精馏塔设计图(参考)
Aspen Plus精馏模拟(塔设计)

Aspen plus精馏模拟实例教程1. Aspen Plus 简介进入Aspen Plus后,出现图1所示的Aspen Plus软件操作界面.图1操作界面构成·标题条:在该栏目中显示运行标识. 在你给出运行名字之前,Simulation1是缺省的标识. ·拉式菜单:Aspen Plus的功能菜单. 这些下拉式菜单与Windows的标准菜单类似.·工艺流程窗口:在该窗口中可以建立及连接所要模拟的工艺流程.·模式选择按钮:按下此按钮你可以关闭插入对象的插入模式,并返回到选择模式.·模型库:在这里列出建立模型可用的任何单元操作的模型..·状态域:显示当前有关运行的状态信息.·快速访问按钮:快速执行Aspen Plus相应的命令。
这些快捷按钮与其它Windows程序的快速访问按钮类似.·Next按钮(N->):设计过程的任意时刻点击它,系统都会自动跳转到当前应当进行的工作位置,这为我们输入数据提供了极大的方便.2 Aspen Plus模拟精馏简介(1)塔模型分类做塔新流程模拟分析必须先进行简捷塔计算--- 塔的初步设计. 计算结果为理论板数、进料位置、最小回流比、塔顶/釜热负荷. 然后进行塔精确模拟分析,简捷塔计算结果做为精确计算的输入依据. 本文以甲醇-水混合物系分离为例,首先介绍初步设计方法,然后介绍复杂塔模拟计算。
为初学者提供帮助。
Aspen Plus塔模型分类如下表.模型简捷蒸馏 DSTWU、 Distl 、SCFrac严格蒸馏 RadFrac、 MultiFrac、 PetroFrac、 RateFrac(2)精馏塔的模拟类型精馏塔的模拟类型可以分为设计式和操作式模拟计算. 可以通过定义模型的回流比进行设计型计算,又可以定义塔板数进行操作型计算. 本章我们进行设计计算,在下一章中进行操作型计算.(3)设计实例常压操作连续筛板精馏塔设计,设计参数如下[1]:进料组份:水63.2%、甲醇38.6%(质量分率);处理量:水甲醇混合液55t/h;进料热状态:饱和液相进料;进料压力:125 kPa;操作压力:110 kPa;单板压降:≤0.7 kPa;塔顶馏出液:甲醇量大于99.5 %(质量分率)塔底釜液:水量大于99.5 %;(质量分率).回流比:自选;全塔效率:E T=52%热源:低压饱和水蒸汽;我们通过这个实例学习Aspen Plus精馏模拟应用.3. 精馏塔的简捷计算·设计任务确定理论塔板数 确定合适的回流比·DSTWU 精馏模型简介本例选择DSTWU 简捷精馏计算模型.DSTWU 可对一个带有分凝器或全凝器一股进料和两种产品的蒸馏塔进行简捷精馏 计算. DSTWU 假设恒定的摩尔溢流量和恒定的相对挥发度·DSTWU 规定与估算内容规 定目 的其它结果轻重关键组分的回收率 最小回流比和最小理论级数 理论级数 必需回流比回流比必需理论级数进料位置、冷凝器、再沸器的热负荷·DSTWU 计算结果浏览汇总结果、物料和能量平衡结果、回流比对级数曲线.3.1 定义模拟流程本节任务:·创建精馏塔模型 ·绘制物流·模块和物流命名1)创建精馏塔模块在模型库中选择塔设备column 标签,如图3.1-1.图3.1-1点击该DSTWU 模型的下拉箭头,弹出三个等效的模块,任选其一如图3.1-2所示.图3.1-2在空白流程图上单击,即可绘出一个精馏塔模型如图3.1-3所示.图3.1-32)绘制物流单击流股单元下拉箭头,选择流股类型,在这里我们选择 material 类型. 选择后得到图3.1-4所示.图3.1-4在箭头提示下我们可以根据需要来绘制流股,其中红色箭头表示必须定义的流股,蓝色箭头表示可选定义的流股,不同的模型根据设计任务绘制. 本例一股进料、塔顶和塔底两股出料,如图3.1-5.图3.1-53)模块和物流命名选择中流股/模块(单击流股/模块),点击鼠标右键,在弹出的菜单中选择 rename stream 或 rename block,在对话框中输入改后的名称,即可改变名称.在这里我们将入料改为FEED;塔顶出料改为D;塔底出料改为L;改变名称后的流程图如图3.1-6所示.图3.1-6至此,本节创建模拟流程任务完成,我们将在N-> 快捷键引导下进入下一步操作.3.2 模拟设置单击N-> 快捷键,进入初始化设置页面,如图3.2-1. 用户可以对Aspen Plus做全局设置、定义数据输入输出单位等.·定义数据输入输出单位Aspen plus提供了英制、公斤米秒制、国际单位制三种单位制. 输入数据可以在输入时改变单位,输出报告则按在此选择的单位制输出.系统自身有一套默认的设置。
化工原理课程设计——精馏塔设计

南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。
甲醇-水分离精馏塔设计 完整版

u -空塔气速 m/s u0-气体通过筛孔的速度 ,m/s uo,min-漏液点气速, m/s tF- 进料板温度℃ tD-塔顶 温度℃ tW-塔底 温度℃ tm-平均 温度℃ W-釜残液流量 kmol/h wc -边缘区宽度 m wd -弓形降液管的宽度 m ws -破沫区宽度 m x -液相中易挥发组分的摩尔分率 y -气相中易挥发组分的摩尔分率 Z -塔高 m
6 共 30 页
二 、精馏塔的物料衡算
1、 原料液及塔顶、塔底产品的摩尔分率
甲醇的摩尔质量 水的摩尔质量
xF
M甲醇 32kg / kmol M水 18kg / kmol
0.46 / 32 =0.324 0.46 / 32 0.54 / 18 0.98 / 32 xD =0.965 0.98 / 32 0.02 / 18 0.005 / 32 xW =0.00282 0.005 / 32 0.995 / 18
2、 原料液及塔顶、塔底产品的平均摩尔质量
MF 0.324 32 (1 0.324) 18 22.54kg / kmol
MD 0.965 32 (1 0.965) 18 31.51kg / kmol MW 0.00282 32 (1 0.00282) 18 18.04kg / kmol
1 0.4 4.04 0.4(1 0.729)
2
3
4
则
0.9194 (1 0.8741) 1.643 0.8741 (1 0.9194)来自 m
1 2 3
4
4
4.65
相平衡方程为;
y x/ 1 ( 1x )
板式精馏塔设计PPT课件

要求: hOW6mm
bc
(4) 塔板及其布置 ① 受液区和降液区 一般两区面积相等。
bs
r
lW
x
② 入口安定区和出口安定区
bsbs50 10m0m
bd
③ 边缘区:bc 50mm
29
④ 有效传质区:
bc
单流型弓形降液管塔板:
A a2(xr2x2r2si 1 nr x)
bs
r
x
lW
双流型弓形降液管塔板:
8
二元连续板式精馏塔的工艺计算
物料衡算 实际塔板数的确定 塔高和塔径的计算 塔板结构参数的确定 塔板流动性能校核
9
一、物料衡算
全塔物料衡算 间接加热时:
F=D+W FxF= DxD+WxW 可以解出F,W。
10
二 实际塔板数的确定
1.确定理论板数 可以采用图解法或逐板计算法.
平衡数据 回流比 精馏段操作线 加料线 提馏段操作线
14物性参数的查找计算塔径由精馏塔内各段物料的摩尔流率或说体积流率决定的其影响因素有f进料流率r回流比及q涉及单位换算15轻组分1x轻组分1x重组分2进料板的平均分子量进料板对应的组成x进料板对应的组成由逐板计算得到n值各人不同ynm轻组分1y轻组分1x重组分16轻组分1y轻组分1x重组分4精馏段提馏段的平均分子量精馏段平均分子量mlm1液相平均密度查物性数据
主要设备的工艺设计计算
板式塔的结构
辅助设备的选型
主要设备的工艺条件图
设计说明书的编写
3
设计方案的确定
(一)装置流 程的确定
要求在设计说明 书上画出流程 简图。
4
塔顶冷凝装置根据生产情况以决定采用 分凝器或全凝器。一般,塔顶分凝器对 上升蒸汽虽有一定增浓作用,但在石油 等工业中获取液相产品时往往采用全凝 器,以便于准确地控制回流比。若后继 装置使用气态物料,则宜用分凝器。
精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径
乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔设计任务书一、设计题目乙醇—水溶液连续精馏塔设计二、设计条件1.处理量: 15000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。
常减压精馏塔的设计和三维建模

前言常减压装置换热器的设计和三维建模1 前言原油常减压装置是炼油厂加工原油的第一套装置,它担负着将原油进行初步分离的任务,是炼油厂和许多石油化工企业的龙头装置。
原油一次加工能力即原油蒸馏装置的处理能力常被视为一个国家炼油工业发展水平的标志。
目前我国单套原油蒸馏装置处理能力最大达到8Mt/a,在装置及设备大型化等方面有了新的进展。
防腐技术,初馏塔提压操作,回收轻烃等新工艺在许多常减压装置得到工业应用。
本课题来源于生产实际,其目的是核算或设计一套对石油进行初步分离的常减压装置。
意义在于,通过常减压蒸馏对原油的处理,可以按所指定的产品方案将原油分割得到直馏汽油、煤油、轻柴油、重柴油馏分以及各种润滑油馏分等,为二次加工、三次加工提供更多的原料油。
蒸馏过程和设备的设计是否合理,操作是否良好,对炼油厂生产的影响甚为重大,因此需要考虑多方面因素以达到最优化设计。
本文在阐述常减压装置的工艺流程前提下完成减压塔的设计,文中重点放在塔设计过程中的工艺计算、塔体和塔板主要尺寸设计、流体力学的验算与操作负荷性能图,在此基础上设计合理的蒸馏设备,基本符合设计生产任务。
由于设计数据不够完善,而作者的知识和经验有限,文中如有错误和不妥之处恳请读者和同行批评指正。
2选题背景2.1 研究目的和意义石油是极其复杂的混合物。
要从原油提炼出多种多样的燃料、润滑油和其他产品,其本的途径是:将原油分割为不同沸程的馏分然后按照油品的石油要求,除去这些馏分中的非理想组分,或者是经由化学转化形成所需要的组成,进而获得合格的石油产品。
因此,炼油厂必须解决原油的分割和各种石油馏分在加工过程中的分离问题。
蒸馏正是一种合适的手段,而且常常也是一种最经济、最容易实现的分离手段。
原油蒸馏是原油加工的第一道工序,通过蒸馏将原油分成汽油、煤油、柴油等各种油品和后续加工过程的原料,原油蒸馏装置在炼化企业中占有重要的地位,被称为炼化企业的“龙头”。
在炼油厂中一般把常压装置和减压装置连在一块构成常减压装置。
精馏塔设计图(参考)

40 HG20652-1998 排净孔
2
39 JB4710-92
检查孔
1 Q235-A
38 JB4710-92
引出孔 φ133×4 1 Q235-A
37 GB/T3092-93 引出管 DN20
1 Q235-A
36 HG20594-97 法兰 PN1.0,DN20 1 Q235-A
35 HJ97403224-7 裙座筒体
筒体、封头、法兰 170 0.58 1 57.9327
50
16 15
Ⅴf
14
13
12 11 10
i 9
8
j1
7
6
k 5
4 3 2 1
35
34
33 29 30
32 m5
31
30
31 5
4
3
2
32
1
Ⅳ
33
g
h
n
34
Ⅲ
35
j3
36
Ⅱ
37
38
l
39
40 41
Ⅰ
m7
51
50 平台一
49
48
47
46
45
44
43
排气管 φ80
4 Q235-A
8
HG20594-97
法兰 PN1.0,DN40 1 Q235-A
7
GB/T3092-93 引出管 DN40
1 Q235-A
6 JB4710-92
引出孔 φ159×4.5 1 Q235-A
5
静电接地板
1
Q235-A
4
垫板
24 Q235-A
3
盖板
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计数量
职务姓名日期制图校核审核审定批准
比例
图幅
1∶20
A1
版次
设计项目设计阶段
毕业设计施工图
精馏塔
重量(Kg)
单件总重备注
件号
图号或标准号
名称
材料
12345基础环
筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6
789
10
111213
14151617JB4710-92
GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92
GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘
塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱
111411111111 6.723.931.55322.7
94.2374.19140.62.97
5.382.364.67
1.170.411.0321.9376181210.69
2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A
Q235-A
Q235-A
1819202122232425
2627282930313233343536
3738
39
40
41扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86
上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体
法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔
排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3
310.10.411.03370.738021.032.612.2442.54
0.616.944.3δ=8
1
40
6
23
45
41
39
38
37789
10
1112
3635
34
33
3213
14
31
15
16
30
2917
28
27
26
25
24
2318
19
202122
a
b
c
d
e
f
i
g
h
j1
k
l
n
m5
m7
ⅥⅤ
Ⅳ
Ⅲ
Ⅱ
Ⅰ
技术要求
1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行
制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301;
3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板
厚度,法兰焊接按相应法兰中的规定;
4、容器上A、B类焊缝采用探伤检查,探伤长度20%;
5、设备制造完毕后,卧立以0.2MPa进行水压试验;
6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm;
7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm;
8、塔盘制造安装按JB1205《塔盘技术条件》进行;
9、管口及支座方位见接管方位图。
技术特性表
管口表总质量:27685 Kg
e
m1-7a
f
i
g h
j2n
j4
l j3
k j1
b
c
d
j3
序号项 目
指 标11
1098
7654321
设计压力 MPa
设计温度 ℃
工作压力 MPa 工作温度 ℃工作介质
主要受压元件
许用应力 MPa 焊缝接头系数
腐蚀裕量 mm
全容积 m
容器类别
0.1150
0.027102
筒体、封头、法兰170
0.581
57.9327
符号公称尺寸连接尺寸标准紧密面
型式用途或名称
b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040HG20594-97HG20594-97
HG20594-97
HG20594-97
HG20594-97HG20594-97
HG20594-97
HG20594-97
HG20594-97HG20594-97
HG20594-97HG20594-97
HG21515-95
凹凹凹凹凹凹凹凹凹凹凹凹凹温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口3130282633
35
373929
2732
3436384041424344
454647
48
4950
5125
24
2322
21201918
1716
151********
8
7654
32114m6
m7
m5
m4
m3
m2
m1
1
2
3
4
5
30
31
32
33
34
35
50
51
管口方位示意图
A、B类焊缝
1:2
整体示意图1:2
Ⅵ
Ⅴ
1:5
1:5
Ⅳ
A
B
B向
A向
Ⅲ
1:5
Ⅱ
1:5
Ⅰ
1:10
平台一
平台二
57
2901
职责设计制图签 名日期
年处理×××浮阀精馏塔工艺流程图
江苏工业学院 系 专业化工原理课程设计
序 号名 称规 格数 量备 注
V-101
V-102V-103P-101P-102P-103E-101E-102E-103E-104E-105C-101A106原料贮罐釜液贮罐产品贮罐原料泵釜液泵产品泵原料预热器再沸器全凝器冷却器冷却器精馏塔分配器1
11111
111
111
1疏水器取样口
调节阀截止阀
冷凝水冷却水(出)冷却水(入)低压蒸汽名 称疏水器
DL
WL
釜液
产品液位流量温度压力放空
名 称代 号
LM
CW CWR SC L
F
T P 图 例
P
T
P
T F
P T F
L
L
P
T
T
F T
T F
F
F
L
LM
CW CWR SC WL
DL
下水道V-101
P-101
V-102
V-103
P-102
P-103
E-102
E-101
E-101
E-103
E-105
A-106
C -101
二、
生产工艺流程简图示例
审核。