潍坊市昌邑市2018-2019学年七年级上期末数学试卷含答案解析
2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析

2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
潍坊市昌邑市2019-2020年七年级上期末数学试卷含答案解析

潍坊市昌邑市2019-2020年七年级上期末数学试卷含答案解
析~学年度七年级上学期期末数学试卷
一、选择题(每小题3 分,共36 分.请将正确的选项标号填写在Ⅱ卷答题纸指定位置.)
1.未来三年,国家将投入8 500 亿元用于缓解群众“看病难,看病贵”问题.将8 500 亿元
用科学记数法表示为
()
A.0.85×104 亿元B.8.5×103 亿元C.8.5×104 亿元D.85×102 亿元
2.如果a 表示有理数,那么下列说法中正确的
是()A.+a 和﹣a 一
定不相等B.﹣a 一定是负数
C.﹣(+a)和+(﹣a)一定相等D.|a|一定
是正数
3.下面的几何体中,属于棱柱的有()
A.1 个B.2 个C.3 个D.4 个
4.两个三次多项式的和的次数是()
A.六次B.三次C.不低于三次D.不高于三次
5.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函
数图象,根据图象信息,下列说法正确的是()
A.小王去时的速度大于回家的速度B.小王在
朋友家停留了10 分钟C.小王去时所花的时间
少于回家所花的时间D.小王去时走上坡路,回
家时走下坡路
6.已知a,b 两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|﹣|b+2|的结果是
()
A.1 B.2b+3 C.2a﹣3 D.﹣1
7.在排成每行七天的日历表中取下一个3×3 方块(如图).若所有日期数之和为189,则n 的值为
()。
2018-2019学年新人教版数学七年级上册期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,几何体的左视图是()A.B.C.D.2.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)3.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣34.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°5.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm6.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣39.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.110.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或202012.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.113.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.26.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.2.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.4.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.5.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.6.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.26.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.。
2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。
【解析版】2018-2019年潍坊市昌乐县七年级上期末数学试卷

2018-2019学年山东省潍坊市昌乐县七年级(上)期末数学试卷一、选择题:每小题3分,共36分.四个选项中只有一项是符合题目要求的.1.﹣2的相反数是()A.﹣B.﹣2 C.D.22.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE3.在下列表达式中,不能表示代数式“6a”意义的是()A.6个a相乘B.a的6倍C.6个a相加D.6的a倍4.丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁.A.2 B.b﹣a C.a﹣b D.b﹣a+25.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B.C.D.6.a与x的平方差的倒数,用代数式表示为()A.B.C. D.﹣7.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=68.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①② B.①②④C.①③ D.①③④⑤9.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+410.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢11.小明在做解方程的题时,不小心将方程中的一个常数污染了看不清楚(式中用(【】)表示),被污染的方程是:2y﹣=y﹣(【】),怎么办呢?小明想了一想,便翻看了书后的答案,此方程的解是y=﹣,所以他很快补好了这个常数,并迅速地完成了作业.同学们,你们能补出这个常数吗?它应是()A.1 B.2 C.3 D.412.已知长方体工件为a米,宽为b米,高为c米.用红油漆涂刷工件的上、下底面,成本是每平方米30元;用黄油漆涂刷工件的4个侧面,成本为每平方米25元,则将整个工件表面涂漆的成本共为()元.A.60ab+50(a+b)c B.60ab+25(a+b)c C.60ab+25(a+b)D.60ab+50(a+c)b二、填空题:每小题3分,共24分.13.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.14.化简:2(a+1)﹣a= .15.若单项式(k﹣3)x|k|y2是五次单项式,则k= .16.当x=1时,代数式ax3+bx+4的值为5.则x=﹣1时,ax3+bx+4的值为.17.李老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的%.18.方程2x+3=4和方程3x+1=k有相同的解,则k= .19.若海拔每上升1千米,气温就下降6℃,某时刻,地面气温为20℃,高出地面x千米处的气温为y(℃),则y(℃)与x(千米)之间的关系为.20.先观察下列等式:,,…则计算= .三、解答题:共60分.解答应写出必要的文字说明、证明过程或推演步骤.21.(1)写出绝对值大于3且小于7的所有整数.(2)用科学记数法表示海王星与地球的距离约为4350000000千米.22.计算下列各题:(1)﹣23÷×(﹣)2(2)52×﹣(﹣5)2×+52×.23.先化简,再求值:x2﹣2xy﹣3y2﹣3(x2+xy﹣2y2),其中x=,y=﹣.24.解下列方程:(1)4﹣3.8x=3﹣3.9x(2)x﹣=2﹣.25.某中学开展“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图.请根据提供的信息,解答后面的问题:(1)求被调查学生的人数;(2)求被调查的学生中喜欢教师职业的人数;(3)请补全折线统计图,并求出扇形统计图中表示公务员的扇形圆心角度数.26.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.2018-2019学年山东省潍坊市昌乐县七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共36分.四个选项中只有一项是符合题目要求的.1.﹣2的相反数是()A.﹣B.﹣2 C.D.2考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:D.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE考点:两点间的距离.分析:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,正确;B中CD=AC﹣AB=BC=CD,正确;C中CD=AD﹣BC﹣AB=CD,正确;D中CD≠DE则在已知里所没有的,错误;解答:解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选D.点评:本题考查了两点的距离,通过相等的线段,转化到同一线段上进行加减线段来求.3.在下列表达式中,不能表示代数式“6a”意义的是()A.6个a相乘B.a的6倍C.6个a相加D.6的a倍考点:代数式.分析:代数式“6a”意义是6与a相乘,根据乘法的意义即可判断.解答:解:代数式“6a”意义是6与a相乘,故B、C、D正确;A、6个a相乘表示为:a6,故命题错误.故选A.点评:本题考查了代数式的意义,理解乘法的意义是关键.4.丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁.A.2 B.b﹣a C.a﹣b D.b﹣a+2考点:列代数式.分析:由于两个人的年龄差不变,2年后丁丁比昕昕小几岁,也就是现在的两个人的年龄差,由此列式即可.解答:解:2年后丁丁比昕昕小(b﹣a)岁.故选:B.点评:此题考查列代数式,利用年龄差不变是解决问题的关键.5.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B.C.D.考点:几何体的展开图.分析:根据正方体展开图的特征及正方形上的三种图形相邻求解即可.解答:解:由正方体展开图的特征及正方形上的三种图形相邻,可得正方体沿某些棱展开后,能得到的平面图形是B.故选:B.点评:本题主要考查了几何体的展开图,主要是培养学生的观察能力和空间想象能力.6.a与x的平方差的倒数,用代数式表示为()A.B.C. D.﹣考点:列代数式.分析:先算a与x的平方差,再进一步求得倒数即可.解答:解:a与x的平方差的倒数,用代数式表示为.故选:C.点评:此题考查列代数式,理解题目叙述的运算顺序与计算方法是解决问题的关键.7.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6考点:解一元一次方程.分析:方程两边都乘以6即可得出答案.解答:解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.点评:本题考查了解一元一次方程的应用,注意:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化成1.8.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①② B.①②④C.①③ D.①③④⑤考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:①这种调查方式是抽样调查故①正确;②800名学生期中数学考试情况是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④100名学生期中数学考试情况是总体的一个样本故④错误;⑤100是样本容量,故⑤错误;故选:C.点评:本题考查了样本容量,样本容量是样本中包含的个体的数目,不能带单位.9.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+4考点:整式的加减.分析:每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简.解答:解:(6a2﹣5a+3 )﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4.故选D.点评:注意括号前面是负号时,括号里的各项注意要变号.能够熟练正确合并同类项.10.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢考点:函数的图象.专题:压轴题.分析:根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.解答:解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.11.小明在做解方程的题时,不小心将方程中的一个常数污染了看不清楚(式中用(【】)表示),被污染的方程是:2y﹣=y﹣(【】),怎么办呢?小明想了一想,便翻看了书后的答案,此方程的解是y=﹣,所以他很快补好了这个常数,并迅速地完成了作业.同学们,你们能补出这个常数吗?它应是()A.1 B.2 C.3 D.4考点:一元一次方程的解.分析:设这个数是a,把y=﹣代入方程得出方程2×(﹣)﹣=×(﹣)﹣a,求出即可.解答:解:y=﹣代入方程得出方程2×(﹣)﹣=×(﹣)﹣a,解得:a=3.故选:C.点评:本题考查了一元一次方程的解和解一元一次方程的应用,关键是得出关于a的方程.12.已知长方体工件为a米,宽为b米,高为c米.用红油漆涂刷工件的上、下底面,成本是每平方米30元;用黄油漆涂刷工件的4个侧面,成本为每平方米25元,则将整个工件表面涂漆的成本共为()元.A.60ab+50(a+b)c B.60ab+25(a+b)c C.60ab+25(a+b)D.60ab+50(a+c)b 考点:列代数式.分析:首先利用长方体的侧面积的求法求得侧面积,算得成本,再加上上、下底面的成本得出答案即可.解答:解:2(a+b)c×25+2ab×30=60ab+50(a+b)c元.故选:A.点评:此题考查列代数式,掌握长方体各个面的面积的求法是解决问题的关键.二、填空题:每小题3分,共24分.13.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为﹣1 .考点:数轴.分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解答:解:2﹣(﹣1)=3.故答案为:﹣1.点评:本题主要考查了数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.化简:2(a+1)﹣a= a+2 .考点:整式的加减.分析:首先把括号外的2乘到括号内,去括号,然后合并同类项即可.解答:解:原式=2a+2﹣a=a+2.故答案是:a+2.点评:考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.若单项式(k﹣3)x|k|y2是五次单项式,则k= ﹣3 .考点:单项式.分析:利用单项式次数的定义求解即可.解答:解:∵单项式(k﹣3)x|k|y2是五次单项式,∴|k|=3,k=±3,∵k﹣3≠0,∴k=﹣3,故答案为:﹣3.点评:本题主要考查了单项式,解题的关键是熟记单项式次数的定义.16.当x=1时,代数式ax3+bx+4的值为5.则x=﹣1时,ax3+bx+4的值为 3 .考点:代数式求值.专题:计算题.分析:将x=1代入代数式使其值为5求出a+b的值,将x=﹣1代入代数式变形后,将a+b 的值代入计算即可求出值.解答:解:当x=1时,代数式为a+b+4=5,即a+b=1,则x=﹣1时,代数式为﹣a﹣b+4=﹣(a+b)+4=﹣1+4=3.故答案为:3点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.17.李老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的20 %.考点:条形统计图.专题:图表型.分析:根据统计图数据,用A等级的人数除以总人数,计算即可得解.解答:解:达到A等级的人数占总人数的百分比为:×100%=×100%=20%.故答案为:20.点评:本题考查了条形统计图,掌握求所占的百分比的正确的计算方法是解题的关键.18.方程2x+3=4和方程3x+1=k有相同的解,则k= .考点:同解方程.分析:根据解方程,可得一元一次方程的解,根据方程的解满足方程,把方程的解代入方程,可得关于k的方程,根据解方程,可得答案.解答:解:2x+3=4,解得x=.把x=代入3x+1=k,得×3+1=k.解得k=,故答案为:.点评:本题考查了同解方程,把同解方程的解代入方程得出关于k的方程是解题关键.19.若海拔每上升1千米,气温就下降6℃,某时刻,地面气温为20℃,高出地面x千米处的气温为y(℃),则y(℃)与x(千米)之间的关系为y=20﹣6x .考点:函数关系式.分析:根据气温=山脚的气温﹣下降的气温列出函数解析式.解答:解:依题意有:y=20﹣6x.故y和x的函数关系式是y=20﹣6x.故答案是:y=20﹣6x.点评:考查了根据实际问题列一次函数关系式,根据题意,找到所求量的等量关系是解决问题的关键.本题气温=地面气温﹣下降的气温.20.先观察下列等式:,,…则计算= .考点:规律型:数字的变化类.分析:先由已知等式得出规律:=﹣,然后根据这个规律作答.解答:解:=1﹣+﹣+…+﹣=1﹣=.点评:能够通过观察得出规律:=﹣是解决本题的关键.三、解答题:共60分.解答应写出必要的文字说明、证明过程或推演步骤.21.(1)写出绝对值大于3且小于7的所有整数.(2)用科学记数法表示海王星与地球的距离约为4350000000千米.考点:科学记数法—表示较大的数;绝对值.分析:(1)利用绝对值的性质求出所有符合题意的答案即可;(2)科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:(1)绝对值大于3且小于7的所有整数有:﹣6,﹣5,﹣4,4,5,6;(2)将4350000000用科学记数法表示为:4.35×109.点评:此题考查了科学记数法的表示方法以及绝对值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.计算下列各题:(1)﹣23÷×(﹣)2(2)52×﹣(﹣5)2×+52×.考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式先计算乘方运算,再利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣8××=﹣8;(2)原式=25×﹣25×+25×=25×(﹣+)=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.先化简,再求值:x2﹣2xy﹣3y2﹣3(x2+xy﹣2y2),其中x=,y=﹣.考点:整式的加减—化简求值.专题:计算题.分析:先去括号,合并同类项,然后,代入求值.解答:解:x2﹣2xy﹣3y2﹣3(x2+xy﹣2y2)=x2﹣2xy﹣3y2﹣3x2﹣3xy+6y2=﹣2x2﹣5xy+3y2,当x=,y=﹣时,原式=﹣2×()2﹣5××(﹣)+3×(﹣)2=0.点评:本题主要考查了整式的化简求值,先去括号,然后合并同类项.24.解下列方程:(1)4﹣3.8x=3﹣3.9x(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)移项合并得:0.1x=﹣1,解得:x=﹣10;(2)去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:﹣3x=11,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.某中学开展“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图.请根据提供的信息,解答后面的问题:(1)求被调查学生的人数;(2)求被调查的学生中喜欢教师职业的人数;(3)请补全折线统计图,并求出扇形统计图中表示公务员的扇形圆心角度数.考点:折线统计图;扇形统计图.专题:数形结合.分析:(1)利用公务员的人数和所占的百分比即可计算出被调查学生的人数;(2)先计算出喜欢公务员的人数,然后用总人数分别减去其它各项的人数即可得到喜欢教师职业的人数;(3)喜欢医生的人数为30人,则可补全统计图,然后利用360°×20%即可得到喜欢公务员的扇形圆心角度数.解答:解:(1)被调查学生的人数=40÷20%=200(人);(2)喜欢医生的人数=15%×200=30(人),所以喜欢教师职业的人数=200﹣40﹣20﹣30﹣70=40(人);(3)如图,喜欢公务员的扇形圆心角度数=360°×20%=72°.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.26.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.考点:二元一次方程组的应用.专题:阅读型;方案型.分析:根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.解答:解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
潍坊市昌邑初中学段第一学期七年级期末考试数学试卷

潍坊市昌邑初中学段第一学期七年级期末考试数学试卷一、选择题(在每小题给出的四个选项中,只有一个是正确的,请将正确答案的序号填写在题后的括号内,每小题3分,共45分) 1.下列各式中,一定成立的是( )A .2222-=B .()2222-=C .2233-=D .()2233-=2.比较21151--,,的大小,结果正确的是( ) A .51211<-<- B .21511-<<- C .12151-<-<D .51121<-<-3.对于近似数0.31万,下列说法正确的是( )A .有三个有效数字,精确到百分位B .有两个有效数字,精确到百分位C .有三个有效数字,精确到百位D .有两个有效数字,精确到百位4.下列说法正确的是( )A .如果a 表示有理数,那么a -一定是负数B .b a -的值一定小于aC .x2不是代数式,122+-a a 是代数式 D .若b a 、互为相反数,则0=+b a5.多项式b a 22-的意义是( )A .a 与b 的差的平方B .b a -的平方C .a 与b 的平方差D .以上都不对6.某学校阶梯教室第一排有25个座位,往后每一排多2个座位,则第n 排座位数用含n 的代数式表示为( )A .n 225+B .n 223+C .n +24D .n +257.一个两位数,个位数字是a ,十位数字比个位数字大1,这个两位数是( )A .()1+a aB .()a a 1+C .()a a 110+D .()a a ++1108.下列说法中错误的是( )A .数字1也是单项式B .单项式652bc a -的系数是65-,次数是4C .12+a 是二次二项式D .多项式232+-xy x 是由232,,xy x 三项组成 9.下列各组中是同类项的是( )A .ab 与baB .b a 232-与b a 232- C .x 3与y 3D .y x 322-与y x 22310.下列各式正确的是( )A .()c b a c b a ++=-+B .()c b a c b a +-=--C .ab b a 532=+D .145=-a a11.有理数b a ,在数轴上的位置如图所示,则化简代数式a b a -+的结果是( )A .aB .a 2C .bD .b a +212.如果z y y x 32==,,那么z y x 23++=( )A .z 17B .z 13C .z 7D .z 613.下列方程是一元一次方程的是( )A .623=-y xBx x253=-C .092=-xD .031=+x14.下列等式的变形错误的有( )①由y x =得y x -=-33 ②由bc ac =得b a = ③由32-=x 得32-=x ④由10352-=-x x 得5=x A .1个B .2个C .3个D .4个15.某商场销售一批服装,每件售价120元,可获利20%,求这种服装的成本价;设这种服装的成本价为x 元,列方程得( )A .()120%201=+xB .120%20=∙xC .%20120⨯=xD .%20120=-x二、填空题(每空2分,共20分)1.一电冰箱冷冻室的温度是-8℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高________℃.2.在直线l 上有A 、B 、C 三点,已知AB=6cm ,BC=4cm ,则AC 的长是________. 3.如果m 表示一个有理数,那么它的相反数是________;比m 小3的数可表示为________. 4.“a 的3倍与b 的21的差”用代数式可表示为________. 5.李老师编制了一个程序,当输入任何一个有理数时,显示屏上的结果总是所输入的有理数的平方与1的差的2倍.若输入的数是-2,这时显示的结果是________.6.校园里刚栽下一棵1.8米高的小树苗,以后每年长0.3米,生长时间n (年)和小树苗的高度w (米)之间的函数关系式是_______________,计算5年后小树苗的高度是________米. 7.单项式b a m 3321与b a n 632-的和是一个单项式,则n m -=________.8.李浩花了44元买了两种课外书,共5本,单价分别为8元和10元,每种书各买了多少本?解:设8元的买了x 本,根据题意列方程为________. 三、解答题(解答应写出必要的计算过程、推演步骤或文字说明) 1.计算与化简:(每小题4分)(1)计算:()1212322139-+⨯⎪⎭⎫ ⎝⎛-+÷- (2)化简:()a a ab ab ab 224526+--- (3)化简:()()y xy xy y x 22433----2.(6分)如图,从一个长方形的钢板中截去一个圆,若长方形的长为a ,宽为b ,试求(1)用代数式表示阴影部分的面积(2)当12=a 厘米,10=b 厘米,求阴影部分的面积是多少平方厘米。
2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直2、向北行驶3 km ,记作+3 km ,向南行驶2 km 记作( )A .+2 kmB .-2 kmC .+3 kmD .-3 km 3、若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是( ) A .+ B .- C .× D .÷ 4、下列运算正确的是( )A .5x -3x =2B .2a +3b =5abC .-(a -b)=b +aD .2ab -ba =ab5、如果以x =-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A .x +5=0B .x -7=-12C .2x +5=-5D .=-16、张东同学想根据方程10x +6=12x -6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x 人,那么横线部分的条件应描述为( )A .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗 7、在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A .m +n B .m -n C .|m +n| D .|m -n|8、在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A .80.6° B .40° C .80.8°或39.8° D .80.6°或40°9、-7的倒数是( )A .7B .C .-7D .-10、如图,下面几何体,从左边看得到的平面图形是( )A .AB .BC .CD .D二、填空题11、据统计,2014年全国约有939万人参加高考,939万人用科学记数法表示为____________人。
2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省潍坊市昌邑市2019~2019学年度七年级上学期期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×1093.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查4.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|5.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5 C.,﹣5,0 D.5,,06.化简5(2x﹣3)﹣4(3﹣2x)之后,可得下列哪一个结果()A.2x﹣27 B.8x﹣15 C.12x﹣15 D.18x﹣277.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段CD的长是()A.4 B.3 C.2 D.18.代数式的意义为()A.x与y的一半的差B.x与y的差的一半C.x减去y除以2的差D.x与y的的差9.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为()A.1600元B.1800元C.2000元D.2100元10.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A.2 B.3 C.4 D.511.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算正确的是()A.2019 B.2019 C.D.2019×201912.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6二、填空题(共6小题,每小题3分,满分18分)13.潍坊冬季里某一天最高气温是7℃,最低气温是零下4℃,这一天潍坊最高气温与最低气温的温差是.14.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为.15.在右边的日历中,任意圈出一竖列上相邻的三个数,设中间一个数为a,则这三个数之和为:(用含a的代数式表示)16.若x,y为实数,且|x+2|+(y﹣2)2=0,则()2019的值为.17.若关于x、y的单项式x m y3与﹣2x2y n是同类项,则m+n的值为.18.漳州市某校在开展庆“六•一”活动前夕,从该校2019~2019学年度七年级共400名学生中,随40投篮”这项活动的约有人.三、解答题(共7小题,满分66分)19.计算:(1)﹣×(0.5﹣)÷(﹣)(2)﹣22﹣[(﹣3)×(﹣)﹣(﹣2)3](3)当x=2,y=时,化简求值:x﹣(﹣)﹣(2x﹣y2)20.解方程:2﹣=.21.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.22.从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.23.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记()生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?24.一张长方形的餐桌可以坐6个人,按照下图的方式摆放餐桌和椅子:()一家酒楼,按上图的方式拼桌,要使拼成的一张大餐桌刚好能坐160人,请问需几张餐桌拼成一张大餐桌?(3)若酒店有240人来就餐,哪种拼桌的方式更好?最少要用多少张餐桌?25.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A 点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?山东省潍坊市昌邑市2019~2019学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28.3亿=28.3×108=2.83×109.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查【考点】全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查一批新型节能灯泡的使用寿命,有破坏性,故得用抽查方式,故错误;B、调查长江流域的水污染情况,工作量大,得用抽查方式,故错误;C、调查重庆市初中学生的视力情况,工作量大,得用抽查方式,故错误;D、为保证“神舟7号”的成功发射,对零件全面检查十分重要,故进行普查检查,故正确.故选D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|【考点】有理数的乘方.【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选A.【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.5.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5 C.,﹣5,0 D.5,,0【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出A、B、C的值,然后代入进行计算即可求解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与O是相对面,B与5是相对面,C与﹣是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=O,B=﹣5,C=.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.化简5(2x﹣3)﹣4(3﹣2x)之后,可得下列哪一个结果()A.2x﹣27 B.8x﹣15 C.12x﹣15 D.18x﹣27【考点】合并同类项;去括号与添括号.【专题】计算题.【分析】把原式的第二项提取符号后,提取公因式合并即可得到值.【解答】解:5(2x﹣3)﹣4(3﹣2x),=5(2x﹣3)+4(2x﹣3),=9(2x﹣3),=18x﹣27.故选D.【点评】此题考查了合并同类项的方法,考查了去括号添括号的法则,是一道基础题.7.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段CD的长是()A.4 B.3 C.2 D.1【考点】两点间的距离.【分析】因为点D是线段BC的中点,所以CD=BC,而BC=AB﹣AC=10﹣6=4,即可求得.【解答】解:∵AB=10,AC=6,∴BC=AB﹣AC=10﹣6=4,又∵点D是线段BC的中点,∴CD=BC=×4=2.故选:C.【点评】准确解决此类问题的关键是数形结合,提高读图能力和分析能力.8.代数式的意义为()A.x与y的一半的差B.x与y的差的一半C.x减去y除以2的差D.x与y的的差【考点】代数式.【分析】根据代数式的意义可知:x﹣y表示x与y的差,表示x与y的差的一半,据此解答.【解答】解:代数式的意义为x与y的差的一半.故选:B.【点评】本题考查了代数式的知识,解题的关键是将分式的分子与分母用语言叙述出来.9.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为()A.1600元B.1800元C.2000元D.2100元【考点】一元一次方程的应用.【分析】首先设它的成本是x元,则售价是0.8x元,根据售价﹣进价=利润可得方程2200×80%﹣x=160,再解方程即可.【解答】解:设它的成本是x元,由题意得:2200×80%﹣x=160,解得:x=1600,故答案为:A.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,设出未知数,表示出售价,根据售价﹣进价=利润列出方程.10.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A.2 B.3 C.4 D.5【考点】命题与定理.【分析】根据相反数的定义对①进行判断;根据绝对值的意义对②进行判断;根据单项式的系数对③进行判断;根据等式的性质对④⑤进行判断;根据有理数的乘法对⑥进行判断.【解答】解:相反数等于本身的数只有0,所以①的所法正确;绝对值等于本身的数是正数或0,所以②的说法错误;﹣的系数是﹣,所以③的说法错误;将式子x﹣2=﹣y变形得:x+y=2,所以④的说法错误;若,则7a=4b,所以⑤的说法错误;几个有理数的积是正数,则负因数的个数一定是偶数,所以⑥的说法正确.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算正确的是()A.2019 B.2019 C.D.2019×2019【考点】有理数的混合运算.【专题】新定义.【分析】根据题意列出有理数混合运算的式子,进而可得出结论.【解答】解:∵1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,∴==2019.故选A.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【考点】两点间的距离;数轴.【专题】压轴题.【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB 外.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.二、填空题(共6小题,每小题3分,满分18分)13.潍坊冬季里某一天最高气温是7℃,最低气温是零下4℃,这一天潍坊最高气温与最低气温的温差是11℃.【考点】有理数的减法.【分析】根据温差=最高气温减去最低气温列算式计算即可.【解答】解:7﹣(﹣4)=11℃.故答案为:11℃.【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键.14.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为﹣1.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:4+3m﹣1=0,解得:m=﹣1,故答案为:﹣1【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.在右边的日历中,任意圈出一竖列上相邻的三个数,设中间一个数为a,则这三个数之和为:3a (用含a的代数式表示)【考点】列代数式.【专题】压轴题.【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a的情况下,把其他两个数分别表示为a﹣7,a+7.∴三个数的和为a+7+a+a ﹣7=3a.【点评】本题考查列代数式,但要注意找好每一竖列相邻两个数之间的关系,都是差7.16.若x,y为实数,且|x+2|+(y﹣2)2=0,则()2019的值为1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,则()2019=1,故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.若关于x、y的单项式x m y3与﹣2x2y n是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可求得m、n的值,从而求解.【解答】解:根据题意得:,则m+n=2+3=5.故答案是:5.【点评】本题考查同类项的定义,正确理解定义是关键.18.漳州市某校在开展庆“六•一”活动前夕,从该校2019~2019学年度七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:投篮”这项活动的约有160人.【考点】用样本估计总体.【分析】首先求得40人中最喜欢投篮活动的百分比,然后乘以总人数即可.【解答】解:最喜欢投篮游戏的人数为:400×=160人,故答案为160.【点评】本题考查了用样本估计总体,解题的关键是根据图表得到喜欢投篮的人数的比例.三、解答题(共7小题,满分66分)19.计算:(1)﹣×(0.5﹣)÷(﹣)(2)﹣22﹣[(﹣3)×(﹣)﹣(﹣2)3](3)当x=2,y=时,化简求值:x﹣(﹣)﹣(2x﹣y2)【考点】有理数的混合运算;整式的加减—化简求值.【专题】计算题.【分析】(1)根据有理数的减法和有理数的乘除进行计算即可;(2)根据幂的乘方、有理数的乘法和减法进行计算即可;(3)先对原式进行化简,然后将x=2,y=代入化简后的式子即可解答本题.【解答】解:(1)﹣×(0.5﹣)÷(﹣)===﹣;(2)﹣22﹣[(﹣3)×(﹣)﹣(﹣2)3]=﹣4﹣[4﹣(﹣8)]=﹣4﹣12=﹣16;(3)x﹣(﹣)﹣(2x﹣y2)==,当x=2,y=时,原式==.【点评】本题考查有理数的混合运算、整式的加减﹣化简求值,解题的关键是明确它们各自的计算方法.20.解方程:2﹣=.【考点】解一元一次方程.【分析】先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:去分母得,12﹣2(2x+1)=3(1+x),去括号得,12﹣4x﹣2=3+3x,移项得,﹣4x﹣3x=3﹣12+2,合并同类项得,﹣7x=﹣7,系数化为1得,x=1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.21.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.【考点】整式的加减.【专题】计算题.【分析】先由3A﹣B+C=0,得C=B﹣3A,再整体代入化简计算,然后代入求值.【解答】解:=a2+3a﹣1﹣a2+3a﹣15=6a﹣16,当a=2时,C=6×2﹣16=﹣4.【点评】此题考查的知识点是整式的加减,关键是运用整体代入法,注意去括号时符号问题.22.从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有200人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用A的人数除以所占的百分比求出总人数;(2)用总人数减去A、B、D的人数,再画出即可;(3)用总人数乘以全校上网不超过7小时的学生人数所占的百分比即可.【解答】解:(1)参加调查的学生有20÷=200(人);故答案为:200;(2)C的人数是:200﹣20﹣80﹣40=60(人),补图如下:(3)根据题意得:1200×=960(人),答:全校上网不超过7小时的学生人数是960人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记(2)本周总的生产量是多少辆?【考点】正数和负数.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.24.一张长方形的餐桌可以坐6个人,按照下图的方式摆放餐桌和椅子:1(2)一家酒楼,按上图的方式拼桌,要使拼成的一张大餐桌刚好能坐160人,请问需几张餐桌拼成一张大餐桌?(3)若酒店有240人来就餐,哪种拼桌的方式更好?最少要用多少张餐桌?【考点】一元一次方程的应用.【分析】从餐桌和椅子的摆放方式,以及表中数据规律,可总结出多放一张桌子,就多坐两个人;可以想一下拼接宽面,就可以多坐人,少用餐桌,没放一个桌子那样就多坐四人.1,移项得:2n=160﹣4,2n=156,n=78,需78张餐桌拼成一张刚好坐160人的大餐桌.(3)如果按本题给出的拼桌的方式,由2n+4=240,解得n=118,需118张餐桌拼成一张刚好坐240人的大餐桌.如果按下列拼桌的方式,则有4n+2=240,解得n=59.5≈60只需60张餐桌拼成一张能坐240人的大餐桌.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A 点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?【考点】一元一次方程的应用;数轴.【分析】(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.【点评】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。