《安图纪检监察》2012第10期
不同碳链长度咪唑啉缓蚀剂在CO2_驱采油环境中的腐蚀防护作用

表面技术第52卷第8期不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用倪小龙1,李欢1,李云飞1,郝卫国1,杨庆2a,林冰2a,2b,郑宏鹏2a,2b,唐鋆磊2a,2b(1.新疆油田采油二厂,新疆 克拉玛依 834008;2.西南石油大学 a.化学化工学院 b.碳中和研究院,成都 610500)摘要:目的合成制备适用于CO2驱油环境中井筒材料的腐蚀防护的咪唑啉缓蚀剂,探究碳链长度对咪唑啉缓蚀剂腐蚀防护性能的影响机制。
方法以辛酸、月桂酸、硬脂酸和二乙烯三胺等为原料,经酰胺化和环化后制备得到3种碳链长度(C7、C11和C17)的咪唑啉缓蚀剂。
通过傅里叶变换红外光谱、量子化学计算、失重法、电化学方法以及表面观察技术,对合成缓蚀剂在CO2驱油环境中对井筒材料的腐蚀防护性能进行了评价。
结果红外测试观察到3种链长(C7、C11和C17)的咪唑啉缓蚀剂的特征吸收峰,表明3种链长咪唑啉缓蚀剂成功制备。
量子化学计算表明,合成的C17咪唑啉缓蚀剂具有最优的供电子能力和最佳的疏水能力。
腐蚀失重和电化学测试结果显示,所合成的3种不同碳链长度的咪唑啉缓蚀剂均对CO2驱腐蚀环境中N80钢具有良好的腐蚀防护作用,随着缓蚀剂浓度的提升,其缓蚀效率逐渐增高。
其中含有17个碳链的咪唑啉缓蚀剂(C17)在10 mg/L时缓蚀效率达到了90%以上。
拉曼光谱观察到N80钢表面C=N和C—N的吸收峰,表明合成的3种缓蚀剂在N80表面上吸附。
SEM结果发现,添加C17咪唑啉的N80表面腐蚀最为轻微,其腐蚀防护效果最优。
结论合成的C17碳链的咪唑啉缓蚀剂具有优异的腐蚀防护效果,随着碳链长度的增加,碳链的推电子能力增强,使得咪唑啉缓蚀剂更容易在N80钢表面吸附,同时长碳链形成的缓蚀剂膜层也具有更好的疏水作用,导致咪唑啉中缓蚀剂越长其缓蚀效果越好。
关键词:CO2驱油;咪唑啉缓蚀剂;碳链长度;缓蚀效率;理论计算中图分类号:TG172文献标识码:A 文章编号:1001-3660(2023)08-0278-12DOI:10.16490/ki.issn.1001-3660.2023.08.022Corrosion Protection of Imidazoline Corrosion Inhibitors with Different Carbon Chain Length in CO2 Driving Oil EnvironmentNI Xiao-long1, LI Huan1, LI Yun-fei1, HAO Wei-guo1, YANG Qing2a,LIN Bing2a,2b, ZHENG Hong-peng2a,2b, TANG Jun-lei2a,2b收稿日期:2022-06-14;修订日期:2022-12-03Received:2022-06-14;Revised:2022-12-03作者简介:倪小龙(1984—),男,高级工程师,主要研究方向为油田开采。
35921711

报在预防腐败这方面 的作用是显而易见 的。
3 .人民群众 的呼声 。在我 国,经 常可以看到年薪几万元 的 官员抽的是 高档烟 ,戴的是 高档表 ,开 的是高档车 ,人民群众对 此极其不满 ,因为这样大笔的花费与其个人 正常工资收入严重不
、
实行财 产 申报制 度的 必要性
1 .经济 发展 的需要。从各 国特别是 亚洲国家和地区引发官 符 ,人 民强 烈要求将各 级公 务人 员 的财 产状况及其 变化公 布于
要性 出发 。分析 了现 阶段我 国开展 财产 申报制度情况 以及 财产 申 社会能否平稳转 型的分水岭。而从我 国经济发展情况看 ,目前这 报 制度 面临的 困难 ,最后提 出几点思考。以期对官 员财产 申报制 个 阶 段 已 经 来 临 。
度 进 行有 益 探 索。
2 .反腐 倡廉 的需要 。随着 我国公务员队伍的不断壮大,部
施 莉 红
( 中共洛 阳市委党校 ,河南 洛 阳 4 10 ) 7 0 0
摘要:建立健全官员财产 申报制度 一直是社会关 注的重要 问 员财 产 申报制度 的背景 来看 ,当一个 国家经 济发展到 一定 阶段 题 ,也是 管理层力求解决的问题。文章从 实行财产 申报制度 的必 ( 人均3 o  ̄元) oo ,如何预防和惩治腐败 ,将成为社会矛盾焦点和
2总第 17 ) 0 1 9期 ( 0年第 0 5期
现 代 企 业 文 化
M E N E T R R S U ’R OD R N E P IE C U U E
Байду номын сангаас
NO.9, 01 0 2 0
( u uai t 017 C m l v y .5 ) te N
财产 申报制度势在必行
贝莱斯芽孢杆菌CL-4固态发酵对豆粕营养品质的影响

㊀山东农业科学㊀2023ꎬ55(9):87~93ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.09.012收稿日期:2022-11-21ꎻ修回日期:2023-05-25基金项目:2019年度吉林省科研院所引进高层次科技创新人才资助计划项目ꎻ吉林省农业科技创新工程基本科研经费项目(KYJF2021JQ103)作者简介:瞿子惠(1995 )ꎬ女ꎬ硕士ꎬ研究实习员ꎬ从事动物营养与饲料研究ꎮE-mail:47992301@qq.com通信作者:郎洪彦(1973 )ꎬ女ꎬ硕士ꎬ副研究员ꎬ从事动物科学研究ꎮE-mail:bluewater603@163.com陈龙(1989 )ꎬ男ꎬ博士ꎬ副研究员ꎬ从事动物营养与饲料科学研究ꎮE-mail:chenliang198931@163.com贝莱斯芽孢杆菌CL-4固态发酵对豆粕营养品质的影响瞿子惠ꎬ刘歆ꎬ郑琳ꎬ魏炳栋ꎬ闫晓刚ꎬ于维ꎬ陈龙ꎬ郎洪彦(吉林省农业科学院动物营养与饲料研究所ꎬ吉林公主岭136100)㊀㊀摘要:本试验选用吉林省农业科学院动物营养与饲料研究所分离鉴定的贝莱斯芽孢杆菌CL-4对豆粕进行固态发酵ꎬ通过对发酵前后豆粕中营养成分㊁大豆抗原蛋白㊁酶活力㊁活菌数㊁抗菌活性及表观形态等指标的测定ꎬ评价贝莱斯芽孢杆菌CL-4固态发酵豆粕营养品质的提升效果ꎮ结果表明:贝莱斯芽孢杆菌CL-4在大豆抗原蛋白筛选平板上显示出较大直径的水解圈ꎬ具有降解大豆抗原蛋白的能力ꎮ固态发酵24h显著提高了豆粕营养品质和功能代谢产物ꎬ具有更高浓度的酸溶蛋白㊁钙㊁灰分和总磷含量ꎬ其中粗蛋白含量由46.78%增加到51.28%ꎬ总氨基酸含量由41.72%显著提高至48.14%ꎻ半纤维素含量从19.92%下降到13.23%ꎬ纤维素含量由7.41%降低到5.85%ꎻ大豆球蛋白和β-伴球蛋白的降解率可达84.91%和80.95%ꎮ综上ꎬ贝莱斯芽孢杆菌CL-4作为发酵豆粕的新型菌种资源ꎬ可有效降解豆粕中抗营养因子ꎬ提高豆粕营养品质和饲料效率ꎮ关键词:贝莱斯芽孢杆菌ꎻ固态发酵ꎻ豆粕ꎻ营养品质中图分类号:S816.6㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)09-0087-07EffectsofSolidStateFermentationwithBacillusvelezensisCL ̄4onNutritionalQualityofSoybeanMealQuZihuiꎬLiuXinꎬZhengLinꎬWeiBingdongꎬYanXiaogangꎬYuWeiꎬChenLongꎬLangHongyan(InstituteofAnimalNutritionandFeedꎬJilinAcademyofAgriculturalSciencesꎬGongzhulingꎬ136100ꎬChina)Abstract㊀InthisexperimentꎬBacillusvelezensisCL ̄4isolatedandidentifiedbytheAnimalNutritionandFeedResearchInstituteofJilinAcademyofAgriculturalScienceswasusedforsolidfermentationofsoy ̄beanmeal.Thenutrientcompositionsꎬsoybeanantigenproteinꎬenzymeactivityꎬviablebacteriacountꎬanti ̄bacterialactivityandapparentformofsoybeanmealweredeterminedbeforeandafterfermentationinordertoevaluatethenutritionalqualityimprovementeffectofsolidstatefermentationwithB.velezensisCL ̄4.There ̄sultsshowedthatB.velezensisCL ̄4showedalargediameterhydrolyticringonthesoybeanantigenproteinscreeningplateꎬwhichhadtheabilitytodegradesoybeanantigenprotein.Thenutritionalqualityandfunction ̄almetabolitesofsoybeanmealweresignificantlyimprovedby24hsolidfermentationꎬandthecontentsofacid ̄solubleproteinꎬcalciumꎬashandtotalphosphoruswerehigher.Thecrudeproteincontentincreasedfrom46.78%to51.28%ꎬandthetotalaminoacidcontentincreasedfrom41.72%to48.14%.Hemicellulosecon ̄tentdecreasedfrom19.92%to13.23%ꎬandcellulosecontentdecreasedfrom7.41%to5.85%.Thedegrada ̄tionratesofsoybeanglycininandβ ̄conglycinincouldreach84.91%and80.95%ꎬrespectively.Inconclu ̄sionꎬB.velezensisCL ̄4ꎬasanewstrainresourceforfermentationofsoybeanmealꎬcouldeffectivelydegradeanti ̄nutritionfactorsinsoybeanmealꎬandimprovethenutritionalqualityandfeedefficiencyofsoybeanmeal.Keywords㊀BacillusvelezensisꎻSolidstatefermentationꎻSoybeanmealꎻNutritionalquality㊀㊀豆粕是食品和饲料领域常见的优质植物性蛋白来源ꎮ豆粕中主要的抗原蛋白是大豆球蛋白和β-伴球蛋白ꎬ分别占豆粕总蛋白的30%和40%左右[1]ꎮ当幼龄仔猪摄入这类蛋白质时ꎬ会引起过敏ꎬ导致吸收不良综合征㊁生长抑制和腹泻ꎮ此外ꎬ豆粕中还含有非淀粉多糖ꎬ主要由纤维素㊁半纤维素和果胶组成ꎬ被证实是导致断奶仔猪肠道疾病的诱因[2]ꎮ发酵豆粕通过添加有益微生物ꎬ如少孢根霉(Rhizopusoligosporus)㊁米曲霉(Asper ̄gillusoryzae)㊁短乳杆菌(Lactobacillusbrevis)或枯草芽孢杆菌(Bacillussubtilis)ꎬ可以有效去除部分对动物有害的抗营养因子ꎬ从而改善豆粕营养品质ꎬ提高动物消化利用率[3-5]ꎮ贝莱斯芽孢杆菌(Bacillusvelezensis)作为芽孢杆菌中新划分的一个种ꎬ于2016年与B.meth ̄ylotrophicus㊁B.amyloliquefacienssubsp.plantarum㊁B.oryzicola重新归类并命名为B.velezensis[6]ꎮ有关B.velezensis的研究集中于生物防治和促进植物生长等方面[7-8]ꎮ贝莱斯芽孢杆菌于2020年被列入欧盟安全资格认定(QPS)推荐的生物制剂列表中ꎬ可作为新型发酵饲料菌种[9]ꎬ有关B.velezensis在畜禽应用的报道逐渐增多[10]ꎬ主要集中在饲料霉菌毒素[玉米赤霉烯酮(zearalenoneꎬZEN)和黄曲霉毒素B1(AFB1)]脱毒[11]和水产益生菌方面[12]ꎮ本研究团队主要开展有关B.velezensis在木质纤维素利用方面的研究ꎬ前期成功分离并鉴定一株来自鸡盲肠内容物的B.velezensisCL-4ꎬ具有富产木质纤维素酶优势ꎬ同时具有抑制病原细菌和真菌的能力ꎬ对动物安全无毒ꎬ具有良好的益生特性[13]ꎮ现已完成了该菌株的全基因组测序ꎬ并成功用于发酵玉米胚芽粕ꎬ获得授权发明专利«一株禽源贝莱斯芽孢杆菌CL-4及其应用»(专利号:202110109964.X)ꎮ豆粕常用发酵菌多为枯草芽孢杆菌[2]㊁酿酒酵母菌[14]㊁植物乳杆菌[15]等ꎬ仅有少数文献报道了贝莱斯芽孢杆菌发酵豆粕的应用[16]ꎮ因此ꎬ本研究利用B.velezensisCL-4发酵豆粕ꎬ探究发酵前后豆粕中抗营养因子㊁营养成分㊁微生物㊁酶活力以及表观形态等变化ꎬ旨在为生物蛋白饲料提供新型优良菌种ꎬ为进一步改善发酵豆粕营养品质提供理论依据和数据支撑ꎮ1㊀材料与方法1.1㊀试验材料1.1.1㊀菌株和发酵原料㊀菌种贝莱斯芽孢杆菌(B.velezensis)CL-4分离自肉鸡盲肠内容物ꎬ病原指示菌为金黄色葡萄球菌ATCC25923㊁大肠埃希菌ATCC25922ꎬ均由吉林省农业科学院动物营养与饲料研究所保存ꎬ豆粕购自吉林省公主岭禾丰牧业有限责任公司ꎮ1.1.2㊀主要试剂和仪器㊀DNS试剂㊁LB培养基㊁大豆球蛋白和β-伴球蛋白ELISA试剂盒购自北京龙科方舟生物工程技术有限公司ꎬ植物蛋白提取试剂盒购自南京凯基生物有限公司ꎮ控摇床ꎬ恒温培养箱ꎬ高压灭菌锅ꎬ超净工作台ꎮ1.2㊀试验方法1.2.1㊀豆粕抗原蛋白平板制备及菌株降解能力测定㊀抗原蛋白培养基的制备:称取5g豆粕ꎬ磨碎后过60目筛ꎬ加入pH8.5的Tris-HCl缓冲液75mLꎬ30~50ħ㊁200r/min振荡1hꎬ9000r/min离心40minꎬ沉淀再浸提一次ꎬ合并两次上清液ꎮ向上清液中加入NaHSO3至0.01mol/Lꎬ用2mol/LHCl调pH至6.4ꎬ4ħ沉淀过夜ꎮ于6500r/min㊁4ħ离心30minꎬ得到大豆球蛋白沉淀ꎮ上清液加NaCl至0.25mol/Lꎬ调pH至4.0~6.0ꎬ室温搅拌30minꎬ9000r/min㊁4ħ离心30minꎬ上清液稀释2倍ꎬ调pH至4.8ꎬ6500r/min离心20min得到β-伴球蛋白沉淀ꎮ将所有沉淀溶于ddH2Oꎬ调pH至5.5~6.5ꎬ加入1.5%(w/v)琼脂ꎬ115ħ灭菌20minꎮ抗原蛋白平板制备:在灭菌培养皿中加入15mL抗原蛋白培养基ꎬ待冷却后再加入营养培养基(蛋白胨10g/L㊁牛肉膏3g/L㊁氯化钠5g/L㊁琼脂20g/Lꎬ121ħ高压灭菌15min)15mLꎬ冷却至凝固ꎬ待培养基表面无明显水迹后ꎬ将已灭菌的牛津杯置于试验平板中ꎬ轻轻加压ꎬ使其与培养皿接触无空隙ꎬ4ħ保存备用ꎮ菌株降解豆粕抗原蛋白能力测定:根据88㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀Wongputtisin等[17]的方法制备候选菌株B.velezensisCL-4粗上清液ꎬ过0.22μm微孔滤膜ꎮ取100μL粗上清液加入抗原蛋白筛选平板的牛津杯中培养24hꎬ以添加100μL生理盐水为对照ꎮ若菌株对抗原蛋白有降解作用ꎬ即可见到水解圈ꎮ根据水解圈直径与牛津杯孔径比值测定B.velezensisCL-4的豆粕抗原蛋白降解能力ꎮ1.2.2㊀发酵豆粕的制备㊀将B.velezensisCL-4在37ħ液体LB培养基中培养12h以备固态发酵ꎮ将豆粕121ħ高压灭菌处理20minꎬ称取灭菌后的豆粕100g于500mL烧瓶中ꎬ发酵菌种添加量为107CFU/gꎬ最终含水量为40%ꎬ搅拌均匀后用滤菌呼吸膜封住瓶口于37ħ下发酵24hꎬ然后105ħ㊁30min阻断发酵ꎮ以0.85%无菌生理盐水为对照ꎬ重复3次ꎮ将发酵样品65ħ烘干24hꎬ冷却研磨过60目筛ꎬ用于SDS-PAGE和营养成分分析ꎮ1.2.3㊀pH值和发酵代谢产物相关指标测定㊀准确称取0㊁24h的发酵样品各1.00g溶于9.0mL蒸馏水中ꎬ室温150r/min振荡10minꎬ静置1min后测定pH值ꎻ采用倍比稀释法测定发酵样品中活菌数ꎻ通过DNS法测定纤维素酶㊁木聚糖酶和果胶酶活力ꎬ中性蛋白酶活力测定参考行业标准SB/T10317 1999ꎻ使用琼脂扩散法测定发酵后豆粕的抑菌性ꎬ以金黄色葡萄球菌ATCC25923和大肠埃希菌ATCC25922作为抑菌试验的指示剂ꎮ1.2.4㊀营养成分分析㊀根据AOAC(2005)测定发酵前后豆粕中干物质㊁粗纤维㊁粗蛋白㊁纤维素㊁半纤维素㊁总磷㊁钙和灰分等含量ꎮ根据Ovissipour等[18]的方法测定发酵前后豆粕中酸溶蛋白含量ꎮ采用氨基酸自动分析仪测定发酵前后豆粕中氨基酸含量ꎮ1.2.5㊀豆粕抗原蛋白定量检测㊀利用间接竞争性ELISA法测定发酵前后豆粕中大豆球蛋白和β-伴球蛋白含量ꎬ采用北京龙科方舟试剂盒进行ꎮ1.2.6㊀SDS-PAGE分析㊀根据植物蛋白提取试剂盒说明书提取发酵0㊁12㊁24h豆粕可溶性蛋白ꎬ使用Bio-Rad蛋白定量试剂盒将上清液定量至50μg/mLꎬ分别配制12%分离胶和5%浓缩胶ꎬ采用稳流35mA电泳至蛋白进入分离胶ꎬ然后设定稳流45mA电泳至溴酚蓝离胶底1cmꎬ最后采用考马斯亮蓝染色和脱色液脱色ꎬ直至凝胶背景脱净ꎮ1.2.7㊀扫描电镜观察㊀取发酵前后豆粕样品0.1g包裹于滤纸内ꎬ用2.5%戊二醛4ħ浸泡过夜ꎮ扫描电镜观察倍数分别为1000㊁1500㊁3000ꎮ1.3㊀数据统计与分析使用SPSS软件(24.0)通过Student st-test和单因素方差分析(ANOVA)对数据进行统计分析ꎬ各组间数据显著差异水平设定为P<0.05ꎬ数值表示为平均值ʃ标准差ꎮ2㊀结果与分析2.1㊀B.velezensisCL-4降解豆粕抗原蛋白能力测定如图1所示ꎬB.velezensisCL-4胞外上清液在大豆抗原蛋白筛选板上显示出较大直径水解圈ꎬ而生理盐水对照没有出现水解圈ꎬ初步推断B.velezensisCL-4胞外上清液具有降解大豆抗原蛋白的能力ꎮa和b为生理盐水对照ꎬc和d为B.velezensisCL-4胞外上清液ꎮ图1㊀B.velezensisCL-4降解豆粕抗原蛋白能力2.2㊀豆粕发酵前后营养成分比较分析如表1所示ꎬ与发酵前相比ꎬB.velezensisCL-4固态发酵24h后ꎬ豆粕干物质含量由93.25%ʃ0.36%下降至92.69%ʃ0.32%ꎬ粗蛋白含量由46.78%ʃ0.32%增加到51.28%ʃ0.24%ꎬ酸溶蛋白含量由5.15%ʃ0.04%显著提升至10.74%ʃ0.12%ꎬ钙㊁灰分和总磷含量均有所提高ꎮ粗纤维含量显著降低ꎬ其中半纤维素含量从19.92%ʃ0.11%下降到13.23%ʃ0.09%ꎬ纤维素含量由7.41%ʃ0.05%降低到5.85%ʃ0.08%ꎮ各种氨基酸含量均呈上升趋势ꎬ除精氨酸㊁蛋氨酸㊁丙氨酸㊁酪氨酸和脯氨酸外ꎬ其他必需和非必需氨基酸显著提升(P<0.05)ꎮ与原始豆粕相比ꎬ固态发酵饲料的总氨基酸含量由41.72%ʃ0.40%显著提高至98㊀第9期㊀㊀㊀㊀㊀瞿子惠ꎬ等:贝莱斯芽孢杆菌CL-4固态发酵对豆粕营养品质的影响48.14%ʃ0.14%ꎮ因此ꎬB.velezensisCL-4固态发酵可显著提高豆粕营养品质ꎬ降低粗纤维含量ꎮ㊀㊀表1㊀B.velezensisCL-4发酵前后豆粕营养成分分析%成分原始豆粕发酵豆粕干物质93.25ʃ0.36a92.69ʃ0.32b粗蛋白46.78ʃ0.32b51.28ʃ0.24a酸溶蛋白5.15ʃ0.04b10.74ʃ0.12a粗纤维5.49ʃ0.05a5.12ʃ0.08b纤维素7.41ʃ0.05a5.85ʃ0.08b半纤维素19.92ʃ0.11a13.23ʃ0.09b灰分6.14ʃ0.06b6.68ʃ0.05a钙0.33ʃ0.01b0.36ʃ0.01a总磷0.61ʃ0.01b0.72ʃ0.01a必需氨基酸精氨酸3.19ʃ0.03a3.23ʃ0.02a组氨酸1.07ʃ0.02b1.27ʃ0.01a异亮氨酸1.99ʃ0.05b2.25ʃ0.01a亮氨酸3.62ʃ0.04b4.03ʃ0.03a赖氨酸2.54ʃ0.02b2.88ʃ0.01a蛋氨酸0.26ʃ0.01a0.32ʃ0.03a苯丙氨酸2.09ʃ0.02b2.42ʃ0.02a苏氨酸1.76ʃ0.03b2.00ʃ0.01a缬氨酸2.13ʃ0.07b2.52ʃ0.03a非必需氨基酸天冬氨酸5.14ʃ0.01b5.65ʃ0.03a丝氨酸2.18ʃ0.02b2.45ʃ0.01a谷氨酸7.79ʃ0.01b9.43ʃ0.06a甘氨酸1.94ʃ0.04b2.29ʃ0.01a丙氨酸1.98ʃ0.04a2.03ʃ0.02a半胱氨酸0.41ʃ0.01b0.53ʃ0.01a酪氨酸1.21ʃ0.02a1.38ʃ0.01a脯氨酸2.33ʃ0.03a2.47ʃ0.02a总氨基酸含量41.72ʃ0.40b48.14ʃ0.14a㊀㊀注:同行数据肩标不同大㊁小写字母分别表示差异极显著(P<0.01)㊁显著(P<0.05)ꎬ下同ꎮ2.3㊀发酵豆粕抗菌活性图2显示ꎬ与未发酵豆粕的上清液相比ꎬ固态发酵24h后的豆粕上清液在MH固体培养基上对金黄色葡萄球菌ATCC25923和大肠埃希菌ATCC25922具有明显的抑菌圈ꎮ因此ꎬB.velezen ̄sisCL-4固态发酵豆粕具有一定的抗菌活性ꎮ2.4㊀发酵豆粕pH值㊁活菌数及酶活力变化由表2可知ꎬ与发酵前相比ꎬB.velezensisCL-4固态发酵豆粕的活菌数从(8.13ʃ0.04)logCFU/g显著增加到(10.28ʃ0.29)logCFU/gꎻpH值从6.64ʃ0.02小幅增加到7.01ʃ0.05ꎻ纤维素酶活力由(7.57ʃ0.41)U/g提升至(18.73ʃ1.67)U/gꎬ木聚糖酶活力由(7.21ʃ0.48)U/g提升至(23.92ʃ1.48)U/gꎬ果胶酶活力由(5.52ʃ0.38)U/g上升至(14.05ʃ2.71)U/gꎬβ-甘露聚糖酶活力由(6.52ʃ0.12)U/g提升至(17.64ʃ0.84)U/gꎬ中性蛋白酶活力由(7.90ʃ0.74)U/g提升至(235.93ʃ10.19)U/gꎬ各种酶活力均显著提高ꎮ1㊁2㊁3为B.velezensisCL-4胞外上清液重复ꎮ图2㊀B.velezensisCL-4固态发酵豆粕的抗菌活性㊀㊀表2㊀B.velezensisCL-4发酵豆粕pH值㊁活菌数及酶活力变化项目原始豆粕发酵豆粕pH值6.64ʃ0.02a7.01ʃ0.05a活菌数/(logCFU/g)8.13ʃ0.04b10.28ʃ0.29a纤维素酶活力/(U/g)7.57ʃ0.41b18.73ʃ1.67a木聚糖酶活力/(U/g)7.21ʃ0.48b23.92ʃ1.48a果胶酶活力/(U/g)5.52ʃ0.38b14.05ʃ2.71a中性蛋白酶活力/(U/g)7.90ʃ0.74B235.93ʃ10.19Aβ-甘露聚糖酶活力/(U/g)6.52ʃ0.12b17.64ʃ0.84a2.5㊀发酵豆粕抗原蛋白降解效果SDS-PAGE分析结果(图3)显示ꎬ在24h发酵过程中ꎬ豆粕分子量大于35kDa的蛋白亚基逐步降解ꎬ而15~24kDa的蛋白含量逐渐提高ꎮ大豆抗原蛋白亚基中的β-伴球蛋白亚基(α和αᶄ)分子量在70~100kDa左右ꎬ发酵12h基本降解ꎬ1㊁2㊁3分别代表发酵0㊁12㊁24hꎮ图3㊀B.velezensisCL-4发酵豆粕可溶性蛋白分子量变化09㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀而β-伴球蛋白βᶄ亚基分子量为60kDa左右ꎬ于24h被降解ꎮ因此ꎬB.velezensisCL-4固态发酵可将豆粕中大分子抗原蛋白降解成小分子肽类ꎮELISA定量检测结果(表3)显示ꎬ与发酵前相比ꎬB.velezensisCL-4固态发酵24h后ꎬ豆粕中大豆球蛋白含量由(176.14ʃ3.15)mg/g降低至(26.58ʃ1.22)mg/gꎬ降解率可达84.91%ꎻβ-伴球蛋白含量由(134.66ʃ2.24)mg/g下降至(25.65ʃ0.75)mg/gꎬ降解率可达80.95%ꎮ表明B.velezensisCL-4固态发酵可显著降低豆粕中大豆球蛋白和β-伴球蛋白含量ꎮ2.6㊀发酵过程中豆粕表观形态变化扫描电镜观察结果(图4)显示ꎬ发酵前豆粕结构紧凑㊁表面光滑ꎮB.velezensisCL-4固态发酵24h后ꎬ豆粕的块状结构被大量分解ꎬ呈现出碎片㊁破裂和多纤维素结构ꎬ表明B.velezensisCL-4固态发酵可明显改变豆粕表观形态ꎬ有效降解木质纤维素ꎮ㊀㊀表3㊀B.velezensisCL-4发酵豆粕抗原蛋白的降解效果项目大豆球蛋白含量/(mg/g)降解率/%β-伴球蛋白含量/(mg/g)降解率/%原始豆粕176.14ʃ3.15a134.66ʃ2.24a发酵豆粕26.58ʃ1.22b84.9125.65ʃ0.75b80.95㊀㊀注:同列数据肩标不同字母表示差异显著(P<0.05)ꎮA~C分别代表原始豆粕放大1000㊁1500㊁3000倍ꎻD~F分别代表发酵24h豆粕放大1000㊁1500㊁3000倍ꎮ图4㊀B.velezensisCL-4发酵过程中豆粕形态变化3㊀讨论与结论豆粕来源广泛且营养丰富ꎬ是动物饲料中主要的植物源性蛋白资源ꎮ然而ꎬ豆粕中含有多种抗营养因子ꎬ限制了其在幼龄动物日粮中的广泛应用[17]ꎮ研究表明微生物发酵可以部分降解豆粕中抗营养因子ꎬ从而改善其营养品质[19-20]ꎮ本研究中ꎬ抗原蛋白平板法测定验证了新型菌种B.velezensisCL-4可降解豆粕抗原蛋白ꎬB.velezensisCL-4固态发酵24h后ꎬ豆粕中大豆球蛋白和β-伴球蛋白的降解率可分别达84.91%和80.95%ꎮ由于原料在发酵前已经灭菌且发酵过程也是无菌的ꎬ不涉及外源或天然微生物影响ꎬ因而B.velezensisCL-4在豆粕发酵过程中发挥主要作用ꎮSDS-PAGE测定的豆粕可溶性蛋白分子量变化与酶联免疫吸附法测定的大豆球蛋白和β-伴球蛋白在发酵过程中的降解趋势一致ꎮ此前研究也在B.velezensisCL-4全基因组序列中检测到丝氨酸蛋白酶㊁氨基肽酶㊁金属蛋白酶等多种蛋白水解酶的基因[13]ꎮ在酶活力检测中也发现ꎬB.velezensisCL-4中性蛋白酶活性显著提高ꎬ有效分解豆粕中抗原蛋白ꎮWang等[4]采用两段发酵法通过枯草芽孢杆菌CW4和粪肠球菌CWEF发酵豆粕和玉米混合底物ꎬ营养价值显著提高ꎮYao等[21]发现枯草芽孢杆菌N-11厌氧发酵豆粕可增加酸溶蛋白(ASP)含量ꎬ最高达到13.48%ꎬ大19㊀第9期㊀㊀㊀㊀㊀瞿子惠ꎬ等:贝莱斯芽孢杆菌CL-4固态发酵对豆粕营养品质的影响豆球蛋白和β-伴球蛋白分别降低82.38%和88.32%ꎮShi等[2]发现在玉米-豆粕混合饲料中接种枯草芽孢杆菌B.subtilis和屎肠杆菌E.faeci ̄umꎬ大豆球蛋白和β-伴球蛋白的降解率分别为86.12%和77.53%ꎮ以上研究与本试验结果一致ꎬ在后续研究中还需要通过2DE电泳和蛋白质组学对发酵产物中的蛋白质作进一步研究ꎮ本研究中ꎬB.velezensisCL-4固态发酵豆粕与原始豆粕相比含有更高含量的粗蛋白和氨基酸含量ꎬ与前人的报道一致[3ꎬ22]ꎮ发酵过程中干物质的损失也可能导致粗蛋白和氨基酸的增加[23]ꎮB.velezensisCL-4可显著提高豆粕中酸溶蛋白含量主要是由于在发酵过程中ꎬ豆粕抗原蛋白或其他蛋白水解形成小分子肽和游离氨基酸[24]ꎮ本研究中ꎬB.velezensisCL-4发酵豆粕对金黄色葡萄球菌ATCC25923和大肠埃希菌ATCC25922具有一定抑制能力ꎬ可部分替代饲料中的抗生素ꎮ本研究中ꎬ与原始豆粕相比ꎬ发酵豆粕中纤维素和半纤维素降解率分别为21.05%和33.58%ꎮ在豆粕发酵过程中几种非淀粉多糖降解酶(纤维素酶㊁木聚糖酶㊁β-甘露聚糖酶和果胶酶)的活力均显著上升ꎮ扫描电镜观察发现与原始豆粕相比ꎬ发酵豆粕表面结构呈现开裂和多孔结构ꎬ说明其中木质纤维素组分可能被部分降解ꎬ而这与非淀粉多糖降解酶密切相关ꎮ此外ꎬ随着纤维素和半纤维素的降解ꎬ豆粕中蛋白组分更容易被B.velezensisCL-4分泌的蛋白酶所分解ꎬ因此发酵豆粕可能会具有更高的养分消化率ꎮ目前生物发酵饲料常用的发酵菌种为芽孢杆菌㊁乳酸菌以及酵母菌ꎮ中国生物饲料产业创新战略联盟最新发布并实施的«发酵饲料技术通则»中明确指出发酵饲料菌种只允许添加饲料添加剂品种目录(2013年)规定的相应菌种ꎬ可用菌种约为35种ꎬ而欧盟食品安全局(EFSA)可利用的菌种数量可达80余种[25]ꎮ因而ꎬ新型发酵菌种的研发和应用急需开展ꎮ贝莱斯芽孢杆菌菌株通常从土壤㊁植物根际㊁河流㊁动物肠道和发酵食品等来源分离获得[26]ꎬ其相关研究集中于生物防治和促进植物生长等方面[27-28]ꎮ贝莱斯芽孢杆菌已于2020年被列入欧盟安全资格认定(QPS)推荐的生物制剂列表中ꎬ可作为新型发酵饲料菌种[29]ꎮ全基因组学分析发现B.velezensisCL-4有大量编码木质纤维素降解酶的基因ꎬ其发酵产生的碳水化合物酯酶㊁果胶酸裂解酶和碳水化合物结合模块(CBMs)也可能影响纤维素和半纤维素降解[13]ꎮ此外ꎬ在GH1-13[30]㊁FZB42[8]㊁ZY ̄1 ̄1[31]㊁LS69[32]和UCMB5113[33]等B.velezensis基因组中均发现参与降解纤维素和半纤维素的酶基因ꎮ但有关将B.velezensis应用于动物饲料益生菌和生物发酵饲料中的报道仍然较少ꎮ本研究通过高产蛋白酶和木质纤维素降解酶的B.velezensisCL ̄4发酵豆粕ꎬ可降解豆粕中抗营养因子(大豆抗原蛋白㊁纤维素和半纤维素)ꎬ显著改变了原始豆粕的营养特性ꎬ提高了营养品质和功能代谢物(活菌数㊁酶活力以及抑菌活性)ꎬ可作为新型发酵豆粕菌种ꎬ具有广阔的应用前景ꎮ参㊀考㊀文㊀献:[1]㊀MaruyamaNꎬSatoRꎬWadaYꎬetal.Structurephysicochemi ̄calfunctionrelationshipsofsoybeanbeta ̄conglycininconstitu ̄entsubunits[J].JournalofAgriculturalandFoodChemistryꎬ2000ꎬ48(2):576-580.[2]㊀ShiCYꎬZhangYꎬLuZQꎬetal.Bacillussubtilissolidstatefermentationofcornsoybeanmealmixedfeedwithandforde ̄gradingantinutritionalfactorsandenhancingnutritionalvalue[J].JournalofAnimalScienceandBiotechnologyꎬ2017ꎬ8(4):50-52.[3]㊀FengJꎬLiuXꎬXuZRꎬetal.Effectoffermentedsoybeanmealonintestinalmorphologyanddigestiveenzymeactivitiesinweanedpiglets[J].DigestiveDiseasesandSciencesꎬ2007ꎬ52(8):1845-1850.[4]㊀WangCꎬShiCYꎬSuWFꎬetal.Dynamicsofthephysico ̄chemicalcharacteristicsꎬmicrobiotaꎬandmetabolicfunctionsofsoybeanmealandcornmixedsubstratesduringtwostagesol ̄idstatefermentation[J].Systemsꎬ2020ꎬ5(1)32-35. [5]㊀HongKꎬLeeCꎬKimS.AspergillusoryzaeGB ̄107fermentationimprovesnutritionalqualityoffoodsoybeansandfeedsoybeanmeals[J].JournalofMedicinalFoodꎬ2004ꎬ7(4):430-435. [6]㊀DunlapCAꎬKimSJꎬKwonSWꎬetal.BacillusvelezensisisnotalaterheterotypicsynonymofBacillusamyloliquefaciensꎻBacillusmethylotrophicusꎬBacillusamyloliquefacienssubsp.plantarumand Bacillusoryzicola arelaterheterotypicsyno ̄nymsofBacillusvelezensisbasedonphylogenomics[J].Interna ̄tionalJournalofSystematicandEvolutionaryMicrobiologyꎬ2016ꎬ66(3):1212-1217.[7]㊀AdenijiAAꎬLootsDTꎬBabalolaOO.Bacillusvelezensis:phylogenyꎬusefulapplicationsꎬandavenuesforexploitation[J].AppliedMicrobiologyandBiotechnologyꎬ2019ꎬ103(9):3669-3682.[8]㊀FanBꎬWangCꎬSongXFꎬetal.BacillusvelezensisFZB42in2018:thegram ̄positivemodelstrainforplantgrowthpromotionandbiocontrol[J].FrontiersinMicrobiologyꎬ2018ꎬ9:2491-29㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀2502.[9]㊀KoutsoumanisKꎬAllendeAꎬAlvarez ̄OrdóñezAꎬetal.Up ̄dateofthelistofQPS ̄recommendedbiologicalagentsintention ̄allyaddedtofoodorfeedasnotifiedtoEFSA11:suitabilityoftaxonomicunitsnotifiedtoEFSAuntilSeptember2019[J].EFSAJ.ꎬ2020ꎬ18(2):05965.[10]KhalidFꎬKhalidAꎬFuYꎬetal.PotentialofBacillusvelezen ̄sisasaprobioticinanimalfeed:areview[J].JournalofMi ̄crobiology(SeoulꎬKorea)ꎬ2021ꎬ59(7):627-633. [11]WangMYꎬHuangSꎬChenJꎬetal.Completegenomese ̄quenceofzearalenonedegradingbacteriaBacillusvelezensisA2[J].CurrentMicrobiologyꎬ2021ꎬ78(1):347-350. [12]ZhangDXꎬKangYHꎬZhanSꎬetal.EffectofBacillusvelezensisonAeromonasveronii ̄inducedintestinalmucosalbarri ̄erfunctiondamageandinflammationincruciancarp(Carassiusauratus)[J].FrontiersinMicrobiologyꎬ2019ꎬ10:2663-2670. [13]ChenLꎬChenWYꎬZhengBYꎬetal.FermentationofNaH ̄CO3treatedcorngermmealbyBacillusvelezensisCL ̄4pro ̄moteslignocellulosedegradationandnutrientutilization[J].AppliedMicrobiologyandBiotechnologyꎬ2022ꎬ106(18):6077-6094.[14]ChenKLꎬKhoWLꎬYouSHꎬetal.EffectsofBacillussubti ̄lisvar.nattoandSaccharomycescerevisiaemixedfermentedfeedontheenhancedgrowthperformanceofbroilers[J].PoultryScienceꎬ2009ꎬ88(2):309-315.[15]YehRHꎬHsiehCWꎬChenKL.Screeninglacticacidbacte ̄riatomanufacturetwo ̄stagefermentedfeedandpelletingtoin ̄vestigatethefeedingeffectonbroilers[J].PoultryScienceꎬ2018ꎬ97(1):236-246.[16]LiuZYꎬGuanXFꎬZhongXXꎬetal.BacillusvelezensisDP ̄2isolatedfromDouchianditsapplicationinsoybeanmealfer ̄mentation[J].JournaloftheScienceofFoodandAgricultureꎬ2021ꎬ101(5):1861-1868.[17]WongputtisinPꎬKhanongnuchCꎬKhongbantadWꎬetal.ScreeningandselectionofBacillusspp.forfermentedcorticatesoybeanmealproduction[J].JournalofAppliedMicrobiologyꎬ2012ꎬ113(4):798-806.[18]OvissipourMꎬAbedianAꎬMotamedzadeganAꎬetal.TheeffectofenzymatichydrolysistimeandtemperatureonthepropertiesofproteinhydrolysatesfromPersiansturgeon(Acipenserpersicus)viscera[J].FoodChemistryꎬ2013ꎬ115(1):238-242. [19]MedeirosSꎬXieJJꎬDycePWꎬetal.Isolationofbacteriafromfermentedfoodandgrasscarpintestineandtheirefficien ̄ciesinimprovingnutrientvalueofsoybeanmealinsolidstatefermentation[J].Anim.Sci.Biotechnol.ꎬ2018ꎬ9:29-32. [20]ZhengLꎬLiDꎬLiZLꎬetal.EffectsofBacillusfermentationontheproteinmicrostructureandanti ̄nutritionalfactorsofsoy ̄beanmeal[J].LettersinAppliedMicrobiologyꎬ2017ꎬ65(6):520-526.[21]YaoYHꎬLiHYꎬLiJꎬetal.Anaerobicsolid ̄statefermenta ̄tionofsoybeanmealwithBacillussp.toimprovenutritionalquality[J].FrontiersinNutritionꎬ2021ꎬ8:706977-706980. [22]FriasJꎬSongYSꎬMartínez ̄VillaluengaCꎬetal.Immunoreac ̄tivityandaminoacidcontentoffermentedsoybeanproducts[J].Agric.FoodChem.ꎬ2008ꎬ56(1):99-105.[23]ShiCYꎬZhangYꎬYinYꎬetal.Bacillussubtilisaminoacidandphosphorusdigestibilityoffermentedcornsoybeanmealmixedfeedwithandfedtopigs[J].JournalofAnimalScienceꎬ2017ꎬ95(9):3996-4004.[24]GilbertEꎬWongEꎬWebbK.Boardinvitedreview:peptideab ̄sorptionandutilization:implicationsforanimalnutritionandhealth[J].JournalofAnimalScienceꎬ2008ꎬ86(9):2135-2155.[25]蔡辉益ꎬ刘世杰ꎬ邓雪娟ꎬ等.生物饲料团体标准开启产业健康发展新时代[J].中国畜牧杂志ꎬ2018ꎬ54(9):143-146.[26]Ruiz ̄GarciaCꎬBejarVꎬMartinez ̄ChecaFꎬetal.Bacillusvelezensissp.nov.ꎬasurfactant ̄producingbacteriumisolatedfromtheriverVelezinMalagaꎬsouthernSpain[J].Interna ̄tionalJournalofSystematicandEvolutionaryMicrobiologyꎬ2005ꎬ55(1):191-195.[27]YeMꎬTangXFꎬYangRꎬetal.Characteristicsandapplica ̄tionofanovelspeciesofBacillus:Bacillusvelezensis[J].ACSChemicalBiologyꎬ2018ꎬ13(3):500-505.[28]RabbeeMFꎬAliMSꎬChoiJꎬetal.Bacillusvelezensis:aval ̄uablememberofbioactivemoleculeswithinplantmicrobiomes[J].Moleculesꎬ2019ꎬ24(6):14-16.[29]KoutsoumanisKꎬAllendeAꎬAlvarez ̄OrdóñezAꎬetal.Scien ̄tificopinionontheupdateofthelistofQPS ̄recommendedbio ̄logicalagentsintentionallyaddedtofoodorfeedasnotifiedtoEFSA(2017-2019)[J].EFSAJ.ꎬ2020ꎬ18(2):05966. [30]KimSYꎬSongHꎬSangMKꎬetal.Thecompletegenomese ̄quenceofBacillusvelezensisstrainGH1 ̄13revealsagricultural ̄lybeneficialpropertiesandauniqueplasmid[J].JournalofBi ̄otechnologyꎬ2017ꎬ259:221-227.[31]ZhangZYꎬRazaMFꎬZhengZꎬetal.Completegenomese ̄quenceofBacillusvelezensisZY ̄1 ̄1revealsthegeneticbasisforitshemicellulosic/cellulosicsubstrateinduciblexylanaseandcellulaseactivities[J].Biotech.ꎬ2018ꎬ8(11):465-469. [32]LiuGQꎬKongYYꎬFanYJꎬetal.Wholegenomesequen ̄cingofBacillusvelezensisLS69ꎬastrainwithabroadinhibitoryspectrumagainstpathogenicbacteria[J].JournalofBiotechnol ̄ogyꎬ2017ꎬ249:20-24.[33]NiaziAꎬManzoorSꎬAsariSꎬetal.GenomeanalysisofBacil ̄lusamyloliquefacienssubsp.plantarumUCMB5113:arhi ̄zobacteriumthatimprovesplantgrowthandstressmanagement[J].PLoSONEꎬ2014ꎬ9(8):e104651.39㊀第9期㊀㊀㊀㊀㊀瞿子惠ꎬ等:贝莱斯芽孢杆菌CL-4固态发酵对豆粕营养品质的影响。
干扰素刺激基因15抗病毒感染的分子机制

·综述·Chinese Journal of Animal Infectious Diseases中国动物传染病学报摘 要:干扰素刺激基因15(ISG15)是由病原微生物或干扰素诱导产生的一种大小为15 kDa 的泛素样蛋白。
在干扰素诱导的数百个干扰素刺激基因中,ISG15是诱导最强烈、最快的ISG 蛋白之一。
研究表明,ISG15对多种病毒具有抗病毒作用。
此外,ISG15在调节宿主损伤、DNA 修复,调节信号通路及抗原递呈中也发挥着重要的作用。
文章介绍了ISG15的概况,并阐述了近年来ISG15在抗病毒、免疫调节和调节宿主信号通路过程中的作用。
关键词:干扰素刺激基因15;抗病毒作用;免疫调节中图分类号:S852.4 文献标志码:A 文章编号:1674-6422(2023)06-0170-07Molecular Mechanism of Interferon-Stimulated Gene 15 Antiviral InfectionTANG Jingyu 1, DU Hanyu 1,2, JIA Nannan 1, TANG Aoxing 1, LIU Chuncao 1, ZHU Jie 1, MENGChunchun 1, LI Chuanfeng 1, LIU Guangqing 1(1. Shanghai V eterinary Research Institute, CAAS, Shanghai 200241, China; 2. Xinjiang Agricultural University, Xinjiang 830052, China)收稿日期:2021-11-02作者简介:国家重点研发计划项目(2016YFD0500108);中国农业科学院创新工程项目作者简介:唐井玉,女,博士研究生,预防兽医学专业通信作者:刘光清,E-mail:**************.cn干扰素刺激基因15抗病毒感染的分子机制唐井玉1,杜汉宇1,2,贾楠楠1,汤傲星1,刘春草1,朱 杰1,孟春春1,李传峰1,刘光清1(1.中国农业科学院上海兽医研究所 小动物传染病预防与控制创新团队,上海200241;2.新疆农业大学,乌鲁木齐830052)2023,31(6):170-176Abstract: Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein of approximately 15 kDa induced by pathogenic microorganisms or interferons. Among the hundreds of interferon-stimulated genes induced by interferons, ISG15 is one of the most strongly and fastest induced ISG proteins. Studies have shown that ISG15 has antiviral effects against a variety of viruses. In addition, ISG15 plays an important role in regulating host damage, DNA repair, and regulating signaling pathways and antigen delivery. The article presented an overview of ISG15 and described the role of ISG15 in the process of antiviral, immunomodulation and regulation of host signaling pathways in recent years.Key words: Interferon-stimulated gene 15; antiviral infection; immunomodulation先天性免疫应答是抵抗入侵病原体的第一道防线,病原体可以通过宿主模式识别受体来感知。
“天书”的秘密

李建薪许志高近来,某市国税稽查局对某私营汽车零部件企业2006年度增值税纳税情况实施检查。
这家企业主要从事汽车排气管加工销售,2006年企业申报销售收入65.52万元,销项税11.14万元,进项税8.91万元,进项税转出0.13万元,申报缴纳增值税2.86万元元,税负为4.36%。
面对这户企业并不算异常的税负水平,检查人员没有掉以轻心,提取2005年纳税资料进行案头分析。
这时,检查人员发现:该企业销售收入同比增长12%,而税负却从同期的5.38%下降到4.36%,从汽配行业生产经营规律上看,这种现象有些反常,这里面到底有何玄机呢?检查人员决定以此为突破口,实地查个究竟。
在履行必要入户稽查手续后,检查人员首先责成该企业财务人员张某提供2006年度的销售明细及相关业务款项结算资料,分头查看了企业2006年度的会计账簿、记账凭证,货物、资金流向以及发票使用情况,对有疑点的凭证及时进行了复印,力求寻找蛛丝马迹。
从账面检查上看,并没有发现大的疑问。
随后,检查人员又对企业仓库进行了查看,并将存货与库存明细逐一比对,结果显示:2006年企业库存汽车排气管数量1236根,而2006年出入库单数量为1396根,两者相差150根。
为什么会出现这种情况?检查人员对此向财务人员进行纳税询问,财务人员解释:“出现这种情况具体我也不清楚,因为每年厂里所有货物的进出都是由厂长统一办理,账上记录的数据都是由厂长提供,我只负责记账,但我想私营企业管理并不规范,应该是正常的,并且购货单位都索取专用发票,税是一分钱不会漏的。
”显然,财务人员在进行账务处理时并没有进行实物的核实,账务核算和实际经营有所脱节。
随即,检查人员不等财务人员向厂长进行汇报,就直接与厂长取得联系。
面对这样的差额,厂长承认账面的数据的确是他提供给财务人员的,财务人员对差额的原委不知情。
厂长掏出随身携带的笔记本进行核实。
不看账本看笔记本,这里面到底又有什么问题呢?检查人员要求亲眼查看厂长的笔记本。
安图县红色基地作文

安图县红色基地作文
我们怀着无比激动的心情参观了中安图县红色基地,见证了我党纪律建设的光辉历程,进一步坚定了理想信念,坚定了初心和使命,坚定了惩贪治腐的信心和决心。
在讲解员的引导下,我们依次参观了“创立与探索”“推进与曲折”“恢复与发展”“新时代新征程”四个部分。
在整个参观学习过程中,我们都很认真的聆听,默默的感受,在一张张照片和一段段说明中,见证了中国共产党成立_以来纪律建设、党风廉政建设以及监督执纪历程,感受着纪律建设成长的脚步和点滴,内心深处由衷的升起无限的敬意,为能在这个伟大时代奋战在纪律建设一线而深感自豪。
走过一个个展厅,感受着党的建设的铿锵步伐,让我深深感受到了我党建立以来,始终把党的纪律建设放在重要位置,始终不惧党的自我革命,特别是_大以来,纪律建设更是进入一个新的时期,谱写着更加绚丽的篇章。
党的纪律建设永远在路上。
作为纪检监察干部,我们要要进一步提高政治站位,牢固树立“四个意识”,坚定“四个自信”,践行“两个维护”,勇于担当,善于履职,不忘初心,牢记使命,为党的建设、人民幸福贡献力量。
炽热的革命情怀和搞好关心下一代工作的强烈信心、责任感鼓舞着我们,沿途所见所闻,所感所悟激励着我们。
因此我们必须学习革命先辈们的艰苦奋斗的革命精神,树立为党和人民长期艰苦奋斗的思想,保持旺盛的革命意志和坚韧的革命品格,努力培养出代代传承的勤俭节约,艰苦奋斗,坚决反对铺张浪费的时代新人。
1种复方利多卡因恩诺沙星凝胶临床初步应用

232023.12·试验研究0 引言体表创伤及创伤后感染是兽医临床常见症状,无论是自然创伤还是术后切口都可能造成动物的持续疼痛,引起机体各系统发生防御反应[1-2],严重的创伤感染甚至会引发脓毒症、休克、多器官功能障碍,严重影响预后[3-4]。
动物机体发生创伤后,兽医进行有效的临床处理和干预可有效地缓解动物疼痛和避免继发感染,此时抗菌、镇痛药物的选择和应用就显得尤为重要。
利多卡因收稿日期:2023-11-02基金项目:中牧集团研发项目(2019ZMYF01-1);泰州市双创项目[泰州人才办(2019)14号]作者简介:何金艳(1988-),女,北京平谷人,硕士,执业兽医师,从事动物疾病诊断、药物研发工作。
*通信作者简介:马保臣(1978-),男,山东菏泽人,博士,高级兽医师,从事动物疫病预防、药物研发和技术推广工作。
何金艳,马保臣,吴秋萍,等.1种复方利多卡因恩诺沙星凝胶临床初步应用[J].现代畜牧科技,2023,103(12):23-27. doi :10.19369/ki.2095-9737.2023.12.006. HE Jinyan ,MA Baochen ,WU Qiuping ,et al .Compound Lidocaine Enrofloxacin Gel Applied in Clinic[J].Modern Animal Husbandry Science & Technology ,2023,103(12):23-27.1种复方利多卡因恩诺沙星凝胶临床初步应用何金艳1,马保臣1*,吴秋萍2,熊玲玲1,胡楠1,金礼琴2(1. 中国牧工商集团有限公司,北京 100070;2. 江苏中牧倍康药业有限公司,江苏 泰州 225300)摘要:为开发一种新型镇痛抗炎剂型,该试验制备了复方利多卡因恩诺沙星凝胶剂,用高效液相色谱(HPLC )法测定盐酸利多卡因和恩诺沙星的含量,初步开展稳定性试验,通过犬体外抗菌试验和体表创伤犬镇痛效果试验,对该凝胶剂的临床效果进行初步评价。
尊敬的中央纪律监察委员会领导同志

尊敬的中央纪律监察委员会领导同志:您好!我是吉林省安图县石门镇大成村村民李东灿,今天我忍无可忍的情况下,以书面形式向中央纪律监察委员会诉冤。
事情是这样的:2014年春,我在韩国打工几年后回国后发现,我的200公顷人工林和集体林(都有国家有关部门发放的林权证3栋房屋(面积300㎡),5栋烤烟楼和一栋木材加工厂(1000㎡都有房屋所有权证)全部被别人侵占了。
我通过大成村村民仔细调发现侵吞我的林地房屋及木材加工厂的肇事人是原延边军分区副司令员金文元和原大成村党支部书记兼村长李明灿,他们相互勾结,狼狈为奸,无视国家有关法律、法规政策,悍然侵吞了我的大量财产并利用和收买原石门镇林业站站长(现在亮兵镇林业站)高发刚和原石门镇党委书记安图县政法委书记姜仁哲等,石门镇、安图县部门机关干部伪造了“林权证”和房屋所有权证把我的林地和房屋等财产全部改为金文元所有,对我造成直接经济损失达200多万元。
金文元为了实现自己的“发财梦”,2013年违反“国家森林法”在我人工林和集体林里盗伐了100多立分米木材为对外出售获暴利。
(2015年安图森林公安局立案调查数字),另外勾结大成村村长李明灿在没有经过村民大会讨论和同意情况下,无偿侵占大成村国家基本耕地24公顷改为自己的人工林后(通过姜仁哲和高发刚)违规办理了林权证。
目前,大成村的基本耕地从原来的70多公顷减少到不足40公顷,农民没有耕地怎么活下去呢?除此之外,金文元以大成村的名义骗取了大量的国家扶贫资金,其中2013年骗取的农村电网改造专项资金30万元和农村道路建设专项资金60万元,全部用在自己盖房子或自己人工林修路及养鱼池建设上。
2014年骗取了国家粮食加工专项资金80万元,两年后变成了金文元和李明灿的共同所有。
李明灿也是眩于名利的一丘之貉,他从19992014年在担任大成村书记兼村长期间,从来没有公开村务,大量的村收入不入账,自己占用挥霍,主要犯罪如下:1、2011-2013年,延吉一长春之间建设高铁时耕地征用费和大成村部分耕地卖给外地人的费用从来没向村民公开没入账。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安图纪检监察
中共安图县纪委
安图县监察局第10期 2012年7月6日
县发改局四措并举着力提高行政审批效能一是优化服务,树立形象。
开展创建服务型机关活动,在服务中切实做到“五个不让”,即:不让工作事项延误,不让工作差错出现,不让违纪行为发生,不让服务对象受冷落,不让公仆形象受损害。
二是积极探索,主动创新。
深入研究项目审批政策,制定了《项目审批材料一次性告知单》,全面、清晰、准确地向申请单位表达清楚,减少了流程中出现的错误,使项目审批过程更加顺利。
三是简化程序,便民利民。
结合“加强廉政风险防控,规范权力运行”工作,进一步梳理审批事项,绘制行政审批权力流程图6个,切实简化了审批程序。
四是强化监督,确保实效。
围绕行政审批重点环节,局党支部定期监督检查,切实规范行政审批行为,上半年共完成立项审批60余项。
(县发改局)
县水电办三举措加强软环境建设一是进一步统一思想。
深入学习贯彻全县软环境工作会议精神,促使全办职工树立“人人都是软环境”的观念,以企业、群众、党和政府满意为标准,在软环境建设的各个环节逐一排查整改,切实解决客商和企业反映的问题。
二是进一步提高能力。
正确处理好全办整体能力与个人能力、业务范围内与业务范围外、按程序办事与灵活变通处理的关系,维护企业和投资经营者的合法权益。
三是进一步明确责任。
把窗口单位和各科室作为软环境建设的第一责任单位,转变作风,把执法管理寓于监督和服务之中。
同时积极对包保的企业、个体工商户进行入户走访调查工作,目前已登记个体工商业户35家、企业7家。
(县水电办)
县编办全面开展大调查大走访活动一是按照全县软环境走访调查的整体部署,全面梳理所包保42家个体工商户、7家企业的基本情况,确保“大调查大走访”工作开展的全面性和时效性。
二是积极克服明月镇中心市场重新装修带来的困难,通过电话查询、询问附近商户、发动亲友等多种调查方式,全力联系走访对象。
截止目前已登记个体工商户16户、企业6家。
三是在走访调查过程中,认真宣传政府促进经济发展的优惠政策,广泛征求意见和建议,并发放《县编办软环境建设联系卡》,
为后续工作奠定了良好基础。
(县编办)
县商务局“四环节”加强软环境建设一是组织全局干部职工进行职业道德教育、法律法规教育培训, 并进行服务技巧与沟通能力等训练,牢固树立脚踏实地,求真务实的理念,把理念认识逐渐内化到自己的服务行为中去。
二是建立承诺、限时办结、责任追究等制度,做到以制度管人,以制度管事,加强工作的约束性。
三是成立软环境监督检查组,对纪律作风、考勤、学习情况进行抽查,保持对软环境建设的内部监督。
四是积极开展“强化民本意识,建设民本商务”大调研大走访活动,共走访企业25户,发放问卷调查25份,收集整理调查问卷25份,掌握到企业最关心的问题和最大的困难集中在物价高、收费高等民生与发展问题。
(县商务局)
新任乡(科)级领导干部和“三方面”后备干部到“廉园”接受廉政教育为进一步提高“廉园”的廉政文化宣传力度,充分发挥“廉园”省级廉政教育基地的作用。
近日,县纪委组织全县新任乡(科)级领导干部和“三方面”后备干部到“廉园”接受廉政教育。
通过景观显“廉”、案例警“廉”、美文品“廉”、歌曲唱“廉”和文艺演“廉”
等多种形式,让参观者深深感受“廉园”的浓厚廉韵,品味廉政文化的深刻内涵,有效提高了廉洁从政的意识,筑牢了拒腐防变的思想防线。
(县纪委宣教室)
二道白河镇积极营造廉政文化氛围一是设立反腐倡廉宣传栏。
在红丰、长胜两个村设立了廉政文化示范村,同时利用党务、村务公开栏及围墙醒目处张贴廉政教育漫画、张贴宣传标语、在领导干部的桌牌上设置廉政教育警示句等多种形式营造良好的廉政文化氛围。
二是以庆祝建党成立91周年为契机开展廉政文化综合知识竞赛、书法剪纸作品展活动。
将廉政教育内容纳入文化节目中。
三是组织机关干部开展学习宣传教育活动。
通过观看警示教育片《马德落马》、学习金贤玉同志先进人物事迹,增强广大党员干部反腐倡廉意识。
(二道白河镇党委)
报:州纪委监察局,县四大班子领导,县纪委常委、纪委委员发:各乡镇纪委、县直机关纪工委、县直系统纪委(纪检组)、委内各室
中共安图县纪委办公室2012年7月6日印发
责任编辑:郑晓光李传华。