六年级数学下册必背知识点归纳
完整版)六年级数学下册总复习知识点整理版

完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。
2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。
3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。
4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。
5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。
6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。
7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。
8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。
二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。
2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。
3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。
4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。
六年级数学下册知识点归纳

第一章分数与小数1.分数的认识(1)分数的定义和书写方法(2)分数的大小比较(3)分数的整数部分和小数部分2.分数的意义与应用(1)分数的实际应用(2)分数的等分与比较3.小数的认识(1)小数的定义和书写方法(2)小数和分数之间的关系第二章矩形1.正方形和长方形的认识(1)正方形和长方形的性质(2)正方形和长方形的面积计算2.计算矩形面积(1)矩形面积的计算公式(2)已知面积求解边长第三章平面图形1.点、线、面(1)点、线、面的概念及表示方法(2)线段的长度计算(3)角的概念及角的度量2.四边形(1)四边形的概念及分类(2)四边形的周长计算(3)矩形内角之和及矩形的判定(4)平行四边形的性质(5)梯形的性质及面积计算3.三角形(1)三角形的概念及分类(2)直角三角形的性质及勾股定理(3)三角形的周长计算及面积计算第四章质数与倍数1.质数(1)质数的概念及判断方法(2)质数与合数的关系2.整数的倍数(1)倍数的概念及计算(2)两个数的最小公倍数第五章分类与描述1.规律性的继续与发现(1)规律、特征与描述(2)图形的特征与描述(3)数字序列的特征与描述2.事件与概率(1)事件和概率的认识(2)概率的计算第六章数据统计1.统计调查(1)统计调查的概念及方法(2)调查数据的整理和表示2.图表与分析(1)统计图表的认识(2)直方图和折线图的绘制与分析(3)统计图表的比较第七章立体图形1.立体图形的认识(1)立体图形的性质及分类(2)正方体、长方体和圆柱体的认识2.立体图形的表面积计算(1)立方体表面积计算(2)长方体和圆柱体表面积的计算第八章两位数的认识和计算1.两位数的认识(1)十位和个位的认识(2)两位数的读法与写法2.两位数加减法(1)进位与退位(2)两位数的加法及应用(3)两位数的减法及应用第九章三位数的认识和计算1.三位数的认识(1)百位、十位和个位的认识(2)三位数的读法与写法2.三位数的加减法(1)进位与退位(2)三位数的加法及应用(3)三位数的减法及应用第十章表中数的认识和计算1.表中数的认识(1)表的读法和数据的整理(2)表中的最大数、最小数和中间数2.表中数的计算(1)数据的查找与整理(2)数据的统计与分析以上是六年级数学下册的知识点归纳,主要包括分数与小数、矩形、平面图形、质数与倍数、分类与描述、数据统计、立体图形、两位数的认识和计算、三位数的认识和计算、表中数的认识和计算等内容。
六年级下数学知识点(必备6篇)

六年级下数学知识点(必备6篇)六年级下数学知识点第1篇数的认识整数【正数、0、负数】1、一个物体也没有,用0表示。
0和1、2、3……都是自然数,也都是整数2、最小的自然数是0,自然数的个数是无限的,没有最大的自然数。
3、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
4、整数包括正整数、0和负整数。
如:-3、-17、0、90、6等。
5、整数的读写:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。
读数时,从最高位读起,一级一级地读。
读万级和亿级的数时要按个级的读法来读,,并在后面加上级名。
每一级末尾的0都不读,其他数位上无论有一个0或连续有几个0,都只读一个“零”。
6、整数的写法:写数时,先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一位上一个也没有就在那一位上写0。
7、整数的数位从低位开始分别是个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……整数的计数单位分别是一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……8、大数目的改写:把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
在不改变原数大小的前提下,按要求改写数,写出的数是原数的准确数,根据需要还可以还原。
例如:亿,万。
9、求一个数的近似值(通常采用四舍五入法):把一个数保留整数、保留一位小数、保留两位小数、保留三位小数……也可以分别说成精确到个位、精确到十分位、精确到百分位、精确到千分位……例如把8745603先改写成用“万”作单位的数,再省略“万”后面的尾数(精确到万位)万≈875万10、整数的大小比较:如果位数不同,位数多的数就大;如果位数相同,先看最高位,最高位上的数大的那个数就大,最高位相同,次高位上的数大的哪个数就大,如果还相同,则继续比较,以此类推,直到比较出大小为止。
六年级下数学知识点第2篇因数与倍数【素数(质数)、合数、奇数、偶数】1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
六年级数学下册必考知识点

六年级数学下册必考知识点六年级数学下册必考知识点1.负数:负数是数学术语,指小于0的实数,如3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如2,5.33,45,0.6等。
2.正数:大于0的数叫正数(不包括0)若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。
也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh8.圆柱的.侧面积:圆柱的侧面积=底面的周长_高,S侧=Ch (注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
六年级下册数学所有知识点和公式

六年级下册数学所有知识点和公式以下是详细的六年级下册数学知识点和公式的概述:1. 分数与小数:- 分数的概念:分子、分母,真分数、假分数、带分数- 分数的比较:相同分母的分数大小比较,相同分子的分数大小比较- 分数的化简和通分:分数的约分和最简形式,不同分母的分数通分- 分数与小数的相互转换:分数转小数除法,小数转分数(十分位、百分位、千分位等)2. 小数的应用:- 小数的四舍五入和估算:根据位数四舍五入,利用小数估算结果- 百分数的概念、计算和应用:百分数的表示和计算,百分比的应用(比例、增减比等)- 利率和利息的计算:利率的计算,利息的计算公式(利息=本金× 利率× 时间)3. 平面图形:- 二维图形的分类与性质:正方形、长方形、正三角形、等边三角形、等腰三角形、梯形、圆等的性质(边长、角度、对称性等)- 角的概念和性质:直角、锐角、钝角,补角、邻补角、对顶角等的性质- 三角形的分类与性质:按边分类(等边三角形、等腰三角形、普通三角形),按角分类(直角三角形、锐角三角形、钝角三角形)4. 三角形:- 三角形的周长和面积的计算公式:周长=边长之和,面积=底边×高/2,面积=底边×高/2- 直角三角形的勾股定理:直角三角形斜边的平方等于两直角边平方和(a² + b² = c²)- 特殊三角形的性质:等腰三角形的性质(底角相等、腰长相等),等边三角形的性质(三边相等、三角角度相等)5. 数据统计:- 数据的收集和整理:数据的收集方式、数据的整理和分类- 图表的制作和分析:柱状图、折线图、饼图的制作和分析(数据的比较、趋势分析等)- 中位数、众数和平均数的计算:数据集的中位数、众数和平均数的计算方法6. 空间几何:- 空间图形的投影与视图:正交投影、斜投影,立方体的展开图和视图- 空间图形的表面积计算:长方体、正方体、圆柱体、圆锥体、球体的表面积计算公式- 空间图形的体积计算:长方体、正方体、圆柱体、圆锥体、球体的体积计算公式公式总结:一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 c=(a+b)×2正方形的周长=边长×4 c=4a长方形的面积=长×宽 s=ab正方形的面积=边长×边长 s=a.a三角形的面积=底×高÷2 s=ah÷2平行四边形的面积=底×高 s=ah梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2 长方体的棱长总和=(长+宽+高)×4圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 正方体的棱长总和=棱长×12圆的面积=圆周率×半径×半径 s=πrr长方体的表面积=(长×宽+长×高+宽×高)×2内角和:三角形的内角和=180度。
小学六年级下册全册知识点

小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。
六年级数学下册必背知识点归纳

六年级数学下册知识点总结负数知识点1、0既不是正数,也不是负数,它是正数和负数的分界。
0大于负数,小于正数。
负数比较大小时,不考虑负号,数字大的数反而小。
2、“+”可以省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
数轴上0左边的数都是负数,0右边的数都是正数从左到右逐渐变大最大负整数-1 最小正整数1百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。
通称“打折”。
2、几折就表示十分之几,也就是百分之几十。
例如,八折就表示十分之八,就是按原价的80﹪出售。
3、原价×折扣=现价原价×(1-折扣)=便宜的钱4、折扣=现价÷原价便宜的钱÷(1-折扣)=原价5、原价=现价÷折扣成数:“几成”就是十分之几,也就是百分之几十。
三成五就是十分之三点五,也就是35%应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率6、利息=本金×利率×存期7、本金=利息÷利率÷存期8、利率=利息÷本金÷存期9、存期=利息÷本金÷利率10、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。
圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,直径=周长÷圆周率,公式C=πd,公式d=C÷π3、已知半径求周长:半径=周长÷圆周率的2倍,圆的周长=2×圆周率×半径,公式r=C÷2π公式C=2πr,=πr24、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=π(d÷5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆2)26、圆柱的侧面积=底面的周长×高,;圆柱的底面周长=侧面积÷高,圆柱的高=侧面积÷底面周长,7、圆柱的表面积=侧面积+2×底面积,8、圆柱的体积=底面积×高,。
六年级下册数学必背知识点

六年级下册数学必背知识点一、负数。
1. 负数的定义。
- 像 -3、 -2、 -0.5这样的数叫做负数。
负数是与正数表示相反意义的量。
例如,向东走3米记为 +3米,那么向西走2米就记为 -2米。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 在数轴上,负数在原点的左边,正数在原点的右边。
从左到右的顺序就是数从小到大的顺序。
例如, -5在 -3的左边,所以 -5< -3。
3. 负数的大小比较。
- 比较负数的大小,先不看负号,比较数字部分,数字部分大的反而小。
例如,-2和 -5,2<5,所以 -2> -5。
二、圆柱与圆锥。
1. 圆柱。
- 圆柱的特征。
- 圆柱有两个底面,是完全相同的圆;圆柱有一个侧面,是曲面;圆柱有无数条高,高的长度都相等。
- 圆柱的侧面积。
- 圆柱的侧面积 =底面周长×高,用字母表示为S = Ch(其中C=π d = 2π r,d是底面直径,r是底面半径)。
- 圆柱的表面积。
- 圆柱的表面积 =侧面积+两个底面积,即S = 2π rh+2π r^2。
- 圆柱的体积。
- 圆柱的体积 =底面积×高,用字母表示为V=π r^2h。
2. 圆锥。
- 圆锥的特征。
- 圆锥有一个底面,是圆;圆锥有一个侧面,是曲面;圆锥只有一条高,从圆锥的顶点到底面圆心的距离就是圆锥的高。
- 圆锥的体积。
- 圆锥的体积=(1)/(3)×底面积×高,用字母表示为V=(1)/(3)π r^2h。
三、比例。
1. 比例的意义和基本性质。
- 比例的意义。
- 表示两个比相等的式子叫做比例。
例如2:3 = 4:6。
- 比例的基本性质。
- 在比例里,两个外项的积等于两个内项的积。
如果a:b = c:d,那么ad = bc。
2. 正比例和反比例。
- 正比例。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册必背知识点归纳
负数知识点
1.0既不是正数.也不是负数.它是正数和负数的分界·
0大于负数.小于正数·负数比较大小时.不考虑负号.数字大的数反而小·
2.“+”可以省略不写.“-”不能省略·
3.数轴的要素:正方向(箭头表示).原点(0刻度).单位长度(刻度)·
数轴上0左边的数都是负数.0右边的数都是正数
从左到右逐渐变大最大负整数-1 最小正整数1
百分数(二)知识点
1、折扣:商品按原定价格的百分之几出售.叫做折扣·通称“打折”·
2、几折就表示十分之几.也就是百分之几十·
例如.八折就表示十分之八.就是按原价的80﹪出售·
3、原价×折扣=现价原价×(1-折扣)=便宜的钱
4、折扣=现价÷原价便宜的钱÷(1-折扣)=原价
5、原价=现价÷折扣
成数:“几成”就是十分之几.也就是百分之几十·
三成五就是十分之三点五.也就是35%
应纳税额 = 总收入×税率
税率=应纳税额÷总收入
总收入=应纳税额÷税率
6、利息=本金×利率×存期
7、本金=利息÷利率÷存期
8、利率=利息÷本金÷存期
9、存期=利息÷本金÷利率
10.满100元减50元.就是在总价中取整百元部分.每个100元减去50元.不满100元的零头部分不优惠·
圆.圆柱.圆柱必背公式
1.在同圆或等圆内.直径的长度是半径的2倍.公式d=2r;半径的长度是直径的一半.公式r =d÷
2.
2.已知直径求周长:
圆的周长=圆周率×直径.直径=周长÷圆周率.
公式C=πd. 公式d=C÷π
3.已知半径求周长:半径=周长÷圆周率的2倍.
圆的周长=2×圆周率×半径. 公式r=C÷2π
公式C=2πr.
4.已知半径求面积:圆的面积=圆周率×半径的平方.公式S圆 =πr2
5.已知直径求面积:圆的面积=圆周率×(直径÷2)的平方.公式S圆 =π(d÷2)2
6.圆柱的侧面积=底面的周长×高.;
圆柱的底面周长=侧面积÷高.
圆柱的高=侧面积÷底面周长.
7.圆柱的表面积=侧面积+2×底面积.
8.圆柱的体积=底面积×高.·
圆柱的高=体积÷底面积.;
圆柱的底面积=体积÷高.
9.一个圆锥的体积等于与它等底等高的圆柱体积的三分之一·
圆锥的高等于体积的3倍除以底面积.公式h=3v÷s;
圆锥的底面积等于体积的3倍除以高.公式s=3v÷h·
10.环形的面积=大圆面积-小圆面积.S环 =πR²-πr²
11.体积和高相等的圆锥与圆柱之间.圆锥的底面积是圆柱的三倍·即圆锥
的底面积=圆柱底面积×3.圆柱底面积=圆锥底面积÷3
12.体积和底面积相等的圆锥与圆柱之间.圆锥的高是圆柱的三倍·
即圆锥的高=圆柱的高×3.圆柱的高=圆锥的高÷3·
比例必背知识点
1、表示两个比相等的式子叫做比例·如:2:1=6:3
2、在比例里.两个外项的积等于两个两个内向的积·这叫做比例的基本性质·例如:由3:2=6:4可知3×4=2×6;
3、解比例:根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个数比例中的另外一个未知项·求比例中的未知项.叫做解比例·例如:3:x =
4:.内项乘内项.外项乘外项.则:4x =3×8.解得x=6·
4、成正比例的量:
两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系·用字母表示y/x= k(一定)例如:速度一定.路程和时间成正比例;因为:路程÷时间=速度(一定)·
5、成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系·用字母表示x×y=k(一定) 例如:路程一定.速度和时间成反比例.因为:速度×时间=路程(一定)·
6.比例尺=图上距离:实际距离
实际距离=图上距离÷比例尺;
图上距离=实际距离×比例尺;
数学广角---鸽巢问题
1.物体数÷抽屉数=商……余数至少数=商+1
2.只要摸出的球数比它们的颜色种数多1.就能保证有两个球同色·。