青岛市2015届高三春季高考第一次模拟考试数学试题word版含答案

合集下载

2015青岛一模 山东省青岛市2015年高三统一质量检测数学理试题 扫描版含答案

2015青岛一模 山东省青岛市2015年高三统一质量检测数学理试题 扫描版含答案

理科答案一、选择题:本大题共10小题.每小题5分,共50分. D A B C D A C A B C二、填空题:本大题共5小题,每小题5分,共25分.11. 4028 12. 132 13.24- 14.(4,2)- 15.②④三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)解:(Ⅰ) sin()sin sin a b a c A B A B +-=+- ∴a b a cc a b+-=- …………………………2分 222a b ac c ∴-=-2221cos 222a c b ac B ac ac +-∴=== ………………………………5分 (0,)B π∈,3B π∴= ………………………………………………………6分(Ⅱ)由3b =,sin A =,sin sin a b A B =,得2a = ……………………………7分 由a b <得A B <,从而cos A = …………………………………………9分故sin sin()sin cos cos sin C A B A B A B =+=+= …………………10分所以ABC ∆的面积为1sin 2S ab C ==. ……………………………12分17.(本小题满分12分)解:(Ⅰ)从20名学生随机选出3名的方法数为320C ,选出3人中任意两个均不属于同一学院的方法数为111111111111464466446646C C C C C C C C C C C C ⋅⋅+⋅⋅+⋅⋅+⋅⋅ ……………………4分 所以111111111111464466446646320819C C C C C C C C C C C C P C ⋅⋅+⋅⋅+⋅⋅+⋅⋅== …………………6分 (Ⅱ)ξ可能的取值为0,1,2,33211616433202057162881548(0),(1),32019573201919C C C P P C C ξξ⨯⨯⨯⨯========⨯⨯⨯⨯1231644332020166841(2),(3)320199532019285C C C P P C C ξξ⨯========⨯⨯⨯⨯…………10分 所以ξ的分布列为所以2888157()012357199528595E ξ=⨯+⨯+⨯+⨯=……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连结1A D 交1AD 于G , 因为1111ABCD A B C D -为四棱柱, 所以四边形11ADD A 为平行四边形, 所以G 为1A D 的中点,又1E 为11 A B 中点,所以1E G 为11A B D ∆的中位线, 从而11//B D E G ……………………………………4分 又因为1B D ⊄平面11AD E ,1E G ⊂平面11AD E ,所以1//B D 平面11AD E . …………………………5分(Ⅱ)因为1AA ⊥底面ABCD ,AB ⊂面ABCD ,AD ⊂面ABCD ,所以11,,AA A B A A AD ⊥⊥又090BAD ∠=,所以1,,AB AD AA 两两垂直. ……………6分如图,以A 为坐标原点,1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设AB t =,则()0,0,0A ,(),0,0B t ,(),1,0C t ,()0,3,0D ,()1,1,3C t ,()10,3,3D .从而(,1,0)AC t =,(,)3,0BD t -=.因为AC BD ⊥,所以2300ACBD t ⋅=-+=+,解得t = ……………………8分所以1(0,3,3)AD =,(3,1,0)AC =.设1111,,()n x y z =是平面1ACD 的一个法向量,则1110,0.AC n AD n ⎧⋅=⎪⎨⋅=⎪⎩即11110330y y z +=+=⎪⎩令11x =,则1(13,),3n =-. …………………………………………………………9分又1(0,0,3)CC =,(CD =-.设2222,,()n x y z =是平面11CDD C 的一个法向量,则1220, n CD n ⎧⋅=⎪⎨⋅=⎪⎩即222020z y =⎧⎪⎨+=⎪⎩令21x =,则2(1,)n =. ………………………………………………………10分∴121212|11(0|1cos ,7n n n n n n ⨯+⋅<>===⋅ ∴平面1ACD 和平面11CDD C 所成角(锐角)的余弦值17. ……………………………12分19.(本小题满分12分) 解:(Ⅰ)设{}n a 的公差为d ,则101919,a a d =+=101109101002S a d ⨯=+⨯= 解得11,2a d ==,所以21n a n =- ………………………………………………………3分所以123121n n b b b b b n -⋅⋅⋅=+ …… ①当11,3n b ==时2,n ≥当时123121n b b b b n -⋅⋅=-……②①②两式相除得21(2)21n n b n n +=≥- 因为当11,3n b ==时适合上式,所以21(N )21n n b n n *+=∈-………………………………6分 (Ⅱ)由已知24(1)(21)nnn n b c n ⋅=-+, 得411(1)(1)()(21)(21)2121nn n n c n n n n =-=-+-+-+则123n n T c c c c =++++1111111(1)()()(1)()335572121n n n =-+++-+++-+-+ ………………………7分当n 为偶数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--+++-+1212121nn n =-+=-++ ………………………………………………………………9分当n 为奇数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--++---+12212121n n n +=--=-++ ……………………………………………………………11分综上:2,2122,21n n n n T n n n ⎧-⎪⎪+=⎨+⎪-⎪+⎩为偶数为奇数… ………………………………………………………12分20.(本小题满分13分) 解:(Ⅰ)因为直线l 与圆O 相切 所以圆2223x y +=的圆心到直线l的距离d ==,从而222(1)3m k =+…2分 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩可得:222(12)4220k x kmx m +++-= 设11(,)E x y ,22(,)F x y则122412km x x k +=-+,21222212m x x k-=+ …………………………………………………4分 所以12121212()()OE OF x x y y x x kx m kx m ⋅=+=+++2222222121222222222224(1)()(1)12123222(1)2201212m k m k x x km x x m k m k km k k k k k--=++++=+++++--+--===++ 所以OE OF ⊥ ………………………………………………………………………………6分(Ⅱ)直线l 与圆O 相切于W ,222212121,1,22x x y y +=+=∴EWFWλ====………………………………8分 由(Ⅰ)知12120x x y y +=,∴1212x x y y =-,即22221212x x y y = 从而22221212(1)(1)22x x x x =--,即2212214223x x x -=+∴21234x λ+==……………………………………………………………12分因为1x ≤≤,所以1[,2]2λ∈ ………………………………………………13分21.(本小题满分14分) 解:(Ⅰ)原函数定义域为(1,)-+∞,()ln(1)1g x x '=++,则(0)0g =,(0)1g '=,:l y x ∴= ………………………………………………………2分由22112(1)202y x kx x k x y x ⎧=++⎪⇒+-+=⎨⎪=⎩l 与函数()f x的图象相切,24(1)801k k ∴∆=--=⇒=4分(Ⅱ)由题21()1ln(1)12h x x kx x =+++++,1()1h x x k x '=+++ 令1()1x x k x ϕ=+++,因为221(2)()10(1)(1)x x x x x ϕ+'=-=>++对[0,2]x ∈恒成立, 所以1()1x x k x ϕ=+++,即()h x '在[0,2]上为增函数 ………………………………6分max 7()(2)3h x h k ''∴==+()h x 在[0,2]上单调递减()0h x '∴≤对[0,2]x ∈恒成立,即max 7()03h x k '=+≤73k ∴≤- …………………………………………………………………………………8分(Ⅲ)当1]x ∈时,()ln(1)10g x x '=++> ()(1)ln(1)g x x x ∴=++在区间1]上为增函数,∴1]x ∈时,0()g x ≤≤ …………………………………………………………………………10分21()12f x x kx =++的对称轴为:x k =-,∴为满足题意,必须14k -<-<……11分此时2min 1()()12f x f k k =-=-,()f x 的值恒小于(1)f -和(4)f 中最大的一个对于1]t ∀∈,总存在12,(1,4)x x ∈-,且12x x ≠满足()()i f x g t =(1,2)i =,min ((),min{(1),(4)})f x f f ∴⊆-2min 41141()0102(4)493(1)2k k f x k f k f k -<<⎧-<-<⎧⎪⎪⎪<-<⎪⎪⎪∴⇒⎨<+⎪⎪<-⎪<-⎪⎩ …………………………………………………13分94k <<……………………………………………………………………14分。

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(满分150分,考试时间120分钟)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知函数1()y f x -=是函数1()2(1)x f x x -=≥的反函数,则1()f x -= .2.若集合2214x A x y ⎧⎫⎪⎪=-=⎨⎬⎪⎪⎩⎭,{}1B x x =≥,则A B = . 3.函数lg 3y x =-的定义域是.4.已知行列式cos sin 21x x =-,(0,)2x π∈,则x = .5.已知等差数列{}n a 的前n 项和为n S ,若3050S =,5030S =,则80S = . 6.函数log (3)1a y x =+-(0a >且1)a ≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 7.设等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若*2()31n n S n n N T n =∈+,则54a b = . 8.2310(133)x x x +++展开式中系数最大的项是 .9.电子钟一天显示的时间是从00:00到23:59,每一时刻都由4个数字组成,则一天中任一时刻显示的4个数字之和为23的概率为 .10.已知tan ,tan αβ是关于x 的方程2(23)(2)0mx m x m +-+-=(0)m ≠的两根,则tan()αβ+的最小值为.11.若不等式(0)x a ≥>的解集为[,]m n ,且2m n a -=,则a 的取值集合为 .12.如图,若从点O 所作的两条射线,OM ON 上分别有点12,M M 与点12,N N ,则三角形面积之比21212211ON ON OM OM S S N OM N OM ⋅=∆∆,若从点O 所作的不在同一平面内的三条射线,OP OQ 和OR 上, 分别有点12,P P ,点12,Q Q 和点12,R R ,则类似的结论 为 .13.圆锥的底面半径为cm 5 ,高为12cm ,则圆锥的内接圆柱全面积的最大值为 .14.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实根,现有四个命题: ① 方程[()]f f x x =也一定没有实数根;② 若0a >,则不等式[()]f f x x >对一切x R ∈恒成立; ③ 若0a <,则必存在实数0x 使不等式00[()]f f x x >成立; ④ 若0a b c ++=,则不等式[()]f f x x <对一切x R ∈成立; 其中是真命题的有 .二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的.15. “arcsin 1x ≥”是“arccos 1x ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.248211111lim(1)(1)(1)(1)...(1)22222n n →∞+++++=( )A .1B .2C .3D .417.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是( )A .112λ≤≤ B .112λ-≤≤C .1122λ≤≤+D .1122λ-≤≤+18.若对于满足13t -≤≤的一切实数t ,不等式222(3)(3)0x t t x t t -+-+->恒成立,则x 的取值范围为( ) A .(,2)(9,)-∞-+∞ B .(,2)(7,)-∞-+∞ C .(,4)(9,)-∞-+∞D .(,4)(7,)-∞-+∞三、解答题:(本大题满分74分)本大题共有5题,解答下列各题须在答题纸的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+.(1)求函数()f x 的最小正周期和图像的对称轴方程;(2)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域.20.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.设虚数12,z z 满足212z z =.(1)若12,z z 又是一个实系数一元二次方程的两个根,求12,z z ;(2)若11z mi =+(0,m i >为虚数单位),1z ≤23z ω=+,求ω的取值范围.21.(本题满分14分)本题共2小题,第1小题7分,第2小题7分.如图,在斜三棱柱111ABC A B C -中,已知AC BC =,D 为AB 的中点,平面111A B C ⊥平面11ABB A ,且异面直线1BC 与1AB 互相垂直. (1)求证:1AB ⊥平面1ACD ;(2)若1CC 与平面11ABB A 的距离为1,115AC AB =, 求三棱锥1A ACD -体积.7分.已知函数()f x 的图象在[,]a b 上连续不断,定义:若存在最小正整数k ,使 得()()f x k x a ≤-对任意[,]x a b ∈恒成立,则称函数()f x 为[,]a b 上的 “k 函数”. (1)已知函数()2f x x m =+是[1,2]上的“1函数”,求m 的取值范围; (2)已知函数()3f x x m =+是[1,2]上的“2函数”,求m 的取值范围;(3)已知函数221,[1,0)()1,[0,1),[1,4]x x f x x x x ⎧-∈-⎪=∈⎨⎪∈⎩,试判断()f x 是否为[1,4]-上的“k 函数”,若是,求出对应的k ; 若不是,请说明理由.8分.数列{},{}n n a b 满足:11,a a b b ==,且当2k ≥时,,k k a b 满足如下条件: 当1102k k a b --+≥时,111,2k k k k k a ba ab ---+==, 当1102k k a b --+<时,111,2k k k k k a ba b b ---+==。

[青岛1模 数学]山东省青岛市2015届高三第一次模拟考数学试题(理)试题及答案(word版)

[青岛1模 数学]山东省青岛市2015届高三第一次模拟考数学试题(理)试题及答案(word版)

青岛市高三统一质量检测数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,复数21ii+等于 A .i +-1B .i --1C .i -1D .i +12.设全集R I =,集合2{|log ,2},{|A y y x x B x y ==>==,则 A .A B ⊆ B .AB A =C .A B ⋂=∅D . ()I A B ⋂≠∅ð3.在“魅力青岛中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所 剩数据的平均数和方差分别为A .5和1.6B .85和1.6C .85和0.4D .5和4.“*12N ,2n n n n a a a ++∀∈=+”是“数列{}n a 为等差数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.某几何体的三视图如图所示,且该几何体的体积是3,则 正视图中的x 的值是A .2B .92 C .32 D .3 6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221205x y -= B .221520x y -= C .2233125100x y -= D .2233110025x y -= 7.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则αβ⊥D .若//,,//m n m n αβ⊥,则//αβ 8.函数4cos xy x e =-(e 为自然对数的底数)的图象可能是9.对于函数sin 26y x π⎛⎫=-⎪⎝⎭,下列说法正确的是 A.函数图象关于点,03π⎛⎫⎪⎝⎭对称 B.函数图象关于直线56x π=对称 C.将它的图象向左平移6π个单位,得到sin 2y x =的图象 第5题图正视图 侧视图xD.将它的图象上各点的横坐标缩小为原来的12倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭ 10.已知点G 是ABC ∆的外心,,,GA GB GC u u r u u u r u u u r是三个单位向量,且20GA AB AC ++=u u r u u u r u u u r r ,如图所示,ABC ∆的顶点,B C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则OA uu r的最大值为AC .2D .3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知函数()tan sin 2015f x x x =++,若()2f m =, 则()f m -= ;12.执行如图所示的程序框图,则输出的结果是 ; 13.设()22132a x x dx =-⎰,则二项式621ax x ⎛⎫- ⎪⎝⎭展开式中的第6项的系数为 ;14. 若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是 ;15. 若X 是一个集合, τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合{,,}X a b c =,对于下面给出的四个集合τ: ①{,{},{},{,,}}a c a b c τ=∅; ②{,{},{},{,},{,,}}b c b c a b c τ=∅; ③{,{},{,},{,}}a a b a c τ=∅; ④{,{,},{,},{},{,,}}a c b c c a b c τ=∅. 其中是集合X 上的一个拓扑的集合τ的所有序号是 . 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)设ABC ∆的内角A,B,C 所对的边分别为,,,a b c 已知(),sin sin sin a b a cA B A B+-=+-3b =.(I )求角B ;(II )若sin A =,求ABC ∆的面积. 17.(本小题满分12分)某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院的概率;(II )从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.18.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥底面ABCD ,底面ABCD 是直角梯形,//AD BC ,90BAD ∠=︒,13AD AA ==,1BC =,1E 为11A B 中点. (Ⅰ)证明:1//B D 平面11AD E ;(Ⅱ)若AC BD ⊥,求平面1ACD 和平面11CDD C 所成角(锐角)的余弦值.19.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列{}n b 对任意N n *∈,总有12312n n n b b b b b a -⋅⋅⋅⋅⋅⋅=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记()()24121nnn n b c n ⋅=-+,求数列{}n c 的前n 项和n T .20.(本小题满分13分)已知椭圆22:12x C y +=与直线:l y kx m =+相交于E 、F 两不同点,且直线l 与圆222:3O x y +=相切于点W (O 为坐标原点). (Ⅰ)证明:OE OF ⊥; (Ⅱ)设EW FWλ=,求实数λ的取值范围.21.(本小题满分14分)已知函数()()()()()()21()1,1ln 1,2f x x kxg x x xh x f x g x '=++=++=+. (Ⅰ)若函数()g x 的图象在原点处的切线l 与函数()f x 的图象相切,求实数k 的值; (Ⅱ)若()h x 在[0,2]上为单调递减,求实数k 的取值范围.(III )若对于1t ⎡⎤∀∈⎣⎦,总存在()()()1212,1,4,i x x x x f x g t ∈-≠=且满()1,2i =,其中e 为自然对数的底数,求实数k 的取值范围.- 11 -。

春季高考第一次模拟考试数学试题.doc

春季高考第一次模拟考试数学试题.doc

2015春季高考第一次模拟考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.卷一(选择题,共60分)一、选择题(本大题20小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上)1.设全集{}12345,,,,U =,集合{}1234,,,A =,集合{}1345,,,B =,则()U C A B ⋂的所有子集个数是:A.1B.2C.4D.8 2.下列说法错误的是:A. 20x -=是240x -=的充分条件B.a b =是33a b =的充要条件 C.sin sin αβ=是αβ=的必要条件 D.2b ac =是 a,b,c 成等比数列的充要条件 3.设命题p :3是12的约数, 命题 q :5是12的约数,则下列是真命题的是: A.p q ∧ B.p q ⌝∨ C.p q ∧⌝ D.()p q ⌝∨ 4.如果a b >且0ab >,那么正确的是: A.11a b > B. 11a b< C.22a b > D.a b > 5.设22m x x =+-,221n x x =--,其中x R ∈,则A.m n >B. m n ≥C. m n <D. m n ≤ 6.函数()2132log y x =--的定义域为A. ()1,2B. ()(),12,-∞⋃+∞C. ()(),21,-∞-⋃-+∞D. ()2,1-- 7.已知函数()y f x =是偶函数,且在()0,+∞上单调递减,则()2f -与()3f -的大小关系是: A.()()23f f ->- B. ()()23f f -<- C. ()()23f f -=- D.无法比较8. 设lg 2a =,则2log 25等于A.1a a - B. 1a a - C. ()21a a - D. 21aa-9.已知23,25ab==,则22a b-的值为班级 姓名A.53 B. 95 C. 35 D. 25310.在等比数列{}n a 中,1230a a +=,34120a a +=,则6S 等于 A.630 B.480 C.360 D.240 11.已知()tan 2-=πα,则sin cos αα等于 A.23 B.25- C. 25 D.23- 12. 在ABC ∆中,若,,A B C ∠∠∠成等差数列,且2BC =,1BA =,则AC 等于A.3D.7 13. 在ABC ∆中,E,F 分别是AB u u u r ,AC u u u r 的中点,若AB a =u u u r r ,AC b =u u u r r ,则EF u u u r等于A.()12a b +r rB. ()12a b -+r rC. ()12a b -r rD. ()12b a -r r 14.已知直线0623:=-+y x l ,则图中阴影部分表示的不等式是 A.0623>-+y x B.0623<-+y x C.0623≥-+y xD.0623≤-+y x15.直线20x y +-=与圆2224200x y x y ++--=相交于A 、B两点,则AB 等于A.8B. D.416.某电视台组织“年货大街”活动中,有5个摊位要展示5个品牌的肉制品,其中有两个品牌是同一工厂的产品,必须在相邻摊位展示,则安排的方法共( )种。

2015山东春季高考数学试题真题

2015山东春季高考数学试题真题

机密★启用前山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.卷一(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上)1.集合{}1,2,3A =,{}1,3B =,则A B 等于( )A.{1,2,3}B.{1,3}C.{1,2}D.{2} 2.不等式15x -<的解集是( ) A.(6-,4) B.(4-,6) C.(,6)(4,)--+∞∞ D.(,4)(6,)--+∞∞3.函数1y x=的定义域是( ) A.{}10x xx -≠且 B.{}1x x - C.{}>10x x x -≠且D.{}>1x x -4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.在等比数列{}n a 中,241,3a a ==,则6a 的值是( ) A.5- B.5 C.9- D.96.如图所示,M 是线段OB 的中点,设向量,OA a OB b ==,则AM 可以表示为( )第6题图A.12a b +B.12a b -+C.12a b -D.12a b --7.终边在y 轴的正半轴上的角的集合是( )A.2,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z B.,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z C.2,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z D.,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z.8.关于函数22y x x =-+,下列叙述错误的是( )A.函数的最大值是1B.函数图象的对称轴是直线1x =C.函数的单调递减区间是[1,)-+∞D.函数的图象经过点(2,0)9.某值日小组共有5名同学,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教师外的走廊卫生,则不同的安排方法种数是( ) A.10 B.20 C.60 D.10010.如图所示,直线l 的方程是( )第10题图330x y -= 3230x y -= 3310x y --= D.310x -=11.对于命题p ,q ,若p q ∧是假命题,p q ∨是真命题,则( )A. p ,q 都是真命题B. p ,q 都是假命题C. p ,q 一个是真命题一个是假命题D.无法判断.12.已知函数()f x 是奇函数,当0x >时,2()2f x x =+,则(1)f -的值是( )A.3-B.1-C.1D.3.13.已知点(,2)P m -在函数13log y x =的图象上,点A 的坐标是(4,3),则AP的值是( )A.10B.210C.62D.5214.关于x ,y 的方程221x my +=,给出下列命题:①当0m <时,方程表示双曲线; ②当0m =时,方程表示抛物线;③当01m <<时,方程表示椭圆; ④当1m =时,方程表示等轴双曲线; ⑤当1m >时,方程表示椭圆. 其中,真命题的个数是( ) A.2 B.3 C.4 D.515.5(1)x -的二项展开式中,所有项的二项式系数之和是( ) A.0 B.1- C.32- D.32 .16.不等式组1030x y x y -+>⎧⎨+-<⎩表示的区域(阴影部分)是( )A B CD17.甲、乙、丙三位同学计划利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,则甲、乙两位同学恰好选取同一处景点的概率是( )A.29B.23C.14D.12.18.已知向量(cos ,sin ),(cos ,sin ),12121212a b 5π5πππ==则a b 的值等于( )A.12C.1D.0 19.已知,αβ表示平面,m ,n 表示直线,下列命题中正确的是( )A.若m α⊥,m n ⊥,则n αB.若m α⊂,n β⊂,αβ,则m nC.若αβ,m α⊂,则m βD.若m α⊂,n α⊂,m β,n β,则αβ 20.已知1F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,则双曲线的离心率是( )C.2D.3卷二(非选择题,共60分)二、填空题(本大题共5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.直棱柱的底面是边长为a 的菱形,侧棱长为h ,则直棱柱的侧面积是 .22.在△ABC 中,105A ∠=,45C ∠=,AB =则BC = ..23.计划从500名学生中抽取50名进行问卷调查,拟采用系统抽样方法,为此将他们逐一编号为1-500,并对编号进行分段,若从第一个号码段中随机抽出的号码是2 ,则从第五个号码段中抽取的号码应是 . .24.已知椭圆的中心在坐标原点,右焦点与圆22670x y x +--=的圆心重合,长轴长等于圆的直径,则短轴长等于 . .25.集合,,M N S 都是非空集合,现规定如下运算:{}()()()M N S x x MN NS SM ⊗⊗=∈.且()x MN S ∉.若集合{}{},A x a x b B x c x d =<<=<<,{}C x e x f =<<,其中实数a ,b ,c ,d ,e ,f ,满足:①0,0,0ab cd ef <<<;②a b c d e f -=-=-;③a b c d e f +<+<+.则A B C ⊗⊗= .三、解答题(本大题共5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(本小题6分)某学校合唱团参加演出,需要把120名演员排成5排,并且从第二排起,每排比前一排多3名,求第一排应安排多少名演员. .27.(本小题8分)已知函数2sin(2),y x x ϕ=+∈R ,02ϕπ<<.函数的部分图象如图所示.求:(1)函数的最小正周期T 及ϕ的值; (2)函数的单调递增区间.15SD7 第27题图.28.(本小题8分)已知函数()x f x a =(0a >且1a ≠)在区间[2,4]-上的最大值是16.(1)求实数a 的值;(2)若函数22()log (32)g x x x a =-+的定义域是R ,求满足不等式log (12)1a t -的实数t 的取值范围.29.(本小题9分)如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2,3SA SD AB ===. (1)求SA 与BC 所成角的余弦值; (2)求证:AB SD ⊥.15SD8 第29题图30.(本小题9分)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,Q 是抛物线上的点,点Q 到焦点F 的距离是1,且到y 轴的距离是38.(1)求抛物线的标准方程;(2)若直线l 经过点M (3,1),与抛物线相交于A ,B 两点,且OA OB ⊥,求直线l 的方程.15SD10 第30题图答案1.【考查内容】集合的交集 【答案】B2.【考查内容】绝对值不等式的解法 【答案】B【解析】1551546x x x -<⇒-<-<⇒-<<. 3.【考查内容】函数的定义域 【答案】A【解析】10x +且0x ≠得该函数的定义域是{}10x xx -≠且.4.【考查内容】充分、必要条件 【答案】C 【解析】“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,“直线与圆相切” ⇒“圆心到直线的距离等于圆的半径”.5.【考查内容】等比数列的性质 【答案】D 【解析】2423a q a ==,2649a a q ==. 6. 【考查内容】向量的线性运算 【答案】B【解析】12AM OM OA b a =-=-. 7.【考查内容】终边相同的角的集合 【答案】A【解析】终边在y 轴正半轴上的角的集合是2,2x k k ⎧π⎫+π∈⎨⎬⎩⎭Z 8.【考查内容】二次函数的图象和性质【答案】C【解析】222(1)1y x x x =-+=--+,最大值是1,对称轴是直线1x =,单调递减区间是[1,)+∞,(2,0)在函数图象上. 9.【考查内容】组合数的应用 【答案】A【解析】从5人中选取3人负责教室内的地面卫生,共有35C 10=种安排方法.(选取3人后剩下2名同学干的活就定了) 10【考查内容】直线的倾斜角,直线的点斜式方程 【答案】D【解析】由图可得直线的倾斜角为30°,斜率3tan 30k ==,直线l 与x 轴的交点为(1,0),由直线的点斜式方程可得l :01)y x-=-,即10x -=.11. 【考查内容】逻辑联结词 【答案】C【解析】由p q ∧是假命题可知p ,q 至少有一个假命题,由p q ∨是真命题可知p ,q 至少有一个真命题,∴p ,q 一个是真命题一个是假命题 12.【考查内容】奇函数的性质 【答案】A【解析】2(1)(1)(12)3f f -=-=-+=-13.【考查内容】对数的运算,向量的坐标运算,向量的模 【答案】D【解析】∵点(,2)P m -在函数13log y x =的图象上,∴2131log 2,()93m m -=-==,∴P 点坐标为(9,2)-,(5,5),52AP AP =-=.14.【考查内容】椭圆、双曲线和抛物线的标准方程,等轴双曲线的概念【答案】B【解析】当0m <时,方程表示双曲线;当0m =时,方程表示两条垂直于x 轴的直线;当01m <<时,方程表示焦点在y 轴上的椭圆;当1m =时,方程表示圆;当1m >时,方程表示焦点在x 轴上的椭圆.①③⑤正确. 15.【考查内容】二项式定理【答案】D【解析】所有项的二项式系数之和为012345555555C C C C C C 32+++++=16【考查内容】不等式组表示的区域 【答案】C【解析】可以用特殊点(0,0)进行验证:0010-+>,0030+-<,非严格不等式的边界用虚线表示,∴该不等式组表示的区域如C 选项中所示. 17.【考查内容】古典概率 【答案】D【解析】甲、乙两位同学选取景点的不同种数为224⨯=,其中甲、乙两位同学恰好选取同一处景点的种数为2,故所求概率为2142= 18.【考查内容】余弦函数的两角差公式,向量的内积的坐标运算 【答案】A 【解析】1sincos cos sin sin 1212121262a b πππππ=+== 19.【考查内容】空间直线、平面的位置关系【答案】C【解析】A. 若m α⊥,m n ⊥,则n α或n 在α内;B. 若m α⊂,n β⊂,αβ,则m n 或m 与n 异面;D. 若m α⊂,n α⊂,m β,n β,且m 、n 相交才能判定αβ;根据两平面平行的性质可知C 正确. 20.【考查内容】双曲线的简单几何性质 【答案】A【解析】1F 的坐标为(,0)c -,设P 点坐标为0(,)c y -,22022()1y c a b--=,解得20b y a=,由1PF a =可得2b a a =,则a b=,该双曲线为等轴双曲线,离心21. 【考查内容】直棱柱的侧面积 【答案】4ah22.【考查内容】正弦定理 【解析】由正弦定理可知,sin sin AB BCC A =,sin sin1056sin AB A BC C ===23.【考查内容】系统抽样【答案】42【解析】从500名学生中抽取50名,则每两相邻号码之间的间隔是10,第一个号码是2,则第五个号码段中抽取的号码应是241042+⨯= 24.【考查内容】椭圆的简单几何性质【答案】【解析】圆22670x y x +--=的圆心为(3,0),半径为4,则椭圆的长轴长为8,即3,4c a ==,b == 25.【考查内容】不等式的基本性质,集合的交集和并集 【答案】{}x c xe bx d <<或【解析】∵a b c d +<+,∴a c d b -<-;∵a b c d -=-,∴a c b d -=-;∴b d d b -<-,b d <;同理可得d f <,∴b d f <<.由①③可得0a c e b d f <<<<<<.则{}A B x c x b =<<,{}B C x e x d =<<,{}CA x e x b =<<.ABC ⊗⊗={}x c xe bx d <<或.26. 【考查内容】等差数列的实际应用【解】由题意知各排人数构成等差数列{}n a ,设第一排人数是1a ,则公差3d =,前5项和5120S =,因为1(1)2n n n S na d -=+,所以154120532a ⨯=+⨯,解得118a =.答:第一排应安排18名演员【考查内容】正弦型函数的图象和性质 【解】(1)函数的最小正周期22T π==π,因为函数的图象过点(0,1),所以2sin 1ϕ=,即1sin 2ϕ=,又因为02ϕπ<<,所以6ϕπ=. (2)因为函数sin y x =的单调递增区间是[2,2],22k k k ππ-+π+π∈Z . 所以222262k x k πππ-+π++π,解得36k xk ππ-+π+π, 所以函数的单调递增区间是[,],36k k k ππ-+π+π∈Z【考查内容】指数函数的单调性【解】(1)当01a <<时,函数()f x 在区间[2,4]-上是减函数, 所以当2x =-时,函数()f x 取得最大值16,即216a -=,所以14a =. 当1a >时,函数()f x 在区间[2,4]-上是增函数,所以当4x =时,函数()f x 取得最大值16,即416a =,所以2a =. (2)因为22()log (32)g x x x a =-+的定义域是R ,即2320x x a -+>恒成立.所以方程2320x x a -+=的判别式0∆<,即2(3)420a --⨯<,解得98a >,又因为14a =或2a =,所以2a =.代入不等式得2log (12)1t -,即0122t<-,解得1122t -<,所以实数t 的取值范围是11[,)22-. 【考查内容】异面直线所成的角,直线与平面垂直的判定和性质【解】(1)因为AD BC ,所以SAD ∠即为SA 与BC 所成的角,在△SAD 中,2SA SD ==, 又在正方形ABCD 中3AD AB ==,所以222222232cos 2223SA AD SD SAD SA AD +-+-∠==⨯⨯34=,所以SA 与BC 所成角的余弦值是34.(2)因为平面SAD ⊥平面ABCD ,平面SAD平面ABCD AD =,在正方形ABCD 中,AB AD ⊥,所以AB ⊥平面SAD ,又因为SD ⊂平面SAD ,所以AB SD ⊥.【考查内容】抛物线的定义、标准方程和性质,直线与抛物线的位置关系 【解】(1)由已知条件,可设抛物线的方程为22y px =,因为点Q 到焦点F 的距离是1,所以点Q 到准线的距离是1,又因为点Q 到y 轴的距离是38,所以3128p =-,解得54p =, 所以抛物线方程是252y x =. (2)假设直线l 的斜率不存在,则直线l 的方程为3x =,与252y x =联立,2015山东春季高考数学试题真题可解得交点A 、B的坐标分别为,易得32OA OB =,可知直线OA 与直线OB 不垂直,不满足题意,故假设不成立,从而,直线l 的斜率存在.设直线l 的斜率为k ,则方程为1(3)y k x -=-,整理得31y kx k =-+,设1122(,),(,),A x y B x y 联立直线l 与抛物线的方程得23152y kx k y x =-+⎧⎪⎨=⎪⎩①② , 消去y ,并整理得22225(62)96102k x k k x k k --++-+=,于是2122961k k x x k -+=. 由①式变形得31y k x k +-=,代入②式并整理得2251550ky y k --+=, 于是121552k y y k-+=,又因为OA OB ⊥,所以0OA OB =,即12120x x y y +=, 2296115502k k k k k -+-++=,解得13k =或2k =. 当13k =时,直线l 的方程是13y x =,不满足OA OB ⊥,舍去. 当2k =时,直线l 的方程是12(3)y x -=-,即250x y --=,所以直线l 的方程是250x y --=.。

2015山东省春季高考数学试题word版含答案

2015山东省春季高考数学试题word版含答案

山东省2015年普通高校招生(春季)考试数学试题一、选择题1、集合A ={1,2,3},B ={1,3},则A ∩B 等于( ) A {1,2,3} B {1,3} C {1,2} D {2}2、不等式51-x <的解集是( )A (-6,4)B (-4,6)C (-∞,-6)∪(4,+∞)D (-∞,-4)∪(6,+∞)3、函数xx y 11++=的定义域是( )A {}0且1|≠-≥x x xB {}1|-≥x xC {}0且1|≠->x x xD {}1|->x x 4、“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要 5、在等比数列{a n }中,a 2=1, a 4=3,则a 6的值是( ) A -5 B 5 C -9 D 96、如图所示,M 是线段OB 的中点,设向量→OA = →a ,→OB = →b ,则→AM 可以表示为A →a + 12→bB -→a + 12→b C →a -12→b D -→a - 12→b7、终边在Y 轴的正半轴的角的集合是( )A ⎭⎬⎫⎩⎨⎧∈+=z k k x x ,22|ππB ⎭⎬⎫⎩⎨⎧∈+=z k k x x ,2|ππC ⎭⎬⎫⎩⎨⎧∈+-=z k k x x ,22|ππD ⎭⎬⎫⎩⎨⎧∈+-=z k k x x ,2|ππO AB8、关于函数x x y 22+-=,下列叙述错误的是( )A 函数的最大值是1B 函数图像的对称轴是直线x=1C 函数的单调递减区间是[-1, +∞)D 函数的图像经过(2,0)9、某值日小组共有5名学生,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种类是( )A 10B 20C 60D 10010、如图所示,直线l 的方程是( )A 033=--y xB 0323=--y xC 0133=--y xD 013=--y x11、对于命题p,q ,若p ∧q 是假命题,p ∨q 是真命题,则A p,q 都是真命题B p,q 都是假命题C p,q 一个是真命题一个是假命题D 无法判断12、已知函数f(x)是奇函数,当x>0时,2)(2+=x x f ,则f(-1)的值是( ) A -3 B -1 C 1 D 313、已知点P (m,-2)在函数x y 31log =的图像上,点A 的坐标是(4,3),则|→AP |的值是( )A 10B 102C 26D 25 14、关于x,y 的方程122=+my x ,给出下列命题:①当m<0时,方程表示双曲线;②当m=0时,方程表示抛物线;③当0<m<1时,方程表示椭圆;④当m=1时,方程表示等轴双曲线;⑤当m>1时,方程表示椭圆;其中,真命题的个数是A 2B 3C 4D 515、5)-1(x 的二项展开式中,所有项的二项式系数之和是( )A 0B -1C -32D 3216、不等式组01y -x 03-y x {>+<+表示的区域(阴影部分)是( )yx17、甲乙丙三位同学计划利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,则甲乙两位同学恰好选取同一处景点的概率是( )A 29B 23C 14D 12 18、已知向量→a =(cos 5π12,sin 5π12), →b =(cos π12,sin π12),则→a ●→b 的值等于() A 12 B 32 C 1 D 0 19、已知α,β表示平面,m,n 表示直线,下列命题中正确的是( )A 若,,n m m ⊥⊥α 则α//nB 若βαβα//,,⊂⊂n m 则n m //C 若αβα⊂m ,// 则β//mD 若βαα//,,m n m ⊂⊂ 则βα//20、已知F 1是双曲线)0,0(12222>>=-b a by a x 的左焦点,点P 在双曲线上,直线PF 1与x 轴垂直,且|PF 1|=a,则双曲线的离心率是( )A 2B 3C 2D 3二、填空题:21、直棱柱的底面是边长为a 的菱形,侧棱长为h ,则直棱柱的侧面积是 22、在△ABC 中,∠A=1050,∠C=450,AB=2 2,则BC=23、计划从500名学生中抽取50名进行问卷调查,拟采用系统抽样方法,为此将他们逐一编号为1-500,并对编号进行分段,若从第一个号码段中随机抽出的号码是2,则从第五个号码段中抽出的号码应是24、已知椭圆的中心在坐标原点,右焦点与圆07622=--+x y x 的圆心重合,长轴长等于圆的直径,则短轴长等于 25、集合M,S,N都是非空集合,现规定如下运算:M⊕S⊕N={x|x )}s N M (且),()()(⋂⋂∉⋂⋂⋂∈x M S S N N M Y Y 若集合A=b}x a |{x <<,B=d}x c |{x <<,C=f}x e |{x <<,其中a ,b ,c ,d ,e ,f 满足:①ab<0,cd<0,ef<0②a-b=c-d=e-f ;③ a+b<c+d<e+f ;则A ⊕B ⊕C= 三、解答题:26、某学校合唱团参加演出,需要把120名演员排成5排,并且从第二排起,每一排比前一排多3名,求第一排应该安排多少名演员。

山东春季高考数学试题及详解答案

山东春季高考数学试题及详解答案

山东春季高考数学试题及详解答案The document was finally revised on 2021山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到.第Ⅰ卷(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A={1,2,3},B={1,3},则A∩B等于()(A){1,2,3} (B){1,3} (C) {1,2} (D){2} 2.|x-1|<5的解集是()(A)(-6,4) (B)(-4,6)(C) (-∞, -6)∪(4, +∞) (D)(-∞, -4 )∪(6,+∞)3.函数y=x+1 +1x的定义域为()(A){x| x≥-1且x≠0} (B){x|x≥-1} (C){x x>-1且x≠0} (D){x|x>-1}4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A)充分不必要条件(B)必要不充分条件(C )充要条件 (D )既不充分也不必要条件5.在等比数列{a n }中,a 2=1,a 4=3,则a 6等于( ) (A )-5(B )5(C )-9(D )96.如图所示,M 是线段OB 的中点,设向量→OA =→a ,→OB =→b ,则→AM 可以表示为( )(A )→a + 12→b (B ) -→a + 12→b(C )→a - 12→b (D )-→a - 12→b 7.终边在y 轴的正半轴上的角的集合是( ) (A ){x |x =2+2k ,k Z }(B ){x |x =2+k } (C ){x |x =-2+2k ,k Z }(D ){x |x =-2+k ,k Z }8.关于函数y =-x 2+2x ,下列叙述错误的是( ) (A )函数的最大值是1(B )函数图象的对称轴是直线x =1(C )函数的单调递减区间是[-1,+∞) (D )函数图象过点(2,0) 9.某值日小组共有5名同学,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种数是( ) (A )10(B )20(C )60(D )10010.如图所示,直线l 的方程是( )BOMA(A )3x -y -3=0 (B )3x -2y -3=0(C )3x -3y -1=0(D )x -3y -1=011.对于命题p ,q ,若p ∧q 为假命题”,且p ∨q 为真命题,则( ) (A )p ,q 都是真命题(B )p ,q 都是假命题(C )p ,q 一个是真命题一个是假命题 (D )无法判断12.已知函数f (x )是奇函数,当x >0时,f (x )=x 2+2,则f (-1)的值是( ) (A )-3 (B )-1 (C )1(D )313.已知点P (m ,-2)在函数y =log 13x 的图象上,点A 的坐标是(4,3),则︱→AP ︱的值是( ) (A )10(B )210(C )6 2(D )5 214.关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。

山东春季高考数学试题及详解答案

山东春季高考数学试题及详解答案

山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A ={1,2,3},B ={1,3},则 A ∩B 等于( ) (A ){1,2,3} (B ){1,3} (C ) {1,2} (D ){2} 2.|x -1|<5的解集是( )(A )(-6,4) (B )(-4,6)(C ) (-∞, -6)∪(4, +∞) (D )(-∞, -4 )∪(6,+∞)3.函数y =x +1 +1x的定义域为( )(A ){x | x ≥-1且x ≠0} (B ){x |x ≥-1} (C ){x x >-1且x ≠0} (D ){x |x >-1} 4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 5.在等比数列{a n }中,a 2=1,a 4=3,则a 6等于( ) (A )-5 (B )5 (C )-9 (D )9 6.如图所示,M 是线段OB 的中点,设向量→OA =→a ,→OB =→b ,则→AM 可以表示为( )(A )→a + 12→b (B ) -→a + 12→b(C )→a - 12→b (D )-→a - 12→b 7.终边在y 轴的正半轴上的角的集合是( ) (A ){x |x =?2+2k ?,k ?Z } (B ){x |x =?2+k ?}(C ){x |x =-?2+2k ?,k ?Z } (D ){x |x =-?2+k ?,k ?Z }8.关于函数y =-x 2+2x ,下列叙述错误的是( )(A )函数的最大值是1 (B )函数图象的对称轴是直线x =1 (C )函数的单调递减区间是[-1,+∞) (D )函数图象过点(2,0)9.某值日小组共有5名同学,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种数是( )(A )10 (B )20 (C )60 (D )100 10.如图所示,直线l 的方程是( )BOMA(A )3x -y -3=0 (B )3x -2y -3=0 (C )3x -3y -1=0 (D )x -3y -1=011.对于命题p ,q ,若p ∧q 为假命题”,且p ∨q 为真命题,则( ) (A )p ,q 都是真命题 (B )p ,q 都是假命题 (C )p ,q 一个是真命题一个是假命题 (D )无法判断12.已知函数f (x )是奇函数,当x >0时,f (x )=x 2+2,则f (-1)的值是( )(A )-3 (B )-1 (C )1 (D )3 13.已知点P (m ,-2)在函数y =log 13x 的图象上,点A 的坐标是(4,3),则︱→AP ︱的值是( )(A )10 (B )210 (C )6 2 (D )5 2 14.关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛市2015年春季高考第一次模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.设集合M ={m ∈Z|-3<m <2},N ={n ∈Z|-1≤n ≤3},则M ∩N =( ). (A ){0,1} (B ){0,1,2} (C ){-1,0,1} (D ){-1,0,1,2} 2.已知,,x y R ∈则“0x y ⋅>”是“0x >且0y >”的( ) (A ) 充分不必要条件 (B ) 必要不充分条件 (C) 充要条件(D ) 既不充分也不必要条件3. 函数()lg(1)f x x -的定义域为( )(A ) 1,12⎡⎫⎪⎢⎣⎭(B )1,12⎡⎤⎢⎥⎣⎦ (C ) 1,2⎡⎫+∞⎪⎢⎣⎭(D ) [)1,+∞4.已知角3(,),sin ,25παπα∈=则tan α等于( )(A ) 43-(B ) 34- (C )43(D )345.直线1:(1)30l a x y -+-=和2:320l x ay ++=垂直,则实数a 的值为( )(A )12(B )32(C )14(D )346.已知点A (-1,1),B (-4,5),若3BC BA =,则点C 的坐标为( ) (A )(-10,13) (B ) (9,-12)(C ) (-5,7)(D ) (5,-7)7.已知函数221g()12,[()](0)x x x f g x x x -=-=≠,则(0)f 等于( ) (A ) 3(B ) 3-(C )32(D )32-8.甲乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )(A ) 甲比乙先出发 (B )乙比甲跑的路程多 (C ) 甲、乙两人的速度相同 (D ) 甲比乙先到达终点9. 已知函数1log 4,0()2,0x kx x f x x ->⎧⎪=⎨≤⎪⎩,若(2)(2)f f =-,则k =( )(A ) 1 (B ) -1 (C ) 2 (D ) -210.二次函数2()(0)f x ax bx c a =++>的图像与x 轴交点的横坐标为-5和3,则这个二次函数的单调减区间为( )(A ) (],1-∞- (B ) [)2,+∞(C ) (],2-∞(D ) [)1,-+∞11.函数sin sin()2y x x π=-的最小正周期是( )(A )2π(B ) π (C ) 2π(D ) 4π12.从2名男生和2名女生中,任意选择两人在星期六、星期天参加某项公益活动,每人一天,则星期六安排一名男生、星期日安排一名女生的概率是( )(A )512(B )712(C )13(D )2313.某工厂去年的产值为160万元,计划在今后五年内,每一年比上一年产值增加5%,那么从今年起到第五年这个工厂的总产值是( )(A ) 121.55(B ) 194.48(C ) 928.31 (D ) 884.1014.直线20x y +-=与圆22(1)(2)1x y -+-=相交于A,B 两点,则弦||AB =( )(A)(B)(C)(D)15.已知二项式1)n x的展开式的第6项是常数项,则n 的值是( )(A )5(B )8(C ) 10(D ) 1516.已知变量x,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则目标函数z=4x+y 的最大值为( )(A )0 (B )2 (C ) 8(D ) 1017.在正四面体ABCD 中,点E ,F 分别是AB ,BC 的中点, 则下列结论错误的是( )(A )异面直线AB 与CD 所成的角为90° (B )直线AB 与平面BCD 成的角为60°(C )直线EF //平面ACD(D ) 平面AFD 垂直平面BCD18. 某商场以每件30元的价格购进一种玩具. 通过试销售发现,逐渐提高售价,每天的利润增大,当售价提高到45元时,每天的利润达到最大值为450元,再提高售价时,由于销售量逐渐减少利润下降,当售价提高到60元时,每天一件也卖不出去.设售价为x ,利润y 是x 的二次函数,则这个二次函数的解析式是( ) (A ) y=-2(x -30)(x -60) (B ) y= -2(x -30)(x -45) (C ) y= (x -45)2+450 (D ) y= -2(x -30)2+450 19.函数()sin()()(0,||)2f x x x R πωϕωϕ=+∈><的部分图像如图 所示,如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()f x x +=( )(A )12(B )(C)(D ) 120.已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ).(A )1100325322=-y x (B )1253100322=-y x (C )152022=-y x (D )120522=-y x第Ⅱ卷(非选择题,共60分)二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)21.关于x 的不等式250ax x b -+<的解集是(2,3),则a + b 的值等于 .E A B DFx22.已知=(cos ,sin ),=(cos 3sin ,sin ),x x x x x x x R +∈a b ,则,<>a b 的值是 . 23.过抛物线24y x =焦点F 的直线与抛物线交于A , B 两点,则OA OB ⋅= .24.已知一个正方体的所有顶点在一个球面上,若球的体积为92π,则正方体的棱长为. .25.从某校高三年级随机抽取一个班,对该班50名 学生的高校招生体检表中视力情况进行统计,其结 果的频率分布直方图如图所示.若某高校A 专业对 视力的要求在0.9以上,则该班学生中符合A 专业视力 要求的人数为 .三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(本小题7分) 已知等差数列{a n }满足:a 5=5,a 2+a 6=8.(1)求{a n }的通项公式;(2)若2n an b =,求数列{b n }的前n 项和n S .27.(本小题8分) 已知函数()1f x x x=+(1)求证:函数()y f x =是奇函数; (2)若1a b >>,试比较()f a 和()f b 的大小.28.(本小题8分) 已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 若(,),(,),m n b a c b a a c =+-=-+且m n⊥; (1) 求角B 的值;(2) 若6,a b ==ABC 的面积.0.250.5 0.75 1.00 频率/视力1.7529.(本小题8分) 如图,在四棱锥P -ABCD 中, 底面ABCD 为平行四边形,∠ADC =45°, AD =AC ,O 为AC 的中点,PO ⊥平面ABCD , M 为PD 的中点. 求证:(1)PB //平面ACM ; (2)AD ⊥平面P AC .30.(本小题9分) 焦点在x 轴上的椭圆C 的一个顶点与抛物线E:2x =的焦点重合,且离心率e =12,直线l 经过椭圆C 的右焦点与椭圆C 交于M ,N 两点. (1)求椭圆C 的方程;(2)若2OM ON ⋅=-,求直线l 的方程.青岛市2015年春季高考第一次模拟考试数学试题答案及评分标准第Ⅱ卷(非选择题,共60分)二、填空题(本大题5个小题,每题4分,共20分)DMABCOP21.7 22.3π23. 3-2425.20三、解答题(本大题5个小题,共40分)26.(本小题7分) 解:(1)由条件知:1145268a d a d +=⎧⎨+=⎩,得111a d =⎧⎨=⎩,所以{a n }的通项公式为n a n =.……3分(2)因为22na nn b ==,11222nn n n b b --==,所以数列{b n }是以b 1=2,公比q =2的等比数列,所以12(12)2212n n n S +⋅-==-- ……7分 27.(本小题8分) 证明:(1)函数()1f x x x=+的定义域为:,0x R x ∈≠,关于原点对称, 又()11()()f x x x f x x x-=-+=-+=-- 所以函数()y f x =是奇函数. ……3分(2))11()()1()1()()(bab a bb aa b f a f -+-=+-+=- 11()()()(1)()()b a ab a b a b a b ab ab ab--=-=--=- 1,0,1a b a b ab >>∴->>,∴()()0,f a f b -> ∴()()f a f b >.……8分 28. (本小题8分)解:(1)因为m n ⊥所以()()()0m n b a b a c a c ⋅=+--+=即:222a cb ac +-=-所以2221cos 222a cb ac B ac ac +--===- 因为0B π<< 所以23B π=.……4分 (2)因为sin sin a bA B=所以6sin 1sin 2a B A b === 因为0A π<<,所以6π=A ,2366C ππππ=--=所以111sin 6222ABC S ab C ∆==⨯⨯=……8分 29. (本小题8分)(1) 连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 是BD 的中点, 又M 为PD 的中点,所以PB //MO . 因为PB平面ACM ,MO平面ACM ,所以PB //平面ACM ……4分 (2)因为∠ADC =45°,且AD =AC , 所以∠DAC =90°,即AD ⊥AC . 又PO ⊥平面ABCD ,AD 平面ABCD , 所以PO ⊥AD ,又ACPO =O ,所以AD ⊥平面P AC . ……4分 30. (本小题9分)解:(1)因为抛物线的焦点为,所以b =又1,2c e a ==所以2a =, PMDAOBC所以椭圆的标准方程为22143x y +=;……3分 椭圆右焦点是(1,0) (2)当直线的斜率不存在时,直线方程为x =1,解得3(1,)2M ,3(1,)2N -,此时951244OM ON ⋅=-=-≠-不合题意. ……4分 设直线的方程为(1)y k x =-,则M (x 1,y 1), N (x 2,y 2)满足:22(1)(1)3412(2)y k x x y =-⎧⎨+=⎩(1)代入(2)得:2222(34)84120k x k x k +-+-=,则221212228412,3434k k x x x x k k-+=⋅=++,2221212121229(1)(1)[()1)]34k y y k x x k x x x x k -⋅=--=-++=+……7分所以22121224129234k k OM ON x x y y k--⋅=+==-+所以k =所以直线的方程为1)y x -或1)y x =-.……9分.。

相关文档
最新文档