声学专业基本知识

合集下载

声学知识点总结归纳

声学知识点总结归纳

声学知识点总结归纳声学是物理学的一个分支,研究声音的产生、传播和接收。

声学知识在生活和工业中有着广泛的应用,包括音乐、通信、医学成像等领域。

下面我们将对声学的一些重要知识点进行总结归纳。

1. 声音的产生声音是由物体振动产生的一种机械波。

振动的物体使周围的空气受到压缩和膨胀,形成了一种往复的压力变化。

这些压力变化以波的形式传播,最终达到人的耳朵,被听觉系统解读为声音。

2. 声音的特性声音有三个基本特性:音调、响度和音色。

音调是指声音的高低,取决于声波的频率。

频率越高,音调越高。

响度是指声音的强度,取决于声波的振幅。

音色是指声音的质地或品质,取决于声波的波形。

3. 声波的传播声波在空气、水和固体中传播。

在空气中,声波的传播速度约为340米/秒,在水中约为1500米/秒,在固体中则因材料不同而有所差异。

声波的传播速度与该介质的性质有关。

4. 声音的衰减声音在传播过程中会逐渐衰减,使得声音的强度逐渐减小。

衰减的程度取决于声波在介质中的传播距离、介质的吸收能力以及其他环境因素。

5. 回声和吸音当声波遇到一个硬表面时,会产生反射,形成回声。

而当声波遇到一个软表面时,会被表面吸收,形成吸音。

这两种现象在建筑设计和音响工程中被广泛应用。

6. 声音的放大和过滤在音响设备中,可以通过放大器对声音进行放大,增加音响的响度。

而利用滤波器可以对声音进行过滤,去除特定频率的噪音。

7. 共振当外界声波的频率与一个物体的固有频率相同时,会引起共振现象。

共振会使得物体产生更大的振幅,加强声音的传播。

8. 声音的录制和重放声音可以通过话筒或麦克风录制下来,然后通过扬声器或耳机进行重放。

在录音和重放的过程中,需要考虑声音的采样率、量化精度和压缩算法等问题。

9. 声学仪器声学仪器包括声级计、频谱分析仪、示波器等,用于测量声音的响度、频谱和波形等特性。

10. 声学应用声学在音乐、通信、医学成像、地震监测等领域有着广泛的应用。

例如在音乐中,声学知识可以帮助乐器的设计和演奏技巧的改进;在通信中,声学知识可以帮助设计更好的话筒和扬声器;在医学成像中,声学知识可以帮助改进超声波成像技术。

声学专业基本知识

声学专业基本知识

声学专业基本知识Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998声学专业基本知识的简单描述?1.人耳能听到的频率范围是20Hz—20KHz。

2. 把声能转换成电能的设备是传声器。

3. 把电能转换成声能的设备是扬声器。

4. 声频系统出现声反馈啸叫,通常调节均衡器。

5. 房间混响时间过长,会出现声音混浊。

6.房间混响时间过短,会出现声音发干。

7、唱歌感觉声音太干,当调节混响器。

8、讲话时出现声音混浊,可能原因是加了混响效果。

9、声音三要素是指音强、音高、音色。

10、音强对应的客观评价尺度是振幅。

11、音高对应的客观评价尺度是频率。

12、音色对应的客观评价尺度是频谱。

13、人耳感受到声剌激的响度与声振动的频率有关。

14、人耳对高声压级声音感觉的响度与频率的关系不大。

15、人耳对中频段的声音最为灵敏。

16、人耳对高频和低频段的声音感觉较迟钝。

17、人耳对低声压级声音感觉的响度与频率的关系很大。

18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表示响度级。

20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表示计权声压级。

23、音色是由所发声音的波形所确定的。

24、声音信号由稳态下降60dB所需的时间,称为混响时间。

25、乐音的基本要素是指旋律、节奏、和声。

26、声波的最大瞬时值称为振幅。

27、一秒内振动的次数称为频率。

28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。

29、人耳对1~3KHZ的声音最为灵敏。

30、人耳对100Hz以下,8K以上的声音感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。

32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。

声学基本知识

声学基本知识

声学基本知识一、声音的基本性质声音来源于振动的物体。

辐射声音的振动物体称为“声源”。

声源要在弹性介质中发声并向外传播。

声波是纵波。

(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。

低于20Hz的声音称为次声;高于20000Hz的声音称为超声。

次声与超声不能使人产生声音的感觉。

(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。

-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。

表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。

(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。

声线表示声波的传播方向和途径。

在各向同性的介质中,声线是直线且与波阵面垂直。

依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。

一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。

当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。

所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。

(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。

这种现象称为绕射,或衍射。

(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。

从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。

声学基础知识

声学基础知识

声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。

声音是一种机械波,是由介质中分子的振动引起的。

在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。

本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。

一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。

声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。

例如,乐器弦线振动时产生的声音。

2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。

例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。

3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。

例如,人的嗓子发出的声音就是通过空气的振动传播出去的。

二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。

声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。

声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。

2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。

3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。

4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。

三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。

人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。

1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。

外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。

内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。

声学基本知识

声学基本知识

声学基本知识一、声音的基本性质声音来源于振动的物体。

辐射声音的振动物体称为“声源”。

声源要在弹性介质中发声并向外传播。

声波是纵波。

(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。

低于20Hz的声音称为次声;高于20000Hz的声音称为超声。

次声与超声不能使人产生声音的感觉。

(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。

-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。

表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。

(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。

声线表示声波的传播方向和途径。

在各向同性的介质中,声线是直线且与波阵面垂直。

依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。

一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。

当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。

所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。

(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。

这种现象称为绕射,或衍射。

(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。

从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。

声学基本知识.

声学基本知识.
c. 声压级: 该声音的声压与参考声压的比值取以10为底 的对数再乘20,即:
p L p 20 lg p0
p0 2 10 pa
5
声压级单位:分贝。
2.声强和声强级:
a.声强: 在声传播方向上单位时间内垂直通过单位面 积的声能量,称为声音的强度,简称为声强, 单位是瓦每平方米 。
P I c
声功率级单位:分贝。
4.声能密度
定义: 声场中单位体积媒质所含有的声能量。 对于在自由空间内传播的平面声波而言:
p D 2 0c
2 e
5.频程和频谱:
a.频谱图: 以频率为横轴,以声压为纵轴,绘出的图叫声音 的频谱图。
5.频程和频谱:
b. 频程:
为方便起见,通常将宽广的音频变化范围划分 为若干个较小的频段,称为频段或频程。
0,
p x, t P0 cos(t kx)
1.平面声波:
b.质点振动速度: 对于简谐振动而言:
u x U 0 cos(t kx) U 0 P0 / 0c
质点振动的速度振幅
1.平面声波:
c.声阻抗率:
Zs p / u
对于平面声波而言:
Z s P0 / U 0 0c
i 1
•求出总声压的有效值 •求出总声压级
b.级的相减
L pT 10 lg 10

仪器测 的噪声
0.1L p
B
声源真 实噪声
0.1L p
S
10

B
LpS 10 lg 10

0.1L p
T
10
0.1L p

背景 噪声
b.级的相减
令:L pB L pT L pB

声学基础知识

声学基础知识

声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。

声学是研究声音产生、传播和听觉效应等相关现象的学科。

本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。

一、声音的特性声音有几个重要的特性,包括音调、音量和音色。

音调是指声音的高低,由声源的频率决定。

频率越高,音调越高;频率越低,音调越低。

音量是指声音的强弱,由声源振幅的大小决定。

振幅越大,音量越大;振幅越小,音量越小。

音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。

不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。

二、声波的传播与衰减声波是指由声源振动产生的压力波。

声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。

在传播过程中,声波会经历衍射、反射、折射等现象。

衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。

反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。

折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。

声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。

一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。

环境条件如温度和湿度也会对声波的衰减产生一定影响。

三、人类的听觉系统人类的听觉系统是感知声音的重要器官。

它由外耳、中耳、内耳和大脑皮层等部分组成。

外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。

中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。

内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。

大脑皮层负责处理和解读声音信号。

人类听觉系统对不同频率的声音有不同的感知范围。

一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。

声学专业基本知识

声学专业基本知识

声学专业基本知识的简单描述1.人耳能听到的频率范围是20Hz—20KHz。

2. 把声能转换成电能的设备是传声器。

3. 把电能转换成声能的设备是扬声器。

4. 声频系统出现声反馈啸叫,通常调节均衡器。

5. 房间混响时间过长,会出现声音混浊。

6.房间混响时间过短,会出现声音发干。

7、唱歌感觉声音太干,当调节混响器。

8、讲话时出现声音混浊,可能原因是加了混响效果。

9、声音三要素是指音强、音高、音色。

10、音强对应的客观评价尺度是振幅。

11、音高对应的客观评价尺度是频率。

12、音色对应的客观评价尺度是频谱。

13、人耳感受到声剌激的响度与声振动的频率有关。

14、人耳对高声压级声音感觉的响度与频率的关系不大。

15、人耳对中频段的声音最为灵敏。

16、人耳对高频和低频段的声音感觉较迟钝。

17、人耳对低声压级声音感觉的响度与频率的关系很大。

18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表示响度级。

20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表示计权声压级。

23、音色是由所发声音的波形所确定的。

24、声音信号由稳态下降60dB所需的时间,称为混响时间。

25、乐音的基本要素是指旋律、节奏、和声。

26、声波的最大瞬时值称为振幅。

27、一秒内振动的次数称为频率。

28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。

29、人耳对1~3KHZ的声音最为灵敏。

30、人耳对100Hz以下,8K以上的声音感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。

32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。

33、声音在空气中传播速度约为340m/s。

34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加0.1s延时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声学专业基本知识 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】声学专业基本知识的简单描述1.人耳能听到的频率范围是20Hz—20KHz。

2.把声能转换成电能的设备是传声器。

3.把电能转换成声能的设备是扬声器。

4.声频系统出现声反馈啸叫,通常调节均衡器。

5.房间混响时间过长,会出现声音混浊。

6.房间混响时间过短,会出现声音发干。

7、唱歌感觉声音太干,当调节混响器。

8、讲话时出现声音混浊,可能原因是加了混响效果。

9、声音三要素是指音强、音高、音色。

10、音强对应的客观评价尺度是振幅。

11、音高对应的客观评价尺度是频率。

12、音色对应的客观评价尺度是频谱。

13、人耳感受到声剌激的响度与声振动的频率有关。

14、人耳对高声压级声音感觉的响度与频率的关系不大。

15、人耳对中频段的声音最为灵敏。

16、人耳对高频和低频段的声音感觉较迟钝。

17、人耳对低声压级声音感觉的响度与频率的关系很大。

18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表示响度级。

20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表示计权声压级。

23、音色是由所发声音的波形所确定的。

24、声音信号由稳态下降60dB所需的时间,称为混响时间。

25、乐音的基本要素是指旋律、节奏、和声。

26、声波的最大瞬时值称为振幅。

27、一秒内振动的次数称为频率。

28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。

29、人耳对1~3KHZ的声音最为灵敏。

30、人耳对100Hz以下,8K以上的声音感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。

32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。

33、声音在空气中传播速度约为340m/s。

34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加0.1s延时。

35、反射系数小的材料称为吸声材料。

36、透射系数小的材料称为隔声材料。

37、透射系数大的材料,称为透声材料。

38、全吸声材料是指吸声系数α=1。

39、全反射材料是指吸声系数α=0。

40、岩棉、玻璃棉等材料主要吸收高频和中频。

41、聚氨酯吸声泡沫塑料主要吸收高频和中频。

42、薄板加空腔主要吸收低频。

43、薄板直接钉于墙上吸声效果很差。

44、挂帘织物主要吸收高、中频。

45、粗糙的水泥墙面吸声效果很差。

46、人耳通过声源信号的强度差和时间差,可以判断出声源的空间方位,称为双耳效应。

47、两个声音,一先一后相差5ms--50ms到达人耳,人耳感到声音是来自先到达声源的方位,称为哈斯效应。

48、左右两个声源,声强级差大于15dB,听声者感到声源是在声强级大的声源方位,称为德波埃效应。

49、一个声音的听音阈因为其它声音的存在而必须提高,这种现象称为掩敝效应。

50、厅堂内某些位置由于声干涉,使某些频率相互抵消,声压级降低很多,称为死点。

51、声音遇到凹的反射面,造成某一区域的声压级远大于其它区域称为声聚焦。

52、声音在室内两面平行墙之间来回反射产生多个同样的声音,称为颤动回声。

53、由于反射使反射声与直达声相差50ms以上,会出现回声。

54、房间被外界声音振动激发,从而按照它本身的固有频率振动,称为房间共振。

55、房间出现几个共振频率相同的重叠现象,称为共振频率的简并。

56、由于简并等原因使原声音信号频谱发生改变而被赋予外加的音色导致失真,称为声染色。

57、声场中直达声声能密度等于混响声声能密度的点与声源的距离称为混响半径。

58、听音点在混响半经以内时,直达声起主要作用。

59、听音点在混响半经以外时混响声起主要作用。

60、声源振动使空气产生附加的交变压力,称为声波。

61、质点振动方向与波的传播方向相垂直,称为横波。

62、质点振动方向与波的传播方向相平行,称为纵波。

63、一般点声源在空间幅射的声波,属于球面波。

64、声波在不同物质中传播,速度最快的是金属。

65、声波在不同物质中传播速度最慢的是空气。

66、声波在不同物质中传播,其速度快慢依次为金属>木材>水>空气。

67、回声的产生是由于反射声与直达声相差50ms以上。

68、颤动回声的产生是由于声音在两个平行光墙之间来回反射。

69、声聚焦的产生是由于声音遇到凹的反射面。

70、声扩散的产生是由于声音遇到凸的反射面。

71、在礼堂某坐位听到台上讲话变成两个重复的声音,其可能原因是由于反射声与直达声相差50ms以上。

72、人耳对不同频率的听觉特性是对中音最敏感,其次是高音,频率越低越不敏感。

73、不同频率声波的指向性特点为高音指向性强,低音指向性弱。

74、不同频率声波的绕射能力为低音容易绕射,高音不易绕射。

75、音箱布局通常的做法是高音音箱挂高,并调好角度;低音音箱靠近地面。

76、厅堂低频混响过长,较有效的措施是墙上装带空腔的薄板。

77、隔音效果最好的材料是双层砖墙,中间留空气层。

78、50HZ非正弦周期信号,其4次谐波为200HZ79、100HZ非正弦周期信号的3次谐波为300HZ。

80、300HZ非正弦周期信号的5次谐波为1500HZ。

81、80HZ非正弦周期信号的5次谐波为400HZ。

82、要使体育场距离主音箱约17m的观众听不出两个声音,应当对观众附近的补声音箱加50ms 延时。

83、均衡器按63、125、250、500、1K、2K、4K、8K、16K划分频段,是1/1倍频程划分。

84、均衡器按50、200、800、3.2K、12K、划分频段,是4倍频程划分。

85、均衡器按40、50、63、80、100、125、160、200、250、315、400…20K划分频段,是1/3倍频程划分。

86、最佳混响时间选择最长的场所是音乐厅。

87、最佳混响时间选择最短的场所是多轨分期录音棚。

88、适宜设计混响时间可调节的场所是多功能厅。

89、赛宾公式适用于计算吸声系数较小的房间的混响时间。

90、艾润公式适用于计算各类房间的混响时间。

91、赛宾公式的内容为:混响时间等于0.161X房间容积/房间表面积X吸声系数。

92、为减少房间的简并现象,避免声染声,房间最佳的长:宽:高比例为2:3:5。

93、在大型剧场中,最易听到回声的坐位是前座。

94、解决大型剧场前座观众听到回声的主要方法是观众席后墙加强吸声。

95、分贝的正确写法是dB。

96、音乐简谱中的1与ⅰ之间相距一个倍频程。

97、音乐简谱中的1与2之间相距1度。

98、声速C、声波频率、声波波长λ,其间关系是C=fxλ。

99、声波频率与声波周期Τ的关系是f=1/T。

100、驻波形成的条件是反向传播、振幅相同、频率相等、相位差为0或恒定。

101、效果器中CHORUS表示合唱。

102、由声波的扰动引起的媒质局部压强发生变化,叫做声压。

103、声压级的单位为dB。

104、声级的单位为dB。

105、声压的单位为(帕)Pa。

106、声强的单位为w/m2。

107、闻阈的声压约为2×10-5Pa。

108、痛阈的声压约为2×10Pa。

109、痛阈的声压级约为120dB。

110、闻阈的声压级约为0dB。

111、凹曲面对声波形成集中反射,使声能集中于某一点或某一区域,称为声聚焦。

112、凸曲面对声波反射,使声能形成扩散。

113、人耳分辨两个声音的最小时间间隔是50ms。

114、音乐中的旋律包括声乐和器乐旋律。

115、在音乐简谱中1--ⅰ叫八度。

116、室内混响声是由反射声引起的。

117、基本音升高半音叫升音,用#记号表示。

118、基本音降低半音叫降音,用b记号表示。

119、已升高或降低的音要变成基本音叫还原,用ㄆ记号表示。

120、MIDI的意思是乐器数字接口。

121、声源在距离大于一定数值的两个平行界面间产生反射而形成一系列回声,称为颤动回声。

122、声压与基准声压(2×10-5Pa)之比,取10为底的对数乘以20,称为声压级。

123、音乐中的音色大部分都是复合音。

124、室内早期反射声指只经过一次反射,进入听耳的反射声。

125、音乐中基本音有7个。

126、常用的两种吸声材料:多孔材料,薄板后留空腔。

127、不属于隔声结构:穿孔钢板。

128、属于隔声结构:双层砖墙。

129、由于室内频率响应的变化,使原信号频谱有了某种改变,称为声染色。

130、不属于多孔吸声材抖:石膏板。

131、属于多孔吸声材料:岩棉。

132、薄板共振结构吸声的特点是具有低频吸声特性,同时还有助于声波的扩散。

133、将木板固定在框架上,板后留有一定的空气层,就可以构成薄板共振吸声结构。

134、录音师录制树上鸟声是0.01Pa,录制军号演奏声是1Pa,两种声音相差40dB。

135、混响声可以延长声音的持续时间,提高声音的丰满度。

136、两个波源的频率相同或相近,发出的波相遇叠加时,便有可能产生波的干涉。

137、两个在同一直线上沿相反方向传播的波,若振幅、频率相同,在两个波源的连线上便会出现驻波。

138、语言与音乐兼用厅堂总噪声级一级指标为NR30。

139、歌厅总噪声级一级指标为40dB〔A〕。

140、室内产生的声聚焦对室内声场产生不均匀影响,其原因是室内存在凹形反射面。

141、室内听音存在死点,是由于室内声源产生干涉现象或形成驻波。

142、声影区是指室内听不到直达声的区域。

143、物体的隔声量R与物体厚度有关,且与其表面结构和密度有关。

144、在凹形面上铺设足够的吸声材料,可以解决声聚焦的缺陷。

145、调节扬声器位置或加设补声扬声器可以解决声影区的缺陷。

146、后墙面上做强吸声或加凸形扩散体,可以解决长延时回声的缺陷。

147、两面平行墙表面加扩散体或改变平行角度,可以解决颤动回声的缺陷。

148、一支电容话筒最高声压级为126dB,等效噪声级为20dB,其动态范围为106dB。

149、声频的中高频段决定声音的明亮度,清晰度。

150、声频的高频段决定声音的色彩。

相关文档
最新文档