直线上任意一点的坐标,而 f(t) 和 g(t) 则分别表示 x 和 y 与参数 t 的函数关系。
接下来,让我们来看一下如何通过直线的参数方程来描述直线的运动和性质。
首先,我们可以通过参数方程方便地表示直线上的任意一点,从而可以轻松地求解直线上的点的坐标。
其次,通过参数方程我们可以直观地描述直线的方向和倾斜程度,只需要观察参数方程中 t 的变化规律即可。
此外,参数方程还可以方便地描述直线的长度、斜率等重要性质,这对于直线的分析和运用都具有重要意义。
在实际问题中,直线的参数方程也具有重要的应用价值。
例如,在物理学中,往往需要描述物体在直线上的运动状态,这时直线的参数方程就可以方便地描述物体的位置和速度。
在工程学中,直线的参数方程也可以用来描述机械零件的运动轨迹和位置关系。
因此,直线的参数方程不仅在数学理论中有重要意义,也在实际问题中具有广泛的应用。
最后,让我们来总结一下直线的标准参数方程的重要性和应用价值。
直线的参数方程是描述直线的一种重要方式,通过参数方程我们可以更加直观地理解直线的运动和性质。
直线的参数方程还具有广泛的应用价值,在物理学、工程学等领域都有重要的应用。
因此,深入理解和掌握直线的参数方程对于我们更好地理解和应用直线具有重要意义。
直线的参数方程知识讲解

直线的参数方程知识讲解直线的一般方程可以写成Ax + By + C = 0的形式,其中A、B、C为常数。
为了将直线的一般方程转化为参数方程,我们需要引入一个参数t。
直线上每一个点的坐标可以用两个方向系数(m和n)与一个参考点P0的坐标表示,即(x, y) = (mx + P0_x, ny + P0_y)。
我们可以将x和y都表示为关于参数t的函数。
具体而言,设直线上一点的坐标为(x,y),则可以写成下面的形式:x = mt + P0_xy = nt + P0_y其中m和n分别为方向系数,它们是直线在x和y方向的单位长度的增量。
P0_x和P0_y为直线上的参考点P0的坐标,t为参数。
参数t可以取任意值,当t取不同的值时,对应的(x,y)为直线上的不同的点。
通过不同的t值,我们可以遍历整条直线。
下面给出一个示例进行详细讲解。
设直线L过点A(1,2)和B(5,6),我们利用参数方程表示L。
首先,我们需要计算出直线的方向系数m和n。
由于直线L与x轴和y轴的交点分别为A(1,2)和B(5,6),可以得到:m=(5-1)/1=4n=(6-2)/1=4然后,我们选择P0作为参考点。
由于点A(1,2)在直线上,我们可以选择A作为参考点,即P0=A(1,2)。
接下来,我们将x和y表示为关于参数t的函数:x=4t+1y=4t+2这就是直线L的参数方程。
通过不同的t值,我们可以得到直线上的不同点的坐标。
例如,当t=0时,可以得到直线上的一个点A(1,2);当t=1时,可以得到直线上的另一个点B(5,6)。
当t取其他值时,可以得到直线上的其他点。
需要注意的是,参数方程表示的是一条直线,而不是一条曲线。
对于平面上的曲线,我们通常需要引入更多的参数来描述。
例如,对于圆的参数方程,我们需要引入两个参数来描述圆上各个点的坐标与参数之间的关系。
直线的参数方程在几何学中具有重要的作用。
它不仅可以方便地描述直线上的各个点,还可以方便地进行直线之间的计算和推理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的参数方程
【学习目标】
1.能选择适当的参数写出直线的参数方程.
2. 会运用直线的参数方程解决有关问题。
【要点梳理】
要点一、直线的参数方程的标准形式
1. 直线参数方程的标准形式:
经过定点000(,)M x y ,倾斜角为α的直线l 的参数方程为:
00cos sin x x t y y t αα=+⎧⎨=+⎩
(t 为参数); 我们把这一形式称为直线参数方程的标准形式。
2. 参数t 的几何意义:
参数t 表示直线l 上以定点0M 为起点,任意一点M(x,y)为终点的有向线段的长度再加上表示方向的正负号,也即0||||M M t =,||t 表示直线上任一点M 到定点0M 的距离。
当点M 在0M 上方时,0t >;
当点M 在0M 下方时,0t <;
当点M 与0M 重合时,0t =;
要点注释:若直线l 的倾角0α=时,直线l 的参数方程为⎩⎨⎧=+=0
0y y t x x .
要点二、直线的参数方程的一般形式
过定点P 0(x 0,y 0)斜率k=tg α=a b 的直线的参数方程是 ⎩⎨⎧+=+=bt
y y at x x 00(t 为参数) 在一般式中,参数t 不具备标准式中t 的几何意义。
若a 2+b 2=1,则为标准式,此时,|t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.
要点三、化直线参数方程的一般式为标准式
一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.
⎩
⎨⎧+=+=bt y y at x x 00 (t 为参数), 斜率为a b tg k ==α (1) 当2
2b a +=1时,则t 的几何意义是有向线段M M 0的数量.
(2) 当22b a +≠1时,则t 不具有上述的几何意义.
⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩
⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩
⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 要点四、直线参数方程的应用
1. 直线参数方程中参数的几何意义几种常见用法:
设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是
⎩⎨⎧+=+=a
t y y a t x x sin cos 00 (t 为参数)
若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则
(1)P 1、P 2两点的坐标分别是:(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α);
(2)|P 1P 2|=|t 1-t 2|;
(3) 线段P 1P 2的中点P 所对应的参数为t ,则t=2
21t t + 中点P 到定点P 0的距离|PP 0|=|t |=|
2
21t t +| (4) 若P 0为线段P 1P 2的中点,则t 1+t 2=0. 2. 用直线参数方程解直线与圆锥曲线相交的几种题型:
(1)有关弦长最值题型
过定点的直线标准参数方程,当直线与曲线交于A 、B 两点。
则A 、B 两点分别用参变量t1、t2表示。
一般情况A 、B 都在定点两侧,t1,t2符号相反,故|AB|=| t1- t2|,即可作分公式。
且因正、余弦函数式最大(小)值较容易得出,因此类型题用直线标准参数方程来解,思路固定、解法步骤定型,计算量不大而受大家的青睐。
(2)有关相交弦中点、中点轨迹的题型
直线标准参数方程和曲线两交点A(t1)、B(t2)的中点坐标相应的参数12=2
t t t +中;若定点恰为AB 为中点,则t1+t2=0 . 这些参数值都很容易由韦达定理求出。
因此有关直线与曲线相交,且与中点坐标有关的问题,用直线标准参数方程解决较为容易得出结果。
(3)有关两线段长的乘积(或比值)的题型
若F 为定点,P 、Q 为直线与曲线两交点,且对应的参数分别为t1、t2. 则|FP|·|FQ|=| t1·t2|, 由韦达定理极为容易得出其值。
因此有关直线与曲线相交线段积(或商)的问题,用直线的标准参数方程
解决为好
【典型例题】
类型一、直线的参数方程
例1. (2016春 福州校级期中)直线-cos 203sin 20x t y t =︒⎧⎨=+︒⎩
(t 为参数)的倾斜角是( ) A . 20° B. 70° C. 110° D. 160°
举一反三:
【变式1】 已知直线l
的参数方程为22x y t
⎧=-+⎪⎨=-⎪⎩(t 为参数),求直线l 的倾斜角. 【变式2】求直线34()45x t t y t =+⎧⎨=-⎩
为参数的斜率。
【变式3】α为锐角,直线31cos()232sin()2
x t y t απαπ⎧=++⎪⎪⎨⎪=++⎪⎩的倾斜角( )。
A 、α
B 、2π-α
C 、2π+α
D 、π+α2
3 【变式4】 已知直线1l 的参数方程为1214x t y t =-+⎧⎨=-+⎩,2l 的参数方程为1252
x t y t =+⎧⎪⎨=--⎪⎩.试判断1l 与2l 的位置关系.
例2.设直线的参数方程为53104x t y t =+⎧⎨=-⎩
. (1)求直线的直角坐标方程;
(2)化参数方程为标准形式.
【变式1】写出经过点M 0(-2,3),倾斜角为
43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.
【变式2】直线的参数方程⎩
⎨
⎧+=+= t 331y t x 能否化为标准形式?
【变式3】化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的 几何意义.
类型二、直线的标准参数方程的初步应用
例3. 设直线1l 过点A (2,-4),倾斜角为56π.
(1)求1l 的参数方程;
(2)设直线2:10l x y -+=,2l 与1l 的交点为B ,求点B 与点A 的距离.
举一反三:
【变式1】已知直线113:()24x t l t y t
=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________。
【变式2】已知直线l 1过点P (2,0),斜率为
3
4. (1)求直线l 1的参数方程;
(2)若直线l 2的方程为x +y +5=0,且满足l 1∩l 2=Q ,求|PQ |的值.
【变式3】求点A (−1,−2)关于直线l :2x −3y +1 =0的对称点A ' 的坐标。
【变式4】 已知直线l 过点P (3,2),且与x 轴和y 轴的正半轴分别交于A 、B 两点,求|PA|·|PB|的值为最小时的直线l 的方程.
类型三、直线参数方程在圆锥曲线中的应用
例4. 经过点33,2A ⎛
⎫-- ⎪⎝⎭
,倾斜角为α的直线l 与圆x 2+y 2=25相交于B 、C 两点. (1)求弦BC 的长;
(2)当A 恰为BC 的中点时,求直线BC 的方程;
(3)当|BC|=8时,求直线BC 的方程;
(4)当α变化时,求动弦BC 的中点M 的轨迹方程.
举一反三:
【变式1
】直线112()x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为
( ) A .(3,3)- B
.( C
.3)- D
.(3,
【变式2
】求直线2x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线221x y -=截得的弦长。
【变式3】过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
为参数相交于A 、B 两点,求线段AB 的长.
例5(2016 鞍山一模)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的方程为ρ=4cosθ,直线l 的方程为(t 为参数),直线l 与曲线C 的公共点为T .
(1)求点T 的极坐标;
(2)过点T 作直线l 1,若l 1被曲线C 截得的线段长为2,求直线l 1的极坐标方程.
举一反三:
【变式1】已知直线l 经过点(1,1)P ,倾斜角6πα=
,
(1)写出直线l 的参数方程。
(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
【变式2】(2016 杭锦后旗校级二模)在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=4cosθ.
(Ⅰ)求圆C 的直角坐标方程;
(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为(2,1),求|PA|+|PB|.。