2021版高中数学(人教A版)必修3同步课件: 第2章 2.1.2 系统抽样
高中数学(人教A版)必修3同步教师用书: 第2章 2.1.2 系统抽样

2.1.2系统抽样1.记住系统抽样的方法和步骤.(重点)2.会用系统抽样从总体中抽取样本.(难点)3.能用系统抽样解决实际问题.(易错易混点)[基础·初探]教材整理1系统抽样的概念阅读教材P58上半部分内容,完成下列问题.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了()A.抽签法B.随机数表法C.系统抽样法D.放回抽样法【解析】此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n,符合系统抽样特点.【答案】 C教材整理2系统抽样的步骤阅读教材P58下半部分内容,完成下列问题.一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:1.判断(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,()√(2)×(3)×个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14【解析】将20分成4个组,每组5个号,间隔等距离为5.【答案】 A3.已知标有1~20号的小球20个,按下面方法抽样(按从小号到大号排序):(1)以编号2为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________.【解析】这20个小球分4组,每组5个,(1)若以2号为起点,则另外三个球的编号依次为7,12,17,这4球编号平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三个球的编号依次为8,13,18,这4球编号平均值为3+8+13+184=10.5.【答案】(1)9.5(2)10.5(1)某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.【精彩点拨】解决此类问题的关键是根据系统抽样的概念及特征,抓住系统抽样适用的条件作出判断.【尝试解答】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n(n∈N*)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k=1 200 30=40.【答案】(1)C(2)40判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.[再练一题]1.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况【解析】A.总体容量较小,样本容量也较小,可采用抽签法;B.总体中的个体有明显的层次不适宜用系统抽样法;C.总体容量较大,样本容量也较大,可用系统抽样法;D.若总体容量较大,样本容量较小时可用随机数表法.【答案】 C某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【精彩点拨】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【尝试解答】按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.当总体容量能被样本容量整除时,分段间隔k=Nn;当用系统抽样抽取样本时,通常是将起始数s加上间隔k得到第2个个体编号(s+k),再加k得到第3个个体编号(s+2k),依次进行下去,直到获取整个样本.[再练一题]2.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号同学在样本中,那么样本中还有一个同学的学号是( )A .10B .11C .12D .16【解析】 分段间隔,可推出另一个同学的学号为16,故选D. 【答案】 D[探究共研型]探究1 【提示】 (1)系统抽样适用于总体容量较大,且个体之间无明显差异的情况;(2)剔除多余的个体及第1段抽样用简单随机抽样的方法; (3)系统抽样是等可能抽样,每个个体被抽到的可能性相等. 探究2 怎样判断一种抽样是否为系统抽样?【提示】判断一种抽样是否为系统抽样,关键有两点:(1)是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;(2)是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样.探究3在系统抽样中,N不一定能被n整除,那么系统抽样还公平吗?【提示】在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以,系统抽样是公平的.为了了解参加某种知识竞赛的1003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【精彩点拨】编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样【尝试解答】(1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[再练一题]3.从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每个个体;1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.1.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为() A.2B.3C.4D.5【解析】因为1 252=50×25+2,所以应随机剔除2个个体,故选A.【答案】 A2.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25C.26 D.28【解析】因为5 008=200×25+8,所以选B.【答案】 B3.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是() A.7 B.5C.4 D.3【解析】由系统抽样知第一组确定的号码是125-15×8=5.【答案】 B4.在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为_________.【解析】因为采用系统抽样的方法从个体数目为2 003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.【答案】100 2 0035.中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.【解】(1)将303盒月饼用随机的方式编号;(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;(3)在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码l;(4)将编号为l,l+30,l+2×30,l+3×30,…,l+9×30的个体抽出,组成样本.学业分层测评(十)系统抽样(建议用时:45分钟)[学业达标]一、选择题1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为()A.抽签法B.随机数表法C.系统抽样法D.其他抽样【解析】根据系统抽样的概念可知,这种抽样方法是系统抽样.【答案】 C2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A .10B .100C .1 000D .10 000【解析】 将10 000个个体平均分成10段,每段取一个,故每段容量为1 000.【答案】 C3.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样间距为k =⎣⎢⎡⎦⎥⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i 0,则i 0+k ,…,i 0+(n -1)k 号码均被抽取构成样本,所以每个个体被抽取的可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关【解析】 系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i 0编号无关,故选A.【答案】 A4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32【解析】 据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B符合条件.【答案】 B5.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会( )A .不全相等B .均不相等C .都相等D .无法确定【解析】 系统抽样是等可能的,每人入选的机率均为502 004.【答案】 C二、填空题6.下列抽样中不是系统抽样的是________.①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i0(1≤i0≤5),以后选i0+5,i0+10号入选;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止;④在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈.【解析】选项③不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余个间隔都相同,符合系统抽样的特征.【答案】③7.某班有学生人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.【解析】由题意,分段间隔应该在第一组,所以第二组为6+12=18.【答案】188.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第1组抽出的号码是11,则第61组抽出的号码为________.【解析】分段间隔是3 000150=20,由于第1组抽出的号码为11,则第61组抽出的号码为11+(61-1)×20=1 211.【答案】 1 211三、解答题9.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.【解】(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.10.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.【解】(1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k=2 00020=100,将总体平均分为20段,每段含100个学生;(5)从第一段即为0 001号到0 100号中随机抽取一个号l;(6)按编号将l,100+l,200+l,…,1 900+l共20个号码选出,这20个号码所对应的学生组成样本.[能力提升]1.从2 016名学生中选取名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 016人中剔除16人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 016人中,每个人入选的机会()A.都相等,且为502 016B.不全相等C.均不相等D.都相等,且为1 40【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除16人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 016.【答案】 A2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9 D.24,17,9【解析】依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.从而第Ⅲ营区被抽中的人数是50-42=8.【答案】 B3.采用系统抽样从含有8 000个个体的总体(编号为0 000,0 001,…,7 999)中抽取一个容量为50的样本,则最后一段的编号为________,已知最后一个入样编号是7 894,则开头5个入样编号是________.【解析】因为8 000÷50=160,所以最后一段的编号为编号的最后160个编号.从7 840到7 999共160个编号,从7 840到7 894共55个数,所以从0 000到第55个编号应为0 054,然后逐个加上160,得0 214,0 374,0 534,0 694.【答案】7 840~7 9990 054,0 214,0 374,0 534,0 6944.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.【解】 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,12号为第二样本户,….(3)确定随机数字用的是简单随机抽样即为取一张人民币,编码的后两位数为02.。
人教版高中数学 A版 必修三 第二章 《2.1.2系统抽样》教学课件

A.容量较小
B.容量较大
C.个体数较多但不均衡
D.任何总体
12345
答案
12345
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,
采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往
后将65号,115号,165号,……发票上的销售金额组成一个调查样本.
这种抽取样本的方法是C( )
剔除几个个体,再
重新编号,然后分段;
(3)在第1段用简单随机抽样 确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k 得到第2个个体编号 (l+k),
再加 k 得到第3个个体编号 l+2k ,依次进行下去,直到获取重点难点 个个击破
类型一 系统抽样的概念 例1 下列抽样中不是系统抽样的是( )
解析答案
12345
5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进
行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选
取5枚导弹的编号可能是B( )
A.5,10,15,20,25
B.3,13,23,33,43
C.1,2,3,4,5
D.2,4,6,16,32
解析 用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+
解析答案
类型二 系统抽样的实施 例2 某校高中三年级的295名学生已经编号为1,2,…,295,为了了解 学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进 行抽取,并写出过程. 解 按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把295 名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是 编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名 学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不
人教A版高中数学必修三课件2.1.2系统抽样(共31张PPT)

【解】 (1)系统抽样. (2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽 样间隔:33000=10,其他步骤相应改为确定随机数字:取一 张人民币,末位数为 2.(假设)确定第一样本户:编号 02 的 住户为第一样本户;确定第二样本户:2+10=12,12 号为 第二样本户. (3)确定随机数字:取一张人民币,其末位数为 2.
被剔除的概率是相等的,都是1 0303,每个个体不被剔除的
概率也是相等的,都是11 000003;在剩余的 1 000 个个体中,
采用系统抽样时每个个体被抽取的概率都是1 50000;所以在
整个抽样过程中每个个体被抽取的概率仍相等,都是11
000 003
×1 50000=1 50003.所以系统抽样是公平的、均等的.
(5)从第一段即1~5号中随机抽取一个号作为起始号,如l. (6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这 49个号. 这样就按1∶5的比例抽取了一个样本容量为50的样本. 【名师点评】 应用系统抽样时,要看总体容量能否被样本 容量整除,若能,样本容量为多少,就需要将总体均分成多 少组;若不能,要先按照简单随机抽样将多余编号剔除,再对剔 除后剩下的个体进行重新编号,然后按号码顺序平均分段.
• 灿若寒星整理制作
高中数学课件
第二章 统计
2.1.2 系统抽样
学习导航
学习目标
结合实例 ―了―解→ 系统抽样的概念 ―理―解→
系统抽样的思想 ―掌―握→ 系统抽样的方法
重点难点 重点:系统抽样的概念和步骤. 难点:利用系统抽样解决实际问题.
新知初探思维启动
1.系统抽样的概念及特点 (1)系统抽样的概念 在抽样中,当总体中个体数较多时,可将总体分成均衡的几 个部分,然后按照预先制订的规则,从每一部分抽取一个个 体,得到所需要的样本,这样的抽样方法叫做系统抽样. (2)系统抽样的特点 ①适用于_个__体__较__多__,但__均__衡__的总体; ②在整个抽样的过程中,每个个体被抽到的_可__能__性__相__等___.
【高中课件】高中数学人教A版必修三2.1.2系统抽样课件ppt.ppt

解:样本容量为295÷5=59.
2.简单随机抽样的方法:抽签法 3.具体步骤:
随机数表法
抽签法:编号;制签;搅匀;抽签;取个体。
随机数表法:编号;选数;读数;取个体。
下面的抽样方法是简单随机抽样吗?为什么? ①某班45名同学,指定个子最高的5名学生参加学校 组织的某项活动; ②从20个零件中一次性抽取3个进行质量检查; 是 ③一儿童从玩具箱中的20件玩具中随意拿出一件来 玩,玩后放回再拿一件,连续玩了5件。
判断的依据: 简单随机抽样的特点
①总体的个数有限;②从总体中逐个进行抽取; ③是不放回抽样; ④是等可能抽样。
实例
为了了解高二年级1000名同学 的视力情况,从中抽取100名同学 进行检查。
请问:应该怎样抽样?
当总体的个体数较多时,采用简单随机抽样太麻烦, 这时将总体分成均衡的几个部分,然后按照预先定出的 规则,从每一部分抽取一个个体,得到所需要的样本, 这种抽样叫做系统抽样(也称为等距抽样)。
①某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂
中坐满了学生,会后为了了解有关情况,留下座位号是15的所有 25名学生进行测试,这里运用的是 系统 抽样方法。
②从2005个编号中抽取20个号码入样,采用系统抽样的方
法,则抽样的间隔为
(C)
A.99
B、99.5 C.100 D、样
2.1.2 系统抽样
本课主要学习系统抽样的相关内容,具体包括系统抽 样的概念、特点及一般步骤。
因此本课开始回顾了简单随机抽样的概念、特点以及 抽样法和随机数表法的一般步骤,并用一个习题加深理解 。接着以一个抽样的案例作为课前导入,处理案例的过程 中引入系统抽样的方法,引出系统抽样的概念,并具体介 绍系统抽样的特点和适用范围。 紧接着以五个问题带领学 生探索系统抽样的一般步骤,对一般步骤进行总结,并通 过一个例题加深理解。最后通过一系列例题及习题对内容 进行加深巩固。
高中数学必修三课件-2.1.2 系统抽样2-人教A版

把总体中的N个个体编号,并 把号码写在形状、大小相同的号签
上,将号签放在同一个容器里,搅 拌均匀后,每次从中抽出1 个号签,
连续抽取n次,得到一个容量为n的 样本。
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号 (号码从1到N); (2)将这N个号码写在形状、 大小相同的号签上;
A. 相等
B. 不相等
C. 与抽取的次数有关 D. 不确定
2、从总数为N的一批零件中抽取一个容量为30 的样本,若每个零件被抽取的可能性为25℅, 则N=_1_2_0__
3、高一(1)班有49名学生,学号从01到49,数 学老师在上统计课的时候,运用随机数表法选6 名同学,老师首先选定随机数表法从第21行第29 列开始,依次向右读取,这5位同学的号码依次 为__2_6、__0_4_、__3_3、__4_6_、__0_9、__0_7_______
(2)系统抽样适用于总体中个体数较多,抽取 样本容量也较大时;
(3)系统抽样是不放回抽样。
练习:下列抽样中不是系统抽样的是 ( C )
A、从标有1~15号的15个小球中任选3个作 为样本,按从小号到大号排序,随机确定起点i, 以后为i+5, i+10(超过15则从1再数起)号入样;
B、工厂生产的产品,用传送带将产品送入 包装车间前,检验人员从传送带上每隔五分钟抽 一件产品检验;
个体,使剩下的总体中个体的个数 N ' 能被n整除,这 时, k N ' ,并将剩下的总体重新编号;
n
l (3)在第一段中用简单随机抽样确定起始的个体编号 ;
(4)将编号为 l,l k,l 2k,..., l (n 1)k 的个体抽出。
人教版高中数学必修三课件:第2章2.1.2

失误防范 1.抽样前必须使总体分成几个均衡的部 分.并保证每个个体按事先规定的概率入样. 2.如果编号的个体特征随编号的变化呈现一 定的周期性,可在允许的条件下,从不同的编 号开始等距抽样,多得几个不同的样本再进行 分析.
知能优化训练
本部分内容讲解结束
按ESC键退出全屏播放 点此进入课件目录 谢谢使用
系统抽样与简单随机抽样的综合 应用 选择抽样方法的规则: (1)当总体容量较小,样本容量也较小时,制签 简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用 随机数法. (3)当总体容量较大,样本容量也较大时,适合 用系统抽样法.
例3 某工厂有工人1021人,其中高级工程师 20人,现抽取普通工人40人,高级工程师4人 组成代表队去参加某项活动,应怎样抽样? 【思路点拨】 普通工人总体容量和样本容 量都较大,可采用系统抽样,高级工程师总 体容量和样本容量都较小,可用抽签法.
C.
【答案】 C 【思维总结】 简单随机抽样是从总体中逐 个抽取,适用于总体容量较小的情况;而系 统抽样将总体分成几部分,按事先确定的规 则在各部分抽取个体,适用于总体容量较大样的操作步骤可简单概括为:编号→ 分段→在第一段中确定起始号码→加间隔数 抽取样本.
例2 某校高中二年级有253名学生,为了了 解他们的视力情况,准备按1∶5的比例抽取 一个样本,试用系统抽样方法进行抽取,并 写出过程.
【思维总结】 当总体容量不能被样本容量整 除时,可以先从总体中随机剔除几个个体.但 要注意的是剔除过程必须是随机的,也就是总 体中的每个个体被剔除的机会均等.剔除几个 个体后使总体中剩余的个体数能被样本容量整 除.
互动探究 把题中“按1∶5的比列抽取一个样 本”改为按“1∶7的比例抽取一个样本”,试 用系统抽样方法进行抽取,并写出过程. 解 : (1) 先 把 这 253 名 学 生 编 号 000,001, … , 252. (2)用随机数表法任取一个号,从总体中剔除这 个号对应的学生.
高中数学必修三教材2.1.2《系统抽样》教学ppt

7.累计和等距抽样
如果抽样单元的大小不同,且单元的大小又与 调查变量相关时,用上述方法就不大合适了,此时, 应采用不等概率抽样。
其基本思路是:在总体各单元按某一标志排序 后,累计各单元的大小Mi(当各抽样单元的大小用 所含下一阶单元的数目表示时,也可直接累计其下 一阶单元数)并进行编码,以总的累计数除以n作为 抽样间隔,用K表示,然后在最初的1到K个数中随 机确定一个数j(1≤j≤K),j所对应的单元即为第 一个被抽中单元,以后每间隔K抽取一个随机数, 并按同样的方法确定出对应的单元作为样本单元, 组成等距样本。
用 ysy 表示,则
1n
ysy yi n j1 yij
是总体均值的无偏估计。
若N≠nK,则上述估计量是有偏的,但当n充 分大时,其偏倚可以充分小。
30
估计量的方差 如前所述,如果总体单元是按无关标志排列 的,则其方差可按简单随机抽样去做。若总体单 元是按有关标志排列的,则此时的等距抽样可以 看作是整群抽样或分层抽样的特例,因此,等距 抽样估计量的方差可以比照整群抽样或分层抽样 的方法构造,有几种表示方法:
若将上表中的行看成为层,则每个系统样本 都包含每层中的一个单元,因此系统抽样也是一 种分层抽样,不过由于样本单元在层中的位置都 是一样的,因此它不是分层随机抽样。
15
第二节 等距抽样的实施方法
1. 随机起点等距抽样 2. 循环等距抽样 3. 中点等距抽样 4. 对称等距抽样法 5. 两端修正法 6. 总体有周期性变化时的等距抽样 7. 累计和等距抽样
11
3.等距抽样的特点 (1)将总体各单元按一定的顺序排列后再抽样, 使得样本单元的分布更加均匀,因而样本也就更 具代表性,比简单随机抽样更精确,在某些场合 下甚至可以不用抽样框。 (2)等距抽样简单明了,快速经济,操作灵活 方便,使用面广,是单阶段抽样中变化最多的一 种抽样技术。
高中数学人教A版必修3第二章2.1.2 系统抽样课件

结束
阅读课本1
阅读课本58页上半部分,我可以看到的内容 是。。。。。
上一页 下一页 第一页 尾页
结束
我发现课本给出的问题是?
某学校为了了解高一年级学生对教师教学的意见, 打算从高一年级500名学生中抽取50名进行调查, 除了用简单随机抽样获取样本外,你能否设计其他 抽取样本的方法?
上一页 下一页 第一页 尾页
(3)在第一部分的个体编号1,2,3,…,50中,利用简单随 机抽样抽取一个号码,比如18.
(4)以18为起始号码,每间隔50抽取一个号码,这样得 到一个容量为20的样本:18,68,118,178…
细读课本我注意到了:
变:某市学有10003名高一学生,打算抽取200名学生调查 他们对奥运会的看法,k=N/n,k不是整数怎么办?
2.1.2 系统抽样
上一页 下一页 第一页 尾页
结束
思考
昭通市有10000名高一学生,打算抽取200名学生调查他们 对数学的看法,可否采用简单随机抽样?出现了什么情况?
可以,由于总体过大,采用简单随机抽样时,无论是抽签 法还是随机数法,实施过程很复杂,需要大量的人力和物力
上一页 下一页 第一页 尾页
【例2】 为了了解参加某种知识竞赛的1 000名学生 的成绩,抽取20名学生作为个体应采用什么抽样方法 较恰当?简述抽样过程.
分析:按照系统抽样的特点可知,应该采用系统抽样.
解:适宜选用系统抽样,抽样过程如下:
(1)随机地将这1 000名学生编号为1,2 ,3,…,1 000.
(2)将总体按编号顺序均分成20部分,每部分包括50 个个体.
分析:由于1003/50不是整数,所以先从总体中随机剔除3个个 体.
解:步骤: