数学

合集下载

数学各种数的概念

数学各种数的概念

数学各种数的概念数学是一门研究数量、结构、变化和空间等概念的学科。

在数学中,有各种各样的数概念,这些概念是数学学习的基础,对于理解和应用数学知识都是至关重要的。

本文将介绍数学中一些常见的数的概念。

一、自然数自然数是最简单、最基本的数。

它们由0和正整数组成,用符号{0, 1, 2, 3, ...}表示。

自然数的特点是它们之间存在着顺序关系,后面的数比前面的数大1。

二、整数整数是由自然数、0和负整数组成。

整数集合用符号{..., -3, -2, -1, 0, 1, 2, 3, ...}表示。

整数和自然数不同的地方在于整数不仅包括正数,还包括负数和0。

整数之间的加减运算是封闭的,也就是说对两个整数进行加减运算后,结果仍然是一个整数。

三、有理数有理数是可以表示为两个整数之间的比值的数。

有理数包括整数和分数,它们的集合用符号Q表示。

有理数之间的加减乘除运算依然得到有理数。

四、无理数无理数是不能表示为两个整数之间的比值的数。

无理数包括无限不循环小数和无限循环小数,如π(圆周率)和√2(2的平方根)。

无理数和有理数一起构成了实数集。

五、实数实数包括有理数和无理数,它们构成了一个连续的数轴。

实数是数学中最基本的数系,包括了所有我们平时使用和接触到的数字。

六、复数复数是由实数和虚数组成的数。

虚数单位i是一个满足i²= -1的数,其中i称为虚数单位。

复数的一般形式为a + bi,其中a是实部,b是虚部。

复数在数学和物理学中都有重要的应用,它们可以表示平面上的向量、交流电路中的电压和电流等。

七、小数小数是指不是整数的数。

小数可以分为有限小数和无限循环小数两种类型。

有限小数是指小数部分有限位数的小数,如0.5、2.1等。

无限循环小数是指小数部分具有循环节并且无限循环下去的小数,如1/3=0.3333...。

八、分数分数是指两个整数之间的比值。

分数由一个分子和一个分母组成,分子表示被分割的份数,分母表示整体被分成的份数。

60种数学计算方法

60种数学计算方法

60种数学计算方法标题:60种数学计算方法在数学领域中,计算方法的研究和应用对于问题解决和理论发展具有重要意义。

本文将介绍60种常见的数学计算方法,旨在帮助读者更好地理解和应用数学知识。

一、基本算术计算方法1. 加法:将两个或多个数值相加,求和的结果。

2. 减法:从一个数值中减去另一个数值,得到差。

3. 乘法:将两个或多个数值相乘,得到积。

4. 除法:用一个数值去除另一个数值,得到商。

5. 平方:将一个数值自乘,得到平方值。

6. 开方:对一个数值进行开方运算,得到其平方根。

7. 百分数:将一个数值表示为百分数形式,即乘以100。

8. 混合运算:将多种运算方法结合使用,求得复杂的计算结果。

二、代数计算方法9. 代数式化简:对复杂的代数式进行化简,得到简化的表达形式。

10. 代数方程求解:通过变量的代换和移项操作,求解代数方程的未知数。

11. 代数不等式求解:对代数不等式进行变量的范围判断,解出满足条件的解集。

12. 多项式展开:将一个多项式按照二项式定理展开成简单的项。

13. 因式分解:将一个多项式分解成多个乘积形式。

14. 分式化简:对含有分式的代数式进行化简,得到简化的表达形式。

15. 根式化简:对根式进行化简,得到简化的根式形式。

16. 平方差公式:快速计算两个数的平方差。

17. 二次方程求解:求解二次方程的未知数。

18. 四则运算法则:用于整数和有理数的加减乘除。

三、几何计算方法19. 点与线的位置关系判断:判断一个点与一条直线的位置关系,包括在直线上、在线段上、在线段延长线上或在直线两侧。

20. 直线与平面的位置关系判断:判断一条直线与一个平面的位置关系,包括平面内、平面外或平面相交。

21. 角的类型判断:根据角的度数或特点,判断其类型,包括直角、锐角、钝角、对顶角等。

22. 三角形分类:根据三角形的边长和角度关系,将三角形分为等边三角形、等腰三角形、直角三角形等。

23. 三角形内角和定理:计算三角形内角和的数值。

数学知识大全

数学知识大全

数学知识大全数学作为一门科学,是研究数量、结构、空间以及变化等概念的学科。

它是现代科学的基础,也是解决实际问题的重要工具。

本文将为您呈现数学知识的大全,包括数学的基础概念、重要定理与公式、数学在实际生活中的应用等方面的内容。

一、数学的基础概念1. 数的分类:自然数、整数、有理数、实数、复数等。

2. 基本运算:加法、减法、乘法、除法,以及它们的性质和规律。

3. 数的因数与倍数:素数、合数、最大公约数、最小公倍数等概念。

4. 数列与级数:等差数列、等比数列、调和级数等。

二、重要定理与公式1. 代数方程:一元一次方程、二次方程等的解法及性质。

2. 解析几何:直线方程、圆方程、曲线的性质等。

3. 三角函数:正弦、余弦、正切等基本概念及相关公式。

4. 极限、导数与积分:函数的极限与连续性、导数的定义与应用、积分的概念与计算方法等。

三、数学在实际生活中的应用1. 金融领域:利息计算、投资收益分析、贷款利率计算等。

2. 统计学:数据收集与分析、概率与统计推断等。

3. 工程学:测量、建模、优化等领域中的数学方法应用。

4. 物理学:运动学、力学、电磁学中的数学描述与计算等。

四、数学的发展与进步1. 古代数学:埃及、希腊、印度等古代文明的数学成就。

2. 近代数学:微积分、解析几何等的发展与应用。

3. 现代数学:集合论、代数学、几何学等的研究进展。

4. 数学思维:数学的逻辑思维、证明方法及与其他学科的交叉等。

五、数学的重要性与学习方法1. 提高思维能力:数学训练可以培养逻辑推理能力和问题解决能力。

2. 学科交叉应用:数学与物理、化学、经济学等学科有着密切的联系。

3. 技术创新:现代科技的发展需要数学方法的应用与推动。

4. 学习方法:培养兴趣、理解概念、掌握基础、多实践与思考等。

六、数学的趣味性与乐趣1. 数学竞赛:参加数学竞赛可以激发学习兴趣与提高水平。

2. 数学游戏:数独、数学趣味题、数学解谜等游戏丰富了学习的方式。

数学概念的定义

数学概念的定义

数学概念的定义
数学是一门抽象的科学,用来探索和表达各种数字的关系和概念。

它是一种独特的分析方法,可以帮助我们更容易地理解和解决实践问题。

1. 数:数学中的基本单位,表示某一具体事物的数量。

2. 变量:是一种形式,可以用来代表某一数量未知,一般可以
是确定的量或未知的量。

3. 方程:是用变量来表达一般的关系的形式。

4. 函数:是一种正确的关系,即当变量的值发生变化时,函数
的值也随之改变。

5. 数列:是数字以特定的次序排列而成的有序集合。

6. 代数:是一种表达数量之间关系的一般化数学方法,是一种
形式上可以进行简化和抽象的数学表示法。

7. 统计:是一种统计学理论的研究,用于分析和比较数据的特征。

8. 几何:是数学中的一种描述形状、空间和大小等的学科,使
用几何图形来说明和表示一般的客观现象。

9. 微积分:是一种研究变化率和变化过程的数学理论,是数学
运算的一种方法,用于计算极限、微分、积分和求解微分方程等。

- 1 -。

数学之道:十大速算窍门

数学之道:十大速算窍门

数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。

2. 倍数加速法利用数字的倍数特性,快速计算结果。

例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。

3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。

4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。

例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。

5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。

例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。

6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。

例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。

7. 平方速算法利用平方数的特性,快速计算数字的平方。

例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。

8. 立方速算法利用立方数的特性,快速计算数字的立方。

例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。

9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。

例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。

10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。

例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。

数学的数学技能

数学的数学技能

数学的数学技能数学作为一门学科,是研究数量、结构、空间以及变化等概念和关系的学科。

在学习和应用数学的过程中,数学技能是必不可少的。

本文将探讨数学的数学技能,并介绍如何提升和应用这些技能。

一、基本的计算技能1. 加法和减法:加法和减法是最基本的计算技能,它们是进行数学运算的基础。

通过在日常生活中的实际应用中练习这些技能,如购物时计算物品的价格,可以帮助我们提高加法和减法的能力。

2. 乘法和除法:乘法和除法是进行更复杂的数学运算的基础,它们能够帮助我们解决实际问题。

通过练习乘法和除法,我们能够计算面积、体积、速度等各种实际物理量。

3. 百分比和比例:百分比和比例是量化和比较概念的重要工具。

掌握百分比和比例的计算方法可以帮助我们分析统计数据,了解各种比率关系,比如利润率、增长率等。

二、代数技能1. 代数方程式:代数方程式是数学中的一种常见形式,它们可以用来解决各种问题。

通过学习解方程的方法和技巧,我们可以解决实际生活中的各种问题,如物体运动的轨迹、经济模型的建立等。

2. 函数和图像:函数是一种描述变量之间关系的数学工具,图像是函数关系的可视化呈现。

掌握函数和图像的概念和技能,可以帮助我们分析和解释各种现象,如物体的运动规律、市场需求曲线等。

三、几何技能1. 图形的认识和测量:几何学研究的是形状、大小和相对位置等概念。

认识各种常见的图形,如点、线、面、体等,以及测量各种物体的长度、面积、体积等,是提高几何技能的基础。

2. 角度和三角形:角度和三角形是几何学中的基本概念,它们是解决几何问题的重要工具。

通过学习角度的测量和计算方法,以及三角形的性质和计算方法,我们可以解决各种几何问题,如建筑设计、地理测量等。

四、概率和统计技能1. 概率:概率是描述事件发生可能性的数学工具。

掌握概率的概念和计算方法可以帮助我们分析和预测各种事件的可能性,如天气预报、股票走势等。

2. 统计:统计是对数据进行收集、整理和分析的过程。

什么是数学

什么是数学
15)万物皆Байду номын сангаас说
5
15个“定义” 来自
6
2.数学的15个“定义”
1)哲学说 2)符号说 3)科学说 4)工具说 5)逻辑说 6)创新说 7)直觉说 8)集合说 9)结构说(关系说) 10)模型说 11)活动说 12)精神说 13)审美说 14)艺术说
15)万物皆数说
7
只 讲解“哲学说”,其他只作一句话的解释,并请查资料。
数学的精确性表现在数学推理的逻辑严格性和数学结论的 确定无疑性。 汉克尔说:“在大多数科学里,一代人要推倒另一代人 所修筑的东西,只有数学,每一代人都能在旧建筑上增添一
层新楼。”
作为对照的三个例子:
① 电子管电路→ 半导体电路→ 集成电路
② 托勒密地心说→哥白尼日心说→开普勒三定律 ③ 高温超导的上界(朱经武)
(英)罗素:“数学是所有形如p蕴含q的命题的类”, 而最前面的命题p是否对,却无法判断。 因此“数 学是我们永远不知道我们在说什么,也不知道我们 说的是否对的一门学科。”
4
2.数学的15个“定义”
1)哲学说 2)符号说 3)科学说 4)工具说 5)逻辑说 6)创新说 7)直觉说 8)集合说 9)结构说(关系说) 10)模型说 11)活动说 12)精神说 13)审美说 14)艺术说
如微积分是物体运动的模型,概率论是偶然 与必然现象的模型,欧氏几何是现实空间的 模型,非欧几何是非欧空间的模型。
活动说:是说“数学是人类最重要的活动之
一”。
精神说:是说“数学不仅是一种技巧,更是
一种精神,特别是理性的精神。”
12
审美说:是说“数学家无论是选择题材还是
判断能否成功的标准,主要是美学的原则。”

数学名词

数学名词
同心圆、内切圆、外接圆、弦心距、圆心角、圆周角、弓形角
内对角、连心线、公切线、公共弦、中心角、圆周长、圆面积
反证法、主视图、俯视图、二视图、三视图、虚实线、左视图
离心率、双曲线、渐近线、抛物线、倾斜角、点斜式、斜截式
两点式、一般式、参变数、渐开线、旋轮线、极坐标、公垂线
斜线段、半平面、二面角、斜棱柱、直棱柱、正梭柱、直观图
复平面、纯虚数、零向量、长方体、正方体、正方形、相交线
延长线、中垂线、对预角、同位角、内错角、无限极、长方形
平行线、真命题、假命题、三角形、内角和、辅助线、直角边
全等形、对应边、对应角、原命题、逆命解、原定理、逆定理
对称点、对称轴、多边形、对角线、四边形、五边形、三角形
否命题、中位线、相似形、比例尺、内分点、外分点、平面图
斜二测画法、三垂线定理、平行六面体、直接积分法、换元积分法
第二积分法、分部积分法、混循环小数、第一积分法、同类二次根
一元一次方程、一元二次方程、完全平方公式、最简二次根式
直接开平方法、半开半闭区间、万能置换公式、绝对值不等式
实系数多项式、复系数多项式、整系数多项式、不等边三角形
中心对称图形、基本初等函数、基本积分公式、分部积分公式
四舍五人、单位长度、加法法则、减法法则、乘法法则、除法法则
数量关系、升幂排列、降幂排列、分解因式、完全平方、完全立方
同解方程、连续整数、连续奇数、连续偶数、同题原理、最简方程
最简分式、字母系数、公式变形、公式方程、整式方程、二次方根
三次方根、被开方数、平方根表、立方根表、二次根式、几次方根
指数方程、对数方程、单值对应、单调区间、单调函数、诱导公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论数学史在中学数学教学中的作用12数应毛伟伟 1231302146【摘要】数学史在中学数学教学中十分重要,数学史的研究不仅可以提高教师的素质,它对数学教学也有很大的帮助,它可以激发学生对学习数学的兴趣,加深学生对数学知识的理解,有助于学生掌握数学思维方法,培养学生不畏艰险勇往直前的探索精神。

此外,教师可以通过巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习。

【关键词】数学史中学数学教学作用渗透1引言数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。

中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。

而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。

”中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。

教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。

2、数学史的内涵要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。

“研究这门学科的历史与现状我是们预测数学未来的适当途径。

”引用法国著名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。

作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。

有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。

但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。

3、数学史在中学数学教学中的作用在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。

那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用:3.1数学史能激发学生对学习数学的兴趣新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。

在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。

但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。

在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。

如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。

除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。

3.2数学史能加深学生对数学知识的理解中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。

数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。

数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。

总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。

在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。

查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。

所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。

3.3数学史有助于学生掌握数学思维方法数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。

我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。

实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。

现在中学数学教材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。

但是,数学史却可以做到这一点。

数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。

通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。

这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。

又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。

3.4数学史有能培养学生不畏艰险勇往直前的探索精神一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。

但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。

通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。

此外,通过数学史学生也会发现从古到今不少著名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。

以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。

为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。

十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界纪录频频创新。

德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。

可惜,后人发现,他从第528位开始就算错了。

虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。

在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。

历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。

4如何在中学数学教学中渗透数学史乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。

”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。

相关文档
最新文档