2019届全国高考原创仿真试卷(一)数学(理科)
2019届全国高考仿真试卷(一)数学(理)试题

2019届全国高考仿真试卷(一)数 学 试 卷(理)本试题卷共8页,23题(含选考题),分选择题和非选择题两部分。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}53|≤<-=x x M ,{}5,5|>-<=x x x N 或,则N M = A .﹛x |x <-5或x >-3﹜ B .﹛x |-5<x <5﹜ C .﹛x |-3<x <5﹜D .﹛x |x <-3或x >5﹜2.二次函数54)(2+-=mx x x f ,对称轴2-=x ,则)1(f 值为 A .7-B .17C .1D .253.下列说法错误..的是 A .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” B .“1x >”是“||1x >”的充分不必要条件 C .若q p ∧为假命题,则p 、q 均为假命题.D .若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥” 4.当a >1时,函数y =log a x 和y =(1-a )x 的图象只能是5.下列函数中,既是偶函数又在()0,+∞上单调递增的是 A .3y x =B .cos y x =C .21y x=D .ln y x = 6.已知函数⎩⎨⎧≥-<=)4()1(),4(2)(x x f x x f x ,那么(5)f 的值为A .32B .16C .8D .647.函数y=f (x )与xx g )21()(=的图像关于直线y =x 对称,则2(4)f x x -的单调递增 区间为A .(,2)-∞B .(0,2)C .(2,4)D .(2,+∞) 8.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞9.函数562---=x x y 的值域为A .[]4,0B .(]4,∞-C .[)+∞,0D .[]2,010.如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点)2,2(),21,21(),2,1(),1,1(4321P P P P 中,"好点"有( )个A .1B .2C .3D .411.设f (x ),g(x )分别是定义在R 上的奇函数和偶函数,)('),('x g x f 为导函数,当0x <时,()()()()0f x g x f x g x ''⋅+⋅>且(3)0g -=,则不等式()()0f x g x ⋅<的解集是A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,-3)∪(3,+∞) (D)(-∞,-3)∪(0,3)12.已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点)(,2121x x x x <,则A .121()0,()2f x f x >>- B .121()0,()2f x f x <<- C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.函数y =)2(log 121x -的定义域是 .14.在同一平面直角坐标系中,函数)(x f y =的图象与x e y =的图象关于直线x y =对称.而函数)(x f y =的图象与)(x g y =的图象关于y 轴对称,若1)(-=m g ,则m 的值是 .15.设有两个命题:(1)不等式|x |+|x -1|>m 的解集为R ;(2)函数f (x )=(7-3m )x 在R 上是增函数;如果这两个命题中有且只有一个是真命题,则m 的取值范围是 .16.已知函数⎪⎩⎪⎨⎧>+-≤-=)0(,3)0( ,2)(2x a ax x x a x f x,有三个不同的零点,则实数a 的取值范围是_____.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分) 设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个实根为2,121=-=x x .(1)求)(x f y =的解析式;(2)证明:曲线)(x f y =的图像是一个中心对称图形,并求其对称中心.19.(本小题满分12分) 设x x x f -=3)((1)求曲线在点(1,0)处的切线方程; (2)设]1,1[-∈x ,求)(x f 最大值.20.(本小题满分12分)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b -1)(a ≠0).(1)当a =1,b =-2时,求函数f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;21.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当1a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,直线l 的参数方程是⎪⎩⎪⎨⎧==t y tx 3(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为-+θρθρ2222sin cos 03sin 2=-θρ.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,求||AB . 23.(本小题满分l0分)选修4—5:不等式选讲已知函数|1||2|)(+--=x x x f . (1)求证:3)(3≤≤-x f ; (2)解不等式x x x f 2)(2-≥.数学(理科)参考答案一、选择题:(每小题5分,共60分)二、填空题:(每小题5分,共20分) 13.(1,2) 14. e1- 15. 12m <≤ 16. 491a <≤三、解答题:17.解:由|x -a |<2,得a -2<x <a +2,所以A ={x |a -2<x <a +2}.由212+-x x <1,得23+-x x <0,即-2<x <3,所以B ={x |-2<x <3}.因为A ⊆B ,所以⎩⎨⎧≤+-≥-3222a a ,于是0≤a ≤1.18.解:(Ⅰ)由⎪⎩⎪⎨⎧=++-=+-+-3212,2311b a b a 解得11a b =⎧⎨=-⎩,, 故1()1f x x x =+-. (II )证明:已知函数1y x =,21y x=都是奇函数. 所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形. 而1()111f x x x =-++-. 可知,函数()g x 的图像沿x 轴方向向右平移1个单位,再沿y 轴方向向上平移1个单位,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. 19.解:(1)13)('2-=x x f ,切线斜率2)1('=f ∴切线方程)1(2-=x y 即022=--y x (2)令013)('2=-=x x f ,33±=x 列表:39max 20.解:(1)f (x )=x 2-x -3,因为x 0为不动点,因此有f (x 0)=x 02-x 0-3=x 0所以x 0=-1或x 0=3,所以3和-1为f (x )的不动点.(2)因为f (x )恒有两个不动点,f (x )=ax 2+(b +1)x +(b -1)=x ,ax 2+bx +(b -1)=0(※),由题设b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(4a )2-4(4a )<0⇒a 2-a <0,所以0<a <1.21.(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++ … 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++=当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(0,)2,1+∞(,) 单调递减区间为1(,1)2……(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==… … 因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-……当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)lne+e (21)e 1f a a =-+=,解得1e 2a =- ……………… 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)lne+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a <=<矛盾 当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾 综上所述,12a e =-或 2a =-. …………… 22.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数得直线l 的直角坐标方程:x y 3=---------2分由⎩⎨⎧==θρθρsin cos y x 代入得 θρθρcos 3sin =)(3R ∈=⇒ρπθ.( 也可以是:3πθ=或)0(34≥=ρπθ)---------------------5分 (Ⅱ)⎪⎩⎪⎨⎧==--+303sin 2sin cos 2222πθθρθρθρ 得 0332=--ρρ-----------------------------7分设)3,(1πρA ,)3,(2πρB ,则154)(||||2122121=--=-=ρρρρρρAB .---------10分 (若学生化成直角坐标方程求解,按步骤对应给分) 23.(本小题满分l0分)选修4—5:不等式选讲解:(1)⎪⎩⎪⎨⎧>-<<-+--≤=)2(3)21(12)1(3)(x x x x x f ,------------------3分 又当21<<-x 时,3123<+-<-x ,∴3)(3≤≤-x f -----------------------------------------------5分 (2)当1-≤x 时,121322=⇒≤≤-⇒≤-x x x x ;当21<<-x 时,11111222≤<-⇒≤≤-⇒+-≤-x x x x x ; 当2≥x 时,φ∈⇒-≤-x x x 322;-------------------------8分 综合上述,不等式的解集为:[]1,1-.-------------------10分。
2019届高三第一次联考数学(理)答案

1 9 . 解: ( 1 ) 由三角形数阵知, a 1 , a a 2 , 1= 2- 1= a - a = 4 , …, a - a = 2 ( n - 1 ) ( n 2 , n N , ≥ ∈ ) 3 2 n n - 1 a - a = 2+ 4+ … + 2 ( n - 1 ) = n ( n - 1 ) , 累加得, n 1 2 ʑa n- n + 1 ( n ) , ≥2 n= ȵa 1也满足上述等式, 1= 2 ʑa n - n + 1 ( n ) ; ( 4分) ∈N n= 由题设知, b = a = 7 , 设数列{ b } 的公差为 d , 4 3 n 则b 3 d = 7 , ㊀① 1+ 1 0 1 0ˑ 9 ȵ∑b 1 0 0 , ʑ1 0 b d = 1 0 0 , n= 1+ n = 1 2 9 即b = 1 0 , ㊀② 1+ d 2 由①②解得, b 1 , d = 2 , ʑb 2 n - 1 ; ( 8分) 1= n= 1 1 ( 2 ) 由( 1 ) 知, c =2 n= a b n + 1+ 2 n - 1 n+ n n- 1 1 1 1 =2 = = - , ( n + 1 ) n n + 1 n+ n n 1 1 1 1 ʑT c c …+ c ( - )+ ( - )+ … n= 1+ 2+ n= 1 2 2 3 1 1 1 n + ( - )= 1- . ( 1 2分) = n n + 1 n + 1 n + 1 2 0 . ( 1 ) 证明: 连结 C D , 1 ȵD为棱 A B 1 1 的中点, 且 G为△A B C 1 1 1 上的重心, C G 1 ʑC D一定过点 G , 且 = 2 , 2分) ( 1 G D C H 1 1 ȵC H= H C , ʑ = 2 , 1 2 H C C G C H 1 1 则 = , ʑG H C , ∥D G D H C ȵD C C D , G H C D , 平面 B 平面 B ʑG H 平面 B C D ; 5分) ∥ ( # ( 2 ) 解: 取A B的中点 O , 连结 O D , & 由 题 设 知,O D⊥ 平 面 A B C , $ * O C B , 以 O 为 原 点, O B , O C , ' ⊥A % O D所在直线分别为 x , y , z 轴建立 ) 空间直角坐标系 O- x y z , $ " 3 & 如图所示; 由题设知, B ( , 0 , 0 ) , 2 ( 3 3 % 槡, B ( , 0 , 3 ) , G ( 0 , 3 ), 1 ! 2 2 33 H ( 0 , 槡, 1 ) ( 8分) 2 → → 3槡 3 333 ʑB G= (- , , 0 ) , B H= (- , 槡 , - 2 ) , 1 1 2 2 2 2 设平面 B G H的法向量为 n= ( x , y , z ) , 1 3 槡 3 → - x + y = 0 n ·B G= 0 2 2 1 由 得, , → n ·B H= 0 3 3 3 1 - x + 槡y - 2 z = 0 2 2
2019届全国高考原创仿真试卷(一)数学试卷(文科)

2019届全国高考原创仿真试卷(一)数学(文科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1. 已知集合,则A. B. C. D.【答案】B【解析】题意可知,,. 故选B.点晴:集合的表示方法常用的有列举法、描述法.研究一个集合,我们首先要看清楚它的代表元是实数、还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解函数的值域时,尤其要注意集合中其它的限制条件如集合,经常被忽视,另外在求交集时注意区间端点的取舍. 并通过画数轴来解交集不易出错.2. 已知复数,则下列命题中正确的是.①;②;.③的虚部为;④在复平面上对应的点位于第一象限.A. 1B. 2C. 3D. 4【答案】C【解析】由已知,①②④正确,③错误.故选C.3. 下列函数中,既是奇函数又在上单调递增的函数是A. B. C. D.【答案】D【解析】A、B选项为偶函数,排除,C选项是奇函数,但在上不是单调递增函数.故选D.4. 圆关于直线对称的圆的方程是A. B.C. D.【答案】D【解析】圆的圆心关于直线对称的坐标为,从而所求圆的方程为.故选D.5. 堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺),答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺【答案】C【解析】由已知,堑堵的体积为. 故选C.6. 某游戏设计了如图所示的空心圆环形标靶,图中所标注的一、二、三区域所对的圆心角依次为,则向该标靶内投点,则该点落在区域二内的概率为A. B. C. D.【答案】B【解析】设三个区域圆心角比值为,故区域二所占面积比.故选B.7. 在中,D为三角形所在平面内一点,且,则A. B. C. D.【答案】D【解析】由已知,点在边的中位线上,且为靠近边的三等分点处,从而有.故选D.8. 运行如图所示的程序框图,则输出结果为A. 1008B. 1009C. 2016D. 2017【答案】A【解析】由已知,.故选A.9. 关于函数,下列叙述有误的是A. 其图象关于直线对称B. 其图像可由图象上所有点横坐标变为原来的倍得到C. 其图像关于点对称D. 其值域为【答案】C..................10. 下图是民航部门统计的2017年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是A. 深圳的变化幅度最小,北京的平均价格最高B. 深圳和厦门的春运期间往返机票价格同去年相比有所下降C. 平均价格从高到低居于前三位的城市为北京、深圳、广州D. 平均价格变化量从高到低居于前三位的城市为天津、西安、厦门【答案】D【解析】由图可知D错误.故选D.11. 双曲线的渐近线方程为,一个焦点为,点,点为双曲线第一象限内的点,则当点P的位置变化时,周长的最小值为A. 8B. 10C.D.【答案】B【解析】由已知双曲线方程为,设双曲线的上焦点为,则,△的周长为,当点在第一象限时,的最小值为,故△的周长的最小值为10.故选B.点晴:本题考查的是双曲线定义的应用.由双曲线的定义及点为双曲线第一象限内的点可得,于是可表示为△的周长,在点P的位置变化过程中,当折线变成直线,即三点共线时的最小值为,于是可得三角形周长的最小值.12. 已知定义域为R的函数的图象经过点,且对任意实数,都有,则不等式的解集为A. B. C. D.【答案】A【解析】令,由任意,可得,所以在定义域内单调递增,由,得,因为等价于,令,有,则有,即,从而,解得且. 故选A.点晴:本题考查的是函数的单调性的应用. ,由任意,可得,所以在定义域内单调递增,利用换元法令,有,得,最终解得且.二、填空题:本大题共4小题,每小题5分,共20分.13. _____________【答案】【解析】14. 已知实数满足,则的最大值为_____________【答案】7【解析】通过画可行域可以确定,使目标函数取最大值的最优解为,故的最大值为.点晴:本题考查的是线性规划问题中的已知最值求参数的问题,线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.15. 将1,2,3,4…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为______________【答案】91【解析】由三角形数组可推断出,第行共有项,且最后一项为,所以第10行共19项,最后一项为100,左数第10个数是91.16. 已知四棱锥的底面为矩形,平面平面,于点,,则四棱锥的外接球半径为_____________【答案】【解析】由已知,设三角形外接圆圆心为,由正弦定理可求出三角形PBC外接圆半径为,F为BC边中点,求出, 设四棱锥的外接球球心为O,外接球半径的平方为,所以四棱锥外接球半径为2.17. 已知数列满足(1)若数列满足,求证:是等比数列;(2)求数列的前项和【答案】(1) 见解析;(2) .【解析】试题分析:(1)通过恒等变形,得到即,结论得证;(2)由(1)可得,分成一个等比数列,一个常数列求和即可.试题解析: (1) 由题可知,从而有,,所以是以1为首项,3为公比的等比数列.(2) 由(1)知,从而,有.点晴:本题考查的是数列中的递推关系和数列求和问题.第一问中关键是根据得到,即证得是等比数列;第二问中的通项由,比较明显地可以分成一个等比数列,一个常数列求和即可.18. 为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如下图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?【答案】(1) 根据统计数据做出列联表如下:经计算,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(2) 分层抽样后,高茎玉米有2株,设为,矮茎玉米有3株,设为,从中取出2株的取法有,共10种,其中均为矮茎的选取方式有共3种,因此选取的植株均为矮茎的概率是.【解析】试题分析:(1)根据茎叶图列出列联表,计算值,便可得出结论.(2) 从这5株玉米中选取2株共有方法数10种,其中均为矮茎的选取方式有3种,因此选取的植株均为矮茎的概率是.试题解析:(1) 根据统计数据做出列联表如下:经计算,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(2) 分层抽样后,高茎玉米有2株,设为,矮茎玉米有3株,设为,从中取出2株的取法有,共10种,其中均为矮茎的选取方式有共3种,因此选取的植株均为矮茎的概率是.19. 已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)通过,可证得平面,又平面,利用面面垂直的判定定理可得证.(2) 利用等体积法,解得.试题解析(1)证明:因为平面平面,所以,又因为,所以平面平面,所以平面平面. (2)由已知可得,取中点为,连结,由于,所以为等腰三角形,从而,,由(1)知平面所以到平面的距离为1,,令到平面的距离为,有,解得.点晴:本题考查的是空间的线面关系和空间多面体体积的求解.第一问要考查的是面面垂直,通过先证明线和面内的两条相交直线垂直证得线面垂直,再结合面面垂直的判定定理,可证得;对于第二问点到平面的距离利用等体积法,,解得.20.20. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.【答案】(1) ;(2) .【解析】试题分析:(1)直线与抛物线相切,所以有,可解得,得抛物线方程.(2)联立直线与抛物线有,把目标式坐标化可得与无关,可得.试题解析:(1) 联立方程有,,有,由于直线与抛物线相切,得,所以.21. 已知函数,.(1)若存在极值点1,求的值;(2)若存在两个不同的零点,求证:(为自然对数的底数,).【答案】(1) ;(2)见解析.【解析】试题分析:(1)由存在极值点为1,得,可解得a.(2)函数的零点问题,实质是对函数的单调性进行讨论,时,在上为增函数(舍);当时,当时,增,当时,为减,又因为存在两个不同零点,所以,解不等式可得.试题解析:(1) ,因为存在极值点为1,所以,即,经检验符合题意,所以.(2)①当时,恒成立,所以在上为增函数,不符合题意;②当时,由得,当时,,所以为增函数,当时,,所为增函减数,所以当时,取得极小值又因为存在两个不同零点,所以,即整理得,令,,在定义域内单调递增,,由知,故成立.请考生在第22、23两题中任选一题作答,如果多做,则按照所做的第一题计分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),.(Ⅰ)求曲线的直角坐标方程,并判断该曲线是什么曲线?(Ⅱ)设曲线与曲线的交点为,,,当时,求的值.【答案】(1) 见解析;(2).【解析】试题分析:(1)根据极坐标与直角坐标间的转化公式,可得的直角坐标方程.(2) 由直线参数方程的几何意义得,可得解.试题解析:(1) 由得,该曲线为椭圆.(2)将代入得,由直线参数方程的几何意义,设,,所以,从而,由于,所以.23. 选修4-5:不等式选讲(1)如果关于的不等式的解集不是空集,求实数的取值范围;(2)若均为正数,求证:.【答案】(1) ;(2)见解析.【解析】试题分析:(1)的解集不是空集即的最小值,求的最小值即可.(2) 即,利用指数函数的性质分和讨论即可试题解析:(1) 令,可知,故要使不等式的解集不是空集,有. (2)由均为正数,则要证,只需证,整理得,由于当时,,可得,当时,,可得,可知均为正数时,当且仅当时等号成立,从而成立.。
四川省成都市第七中学2019届高三第一次诊断性检测数学(理)试题(解析版)

2019年四川省成都七中高考数学一诊试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若随机变量~,且,则A. B. C. D.【答案】A【解析】解:随机变量~,且,.故选:A.由已知结合正态分布曲线的对称性即可求解.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.2.函数的图象大致是A. B. C. D.【答案】D【解析】解:函数的定义域为R,,故排除A,C;,当时,,可知在上为减函数,排除B.故选:D.由函数的定义域及排除A,C,再由导数研究单调性排除B,则答案可求.本题考查函数的图象及图象变换,训练了利用导数研究函数的单调性,是中档题.3.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图其中四边形是为体现直观性而作的辅助线当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为A. B. C. D.【答案】B【解析】解:根据几何体的直观图:由于直观图“牟合方盖”的正视图和侧视图完全相同时,该几何体的俯视图为有对角线的正方形.故选:B.直接利用直观图“牟合方盖”的正视图和侧视图完全相同,从而得出俯视图形.本题考查的知识要点:直观图和三视图之间的转换,主要考查学生的空间想象能力和转化能力,属于基础题型.4.设i是虚数单位,复数z满足,则z的虚部为A. 1B.C.D. 2【答案】C【解析】解:由,得,即.的虚部为.故选:C.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.执行如图的算法程序,若输出的结果为120,则横线处应填入A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,执行循环体,,由题意,此时,不满足条件,退出循环,输出S的值为120.可得横线处应填入的条件为.故选:C.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出变量S的值,要确定进入循环的条件,可模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到题目要求的结果.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.设实数x,y满足,则的最大值是A. B. C. 1 D.【答案】D【解析】解:画出满足条件的平面区域,如图示:而的几何意义表示过平面区域内的点与点的连线的斜率,由,解得:,,故选:D.画出约束条件的可行域,利用目标函数的几何意义,求解即可.本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:,推不出,推不出,“”是“”的既不充分也不必要条件.故选:D.首先转化,然后根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.函数的图象的一条对称轴方程是A. B. C. D.【答案】B【解析】解:.由,得,,当时,,即函数的对称轴为,故选:B.利用两角和差的余弦公式结合辅助角公式进行化简,结合三角函数的对称性进行求解即可.本题主要考查三角函数的对称性,利用辅助角公式将函数进行化简是解决本题的关键.9.将多项式分解因式得,m为常数,若,则A. B. C. 1 D. 2【答案】D【解析】解:由,,可得:,解得,即为:,时,,故选:D.由两,通过,求出m,然后利用二项式定理求解即可.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.10.已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球与四个面都相切的表面积为A. B. C. D.【答案】B【解析】解:过顶点V做平面ABC是正三棱锥,为中心,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,侧面与底面成的二面角,,,,,,.,为内切球的半径.,内切球的表面积.故选:B.过顶点V做平面ABC,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,从而,分别求出OD、AB、VD的长,由此利用等体积法求解.本题考查棱锥的外接球球半径的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.11.设a,b,c分别是的内角A,B,C的对边,已知,设D是BC边的中点,且的面积为,则等于A. 2B. 4C.D.【答案】A【解析】解:,,,,,,,,故选:A.先根据正余弦定理求出,,再将,化为,后用数量积可得.本题考查了平面向量数量积的性质及其运算,属基础题.12.如果不是等差数列,但若,使得,那么称为“局部等差”数列已知数列的项数为4,记事件A:集合2,3,4,,事件B:为“局部等差”数列,则条件概率A. B. C. D.【答案】C【解析】解:由已知数列{x n}的项数为4,记事件A:集合{x1,x2,x3,x4}{1,2,3,4,5},则事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,即条件概率P(B|A)=,故选:C.由即时定义可得:事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,由条件概率可得:P(B|A)=,得解.本题考查了对即时定义的理解及条件概率,属中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为______.【答案】12【解析】解:高中部女教师有6人,占,则高中部人数为x,则,得人,即抽取高中人数15人,则抽取初中人数为人,则男教师有人故答案为:12根据高中女教师的人数和比例,先求出抽取高中人数,然后在求出抽取初中人数即可得到结论.本题主要考查分层抽样的应用,根据人数比例以及男女老少人数比例建立方程关系是解决本题的关键.14.设抛物线C:的焦点为F,准线为l,点M在C上,点N在l上,且,若,则的值为______.【答案】3【解析】解:根据题意画出图形,如图所示;抛物线,焦点,准线为;设,,则,解得,;,,又,,解得.故答案为:3.根据题意画出图形,结合图形求出抛物线的焦点F和准线方程,设出点M、N的坐标,根据和求出的值.本题考查了抛物线的方程与应用问题,也考查了平面向量的坐标运算问题,是中档题.15.设,,c为自然对数的底数,若,则的最小值是______.【答案】【解析】解:,,则,即,由基本不等式得,则,当且仅当,即当时,等号成立,因此,的最小值为.故答案为:.利用定积分计算出,经过配凑得出,将代数式与代数式相乘,利用基本不等式可得出的最小值.本题考查定积分的计算,同时也考查了利用基本不等式求最值,解决本题的关键在于对代数式进行合理配凑,考查计算能力,属于中等题.16.若函数有三个不同的零点,则实数a的取值范围是______.【答案】【解析】解:由题意函数可知:函数图象的左半部分为单调递增指数函数的部分,有一个零点,函数图象的右半部分为开口向上的3次函数的一部分,必须有两个零点,,,如上图,要满足题意:,,可得,解得.综合可得,故答案为:.由题意可得需使指数函数部分与x轴有一个交点,3次函数的图象由最小值并且小于0,x大于0的部分,只有两个交点.本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.Ⅰ求的前n项和;Ⅱ对于Ⅰ中的,设,且,求数列的通项公式.【答案】解:Ⅰ正项等比数列的公比设为q,已知,,可得,,解得,,即;Ⅱ,且,可得.【解析】Ⅰ正项等比数列的公比设为q,运用等比数列的通项公式,解方程可得首项和公比,即可得到所求求和;Ⅱ由,结合数列的分组求和和等比数列的求和公式,计算可得所求和.本题考查等比数列的通项公式和求和公式的运用,考查数列的恒等式和求和方法:分组求和,考查方程思想和运算能力,属于基础题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇~年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:Ⅰ“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;Ⅱ“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由【答案】解:Ⅰ频率分布直方图中第四组的频率为,则江南Q镇在梅雨季节时降雨量超过350mm的概率为,所以Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率为或;Ⅱ根据题意,总利润为元,其中,700,600,400;所以随机变量万元的分布列如下图所示;则总利润万元的数学期望为万元,因为,所以老李来年应该种植乙品种杨梅,可使总利润的期望更大.【解析】Ⅰ由频率分布直方图计算对应的频率,利用频率估计概率,求出对应的概率值;Ⅱ根据题意计算随机变量的分布列和数学期望,比较得出结论和建议.本题考查了频率分布直方图和离散型随机变量的分布列应用问题,是中档题.19.已知椭圆的离心率为,且经过点.Ⅰ求椭圆的标准方程;Ⅱ设O为椭圆的中心,点,过点A的动直线l交椭圆于另一点B,直线l上的点C满足.,求直线BD与OC的交点P的轨迹方程.【答案】解:Ⅰ椭圆的离心率,且,,,椭圆的标准方程为,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,解得,于是,即,设,,解得,于是,,,,,,直线BD与OC的交点P的轨迹是以OD为直径的圆除去O,D两点,轨迹方程为,即,【解析】Ⅰ根据椭圆的离心率和,即可求出椭圆的方程,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,求出点B的坐标,根据向量的运算求出点C的坐标,再根据向量的运算证明,即可求出点P的轨迹方程本题考查直线与椭圆的位置关系的综合应用,椭圆的方程的求法,考查转化思想以及计算能力,函数与方程的思想的应用.20.如图,在多面体ABCDE中,AC和BD交于一点,除EC以外的其余各棱长均为2.Ⅰ作平面CDE与平面ABE的交线l并写出作法及理由;Ⅱ求证:平面平面ACE;Ⅲ若多面体ABCDE的体积为2,求直线DE与平面BCE所成角的正弦值.【答案】解:Ⅰ过点E作或的平行线,即为所求直线l.理由如下:和BD交于一点,,B,C,D四点共面,又四边形ABCD边长均相等,四边形ABCD为菱形,从而,又平面CDE,且平面CDE,平面CDE,平面ABE,且平面平面,.证明:Ⅱ取AE的中点O,连结OB,OD,,,,,,平面OBD,平面OBD,,又四边形ABCD是菱形,,又,平面ACE,又平面BDE,平面平面ACE.解:Ⅲ由多面体ABCDE的体积为2,得,,设三棱锥的高为h,则,解得,,平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,则,0,,0,,1,,1,,1,,1,,设平面BCE的法向量y,,则,取,得,设直线DE与平面BCE所成角为,则.直线DE与平面BCE所成角的正弦值为.【解析】Ⅰ过点E作或的平行线,即为所求直线由AC和BD交于一点,得A,B,C,D四点共面,推导出四边形ABCD为菱形,从而,进而平面CDE,由此推导出.Ⅱ取AE的中点O,连结OB,OD,推导出,,从而平面OBD,进而,由四边形ABCD是菱形,得,从而平面ACE,由此能证明平面平面ACE.Ⅲ由,得,求出三棱锥的高为,得平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,利用向量法能求出直线DE与平面BCE 所成角的正弦值.本题考查两平面的交线的求法,考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.已知函数,其中a为常数.Ⅰ若曲线在处的切线在两坐标轴上的截距相等,求a之值;Ⅱ若对,都有,求a的取值范围.【答案】解:Ⅰ函数的导数为,由题意可得,,可得切线方程为,即有,解得;Ⅱ若对,,在递减,当时,,在递减,,由恒成立,可得,与矛盾;当时,,在递增,可得即,由恒成立,可得且,可得;当时,,,且在递减,可得存在,,在递增,在递减,故,由恒成立,可得,,可得,又的最大值为,由,,可得,设,,,可得在递增,即有,即,不等式恒成立,综上可得a的范围是.【解析】Ⅰ求得的导数,可得切线的斜率和切点,由题意可得a的方程,解方程可得a;Ⅱ若对,,在递减,讨论,,,结合函数的单调性和不等式恒成立思想,以及函数零点存在定理,构造函数法,即可得到所求范围.本题考查导数的运用:求切线方程和单调性、极值和最值,考查函数零点存在定理和分类讨论思想方法,以及各种函数法,考查化简整理的运算能力,属于难题.22.在平面直角坐标系xOy中曲线C的参数方程为其中t为参数在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系的单位长度相同中,直线l的极坐标方程为.Ⅰ求曲线C的极坐标方程;Ⅱ求直线l与曲线C的公共点P的极坐标.【答案】解:Ⅰ平面直角坐标系xOy中曲线C的参数方程为其中t为参数,曲线C的直角坐标方程为,,将,代入,得曲线C的直角坐标方程为,,将,代入,得,曲线C的极坐标方程为Ⅱ将l与C的极坐标方程联立,消去,得,,,,方程的解为,即,代入,得,直线l与曲线C的公共点P的极坐标为【解析】Ⅰ由曲线C的参数方程求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.Ⅱ将l与C的极坐标方程联立,得,从而,进而方程的解为,由此能求出直线l与曲线C的公共点P的极坐标.本题考查曲线的极坐标方程的求法,考查直线与曲线的公共点的极坐标的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,且a,b,.Ⅰ若,求的最小值;Ⅱ若,求证:.【答案】解:Ⅰ由柯西不等式可得,当且仅当时取等号,即;,即的最小值为.证明:Ⅱ,,故结论成立【解析】Ⅰ根据柯西不等式即可求出最小值,Ⅱ根据绝对值三角不等式即可证明.本题考查了柯西不等式和绝对值三角形不等式,考查了转化和化归的思想,属于中档题.。
2019届全国新高考原创仿真试卷(六)数学试卷(理科)

2019届全国新高考原创仿真试卷(六)数学(理科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数是( )A. B. C. D.【答案】B【解析】【分析】先化简复数,再求其共轭复数.【详解】由题得,所以其共轭复数为2-i.故答案为:D【点睛】(1)本题主要考查复数的计算和共轭复数,意在考查学生对这些知识的掌握水平和计算推理能力.(2) 复数的共轭复数2.已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.执行如图所示的程序框图,如果输入的,则输出的属于()A. B. C. D.【解析】【分析】根据程序框图的功能进行求解即可.【详解】本程序为条件结果对应的表达式为S=,则当输入的t∈[﹣2,2],则当t∈[﹣2,0)时,S=2t∈[﹣4,0),当t∈[0,2]时,如右图,S=﹣3t+t3=t(t﹣)(t)∈[﹣2,2],综上S∈[﹣4,2],故选:A.【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. B. C. D.【答案】B【分析】在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.【详解】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,故d==,故选:B.【点睛】由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5.一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A. B. C. D.【答案】C【解析】【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.已知直线与双曲线的右支有两个交点,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】根据双曲线的渐近线和切线的方程得出k的范围.【详解】双曲线的渐近线方程为y=±x,∴当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<.故选:D.【点睛】本题考查了双曲线的简单几何性质,直线与双曲线相切的等价条件,属于中档题.8.在中,角、、的对应边分别为,,,条件:,条件:,那么条件是条件成立的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由条件p:a≤,利用余弦定理与基本不等式的性质可得:cosA=≥,当且仅当b=c=a时取等号.又A∈(0,π),可得.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.即可判断出结论.【详解】由条件p:a≤,则cosA=≥=≥=,当且仅当b=c=a时取等号.又A∈(0,π),∴.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.∴条件p是条件q成立的充分不必要条件.故选:A.【点睛】本题考查了余弦定理与基本不等式的性质、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.9.在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求.【详解】的展开式的通项为.的展开式的通项为=.由6﹣r﹣2s=5,得r+2s=1,∵r,s∈N,∴r=1,s=0.∴在的展开式中,含x5项的系数为.故选:B.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.10.若,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.【详解】令,,作出可行域,如图所示:,表示可行域上的动点到定点距离的平方,然后减去,故其最小值为定点到直线AB的距离的平方减去。
2019届全国新高考原创仿真试卷(五)数学试卷理科

2019届全国新高考原创仿真试卷(五)数学理科本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()11z i i -=+,则复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知集合)}54lg(|{},021|{2++-==≤+-=x x y x B x x x A ,则)(B C A R ⋂=( ) A .]1,2(-- B .]1,2[-- C .]1,1(- D .]1,1[- 3. 给出下列四个命题:①若x A B ∈⋂,则x A ∈或x B ∈; ②()2x ∀∈+∞,都有22x x >; ③“12a =”是函数“22cos 2sin 2y ax ax =-的最小正周期为π”的充要条件; ④“2000R,23x x x ∃∈+>” 的否定是“2R,23x x x ∀∈+≤”; 其中真命题的个数是( ).A 1 .B 2 .C 3 .D 44. 已知函数)(x f 是定义在R 上的偶函数,且1)0(-=f ,且对任意R x ∈,有)2()(x f x f --=成立,则(2018)f 的值为( )A .1B .-1C .0D .25. 如果实数,,x y 满足条件10,220,10,x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2123z x y =-+的最大值为( )A .1B .34 C .0 D .476. 在平行四边形ABCD 中,AD =1,60BAD ∠=︒,E 为CD 的中点.若1=⋅BE AC ,则AB的长为( ) A .14B .12C .1D .27. 已知数列}{n a 的前n 项和为n S ,且n n a S 21=+,则使不等式2221286n a a a +++<成立的n 的最大值为( )A 3B 4C 5D 6 8. 两个正实数y x ,满足141=+yx ,且不等式m m yx 342-<+有解,则实数m 的取值范围是( )A.)4,1(-B.),4()1,(+∞--∞C. )1,4(-D.),3()0,(+∞-∞ 9.若将函数)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f 的图象向左平移4π个单位长度,平移后的图象关于点)0,2(π对称,则函数)cos()(ϕ+=x x g 在]6,2[ππ-上的最小值( ) A .21-B .23-C .22 D .21 10.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c,若cos cos 3sin B C Ab c C+=,cos 2B B =,则a c +的取值范围是( ).A32⎛ ⎝ .B⎝ .C⎣.D32⎡⎢⎣ 11.对于数列}{n a ,定义112+22n nn a a a H n-++=为的}{n a “优值”,现已知某数列的“优值”12n n H +=,记数列{20}n a -的前n 项和为n S ,则n S 最小值为( ) A .70- B .72- C .64- D .68-12. 对于函数()x f 和()x g ,设(){}0=∈x f x α,(){}0=∈x g x β,若存在βα,,使得1≤-βα,则称()x f 与()x g 互为“零点相邻函数”.若函数()21-+=-x e x f x 与()32+--=a ax x x g 互为“零点相邻函数”,则实数a 的取值范围是( )A. []4,2B. ⎥⎦⎤⎢⎣⎡37,2 C. ⎥⎦⎤⎢⎣⎡3,37 D. []3,2二.填空题(本大题共4小题,每题5分.共20分) 13.已知数列{}n a ,111,3nn n a a a -==+(2,)n n N *≥∈ ,则数列{}n a 的通项公式n a = .14.已知向量||||b b a =-,|||2|b b a =-,则向量b a ,的夹角为___________________ 15.已知关于x 的不等式()1122->-x m x ,若对于()+∞∈,1x 不等式恒成立,则实数m 的取值范围是 .16.已知函数()f x 是可导函数,其导函数为()'fx ,且满足'ln ()()xxf x f x x+=,且1()f e e =,则不等式(1)(1)f x f e x e +-+>-的解集为_______________ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,60=C ,b c 32=. (1)求角B A ,的大小;(2)若D 为边AC 上一点,且4=a ,BCD ∆的面积为3,求BD 的长.18.(本小题满分12分)已知数列}{n a 是公差为正数的等差数列,2a 和5a 是方程212270x x -+=的两个实数根,数列{}n b 满足111(1)2n n n n b na n a -+⎛⎫=-- ⎪⎝⎭(1)求}{n a 和{}n b 的通项公式; (2)设n T 为数列{}n b 的前n 项和,求n T .19.(本小题满分12分)已知向量2(3cos ,1),(sin ,cos 1)m x n x x ==-,函数1()2f x m n =⋅+,(1)若()0,,4x f x π⎡⎤∈=⎢⎥⎣⎦,求cos 2x 的值; (2)在ABC ∆中,角,,A B C 对边分别是,,a b c ,且满足2cos 2b A c ≤,当B 取最大值时,1,a ABC =∆面积为43,求sin sin a c A C ++的值.20.(本小题满分12分)已知各项均不相等的等差数列{}n a 的前四项和413714,,,S a a a =且成等比.(1)求数列{}n a 的通项公式; (2)设11{}n n n T n a a +为数列的前项和,若*1n n T a n N λ+≤∈对一切恒成立,求实数λ的最大值.21. (本小题满分12分)已知()()21ln x f x a x x x-=-+. (1)若函数()f x 在2x =处取得极值,求a 的值,并求此时曲线()y f x =在()()1,1f 处的切线方程;(2)讨论()f x 的单调性.22.(本小题满分12分) 已知函数21()ln ,()f x x x g x ax bx ==-,其中,a b R ∈(1)当0a >,且a 为常数时,若函数[]()()1h x x g x =+对任意的124x x >≥,总有1212()()0h x h x x x ->-成立,试用a 表示出b 的取值范围;(2)当23b a =-时,若3(1)()2f x g x +≤对x ∈[0,+∞)恒成立,求a 的最小值.理科数学答案1~5 AAAAB 6~10 BBBDB 11~12BD13. 1372n n a +-=14.6π 15. 0m ≤ 16. ()1,e -17. (1) 75,45A B ︒︒== (2) BD =18. (1) 21n a n =-, ()1413n n b n -=-⋅ (2) n T =()5452nn +-⋅19. (1)(2) 2 20. (1) 1n a n =+ (2) max 16λ=21. (1) 12a =-12y x =- 22. (1)由题意,得321()()3h x xg x x ax bx x =+=-+在[4,)x ∈+∞上单调递增∴2'()210h x ax bx =-+≥在[4,)x ∈+∞上恒成立∴2112ax b ax x x+≤=+在[4,)x ∈+∞上恒成立构造函数1()(0),(0,)F x ax a x x=+>∈+∞则22211'()ax F x a x x-=-=∴F(x)在上单调递减,在,)+∞上单调递增(i)4>,即1016a <<时,F(x)在[4,上单调递减,在,)+∞上单调递增∴[]min ()F x F ==∴[]min 2()b F x ≤,从而(,b ∈-∞(ii)4,即116a ≥时,F(x)在(4,+∞)上单调递增12(4)44b F a ≤=+,从而1(,2]8b a ∈-∞+ 8分综上,当1016a <<时,(b ∈-∞,116a ≥时,1(,2]8b a ∈-∞+;(2)当23b a =-时,构造函数 231()(1)()(1)ln(1),[0,)22G x f x g x x x ax ax x =+-=++--∈+∞由题意,有()0G x ≤对[0,)x ∈+∞恒成立 ∵'()ln(1)1,[0,)G x x ax a x =++--∈+∞ (i)当0a ≤时,'()ln(1)1(1)0G x x a x =++-+> ∴()G x 在[0,)+∞上单调递增∴()(0)0G x G >=在(0,)+∞上成立,与题意矛盾. (ii)当0a >时,令()'(),[0,)x G x x ϕ=∈+∞ 则1'()1x a x ϕ=-+,由于1(0,1)1x ∈+ ①当1a ≥时,1'()01x a x ϕ=-<+,()x ϕ在[0,)x ∈+∞上单调递减∴()(0)10x a ϕϕ≤=-≤,即'()0G x ≤在[0,)x ∈+∞上成立 ∴()G x 在[0,)x ∈+∞上单调递减∴()(0)0G x G ≤=在[0,)+∞上成立,符合题意②当01a <<时,1[(1)]1'(),[0,)11a x a x a x x x ϕ---=-=∈+∞++∴()x ϕ在1[0,1)x a ∈-上单调递增,在1(1,)x a ∈-+∞上单调递减∵(0)10a ϕ=->∴()0x ϕ>在1[0,1)x a ∈-成立,即'()0G x >在1[0,1)x a ∈-成立 ∴()G x 在1[0,1)x a∈-上单调递增 ∴()(0)0G x G >=在1(0,1)x ∈-上成立,与题意矛盾综上,a 的最小值为1。
2019年高考仿真卷理科数学试卷(含答案)

高考仿真卷理科数学试卷(含答案)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{}(,)|0A x y y ==,{}22(,)|1B x y x y =+=,C A B =,则C 的子集的个数是( )A .0B .1C .2D .4 2.复数z 满足()11z i i -=+,则复数z 的实部与虚部之和为( )A B . C .1 D .03.设直线,m n 是两条不同的直线,,αβ是两个不同的平面,下列事件中是必然事件的是( )A.若//,//,m n m n αβ⊥,则αβ⊥B.若//,,//m n m n αβ⊥,则//αβC.若,//,m n m n αβ⊥⊥,则//αβD.若,,//m n m n αβ⊥⊥,则//αβ 4.在等比数列{}n a 中,119a =,前五项的积为1,则4a =( ) A .3± B .3 C .13± D .135.定义运算,,,,x x y x y y x y ≤⎧=⎨>⎩则“|1|1a a a -=-”是“不等式2210ax x +->有解” 的( )A .充分不必要条件 B.必要不充分条件 C. 充要条件 D.既不充分也不必要条件6.若函数1()()cos 21x f x a x e =--是奇函数,2()(1)()1x xf x eg x e -=+,则24()g x dx ππ⎰=( )A .1- B .1 C .12 D .12- 7.已知函数141(),1,2()log ,1,xx f x x x ⎧≤⎪=⎨>⎪⎩若()()g x f x =,则{}|(2)1x g x ->=( )A .{}|0x x <B .{}|04x x x <>或 C .{|2x x <或6}x > D .{}|2x x <8.一个几何体的三视图如图所示,则该几何体的各个面中,面积最大的面的面积为( )A .3B .2 C.3 D .239.已知函数()2017ln 2017f x x x =-,则()f x 的图象大致为( )10.若数列{}n a 满足11(21)(23)(21)(23)lg(1)n n n a n a n n n++-+=+++,且13a =,则100a =( )A .402B .603C .201201lg99+D .402201lg99+11.已知三棱锥A BCD -的体积为212,其中,ABC BCD ∆∆都是边长为1的等边三角形, 若1AD ≠,则此三棱锥的外接球的表面积为( ) A .32π B .2π C.32π 或2π D 2π12.已知A B C 、、是直线l 上的三点,向量OA ,OB ,OC 满足:[]()2'(1)ln(1)0OA f x f OB x OC -+++=,设()(1)h x f x ex =--,则方程ln 3()2x h x x =+的根的个数为( ) A.0 B.1 C.2 D.3第Ⅱ卷(本卷均为必做题)二、填空题(本大题共4个小题,每小题5分,共20分。
2019届全国新高考原创仿真试卷(六)数学卷(理科)

2019届全国新高考原创仿真试卷(六)数学(理科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.设集合则_______.【答案】{1,2,3}【解析】集合,.2.已知命题p:“∃x ∈ R,e x-x-1≤0”,则┑p为_____________.【答案】∀x∈R,e x-x-1>0【解析】【分析】根据特称命题的否定是全程命题可得结果.【详解】因为特称命题的否定是全程命题,所以“”的否定为“”,故答案为.【点睛】本题主要考查特称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.命题“”是“”的_________________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【答案】充分不必要【解析】x=π能推出sinx=0,反之不成立,例如取x=2,满足sinx=0.∴“x=π”是“sinx=0”的充分不必要条件.故答案为:充分不必要.点睛:注意区别:“命题是命题的充分不必要条件”与“命题的充分不必要条件是命题”4.已知(a,b是实数),其中i是虚数单位,则______【答案】-2【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用复数相等的性质求解即可.【详解】,,即,,故答案为-2.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.5.计算______________.【答案】-20【解析】试题分析:因,故答案为.考点:指数对数的运算.6.函数y=x2-ln x的单调递增区间为_______.【答案】(1,+∞)【解析】【分析】先由函数的解析式求出定义域,再求出导数,由求出解集,再与定义域求交集即可得结果.【详解】由得,定义域为,且,令得,或,则所求的增区间是,故答案为.【点睛】利用导数求函数单调区间的步骤为:求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间.7.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得实数m的取值范围是(a,+∞),则实数a的值是______.【答案】1【解析】试题分析:由题意得命题“x∈R,x2+2x+m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m的取值范围是(1,+∞),从而实数a的值为1.考点:命题的否定8.若,且,则的最小值为______________.【答案】3【解析】试题分析:设Z=a+bi(a,b∈R),满足|Z-2-2i|=1的点均在以C1(2,2)为圆心,1为半径的圆上,所以|Z+2-2i|的最小值是C1,C2连线的长为4与1的差,即为3.考点:复数模的几何意义及数形结合的思想方法,9.5个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为__________.【答案】70【解析】【分析】甲村庄恰有一名大学生,有5种分法,另外四名大学生分为两组,共有种,再分配到两个村庄,利用分步计数乘法原理可得结论.【详解】甲村庄恰有一名大学生,有5种分法,另外四名大学生分为两组,共有种,再分配到两个村庄,有种不同的分法,所以每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为,故答案为.【点睛】本题主要考查分步计数原理的应用,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.10.函数的值域为____________________.【答案】[2,+∞)【解析】试题分析:,因为令得,令得.所以函数在上单调递减,在上单调递增.所以时函数的最小值, 即.所以此函数值域为.考点:1函数的值域;2用导数求最值.11.定义在上的函数满足:,当时,,则=________.【答案】【解析】,将代换为,则有为周期函数,周期为,,,令,则,当时,,,故答案为.12.如图,在圆内画1条线段,将圆分成2部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成11部分.则在圆内画n条线段,将圆最多分割成______部分.【答案】【解析】【分析】设条直线将圆最多分成的部分数,组成数列,利用归纳推理可得,利用累加法可得结果.【详解】设条直线将圆最多分成的部分数组成数列,则,,,归纳可得,,以上式子相加整理得,,故答案为.【点睛】归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.13.定义在R上的奇函数f(x),其导函数为f ′(x),当x∈(-∞,0]时,恒有xf ′(x)<f(-x),则满足(2x-1)f(2x-1)<f(3)的实数x的取值范围是_____.【答案】(-1,2)【解析】【分析】构造函数,可得函数为上为减函数,函数为偶函数,函数为上的增函数,原不等式等价于,从而可得结果. 【详解】函数是定义在上的奇函数,,由可得,即,当时,恒有,当时,恒有,设,则函数为上为减函数,,函数为上的偶函数,函数为上的增函数,,,,解得,故答案为.【点睛】本题主要考查抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.已知函数,若关于x的方程有六个不同的实根,则a 的取值范围是_______.【答案】(8,9]【解析】【分析】令,则,由题意可得,函数的图象与直线有3个不同的交点,且每个值有2个值与之对应,由数形结合可得的取值范围.【详解】令,则,函数,由题意可得,函数的图象与直线有3个不同的交点,且每个值有2个值与之对应,如图所示,由于当时,,此时对应的值只有一个,不满足条件,故的取值范围是,故答案为.【点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.复数,为虚数单位,m为实数.,若在复平面内对应的点位于第四象限,求m的取值范围;若,为虚数,且,求实数m,n的值.【答案】(1)的取值范围是;(2),.【解析】【分析】(1)由在复平面内对应的点位于第四象限的性质可得,复数实大于零且虚部小于零,列不等式组能求出的取值范围;(2)化简,由虚数定义和复数相等的性质列方程组,能求出的值.【详解】,在复平面内对应的点位于第四象限,,解得.的取值范围是.复数,,,为虚数,且,,,,为虚数,,即,解得,.【点睛】本题主要考查复数的基本概念与运算,属于中档题. 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数相等的性质,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 16.设:实数满足,其中;:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.【答案】(1)实数的取值范围是;(2)实数的取值范围是.【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p,q,若p∨q为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.试题解析:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.q为真时等价于(x﹣2)(x﹣3)<0,得2<x<3,即q为真时实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件,等价于q⇒p且p推不出q,设A={x|a<x<3a},B={x|2<x<3},则B⇐A;则,所以实数a的取值范围是1≤a≤2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届全国高考原创仿真试卷(一)数学(理科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】C【解析】由题可得,又,所以=,故选C2. 设,若(为虚数单位)为正实数,则复数的共轭复数为()A. B. C. D.【答案】B【解析】,又其为正实数∴,∴∴复数的共轭复数为故选:B3. 若抛物线上的点到其焦点的距离为5,则()A. B. C. 3 D. 4【答案】D【解析】抛物线的准线方程为根据抛物线定义可知:5=n+1,即n=4故选:D4. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了 6天后到达目的地,求该人每天走的路程. ”根据这个描述可知该人第五天走的路程为()A. 24里B. 12里C. 6里D. 3里【答案】B【解析】试题分析:记每天走的路程里数为,易知是公比的等比数列,,,故选 C.考点:等比数列.5. 设,则“”是“直线与直线垂直”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】“直线与直线垂直”的充要条件为,解得:∴“”是“直线与直线垂直”的充分不必要条件故选:A6. 函数的大致图象为()A. B.C. D.【答案】A【解析】当时,,排除B,D当x时,,排除C故选:A7. 已知点满足其满足“”的槪率为()A. B. C. D.【答案】B【解析】由图象可知:满足“”的槪率为:故选:B8. 执行如图所示的程序框图,若输出的结果为40,则判断框中可填()A. B. C. D.【答案】B【解析】执行程序:,得到,否;,否;,否;,否;,是;输出40.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 如图所示,在直三棱柱中,,分别为的中点,为线段上一点,设,给出下面几个命题:①的周长是单调函数,当且仅当时,的周长最大;②的面积满足等式,当且仅当时,的面积最小;③三梭锥的体积为定值.其中正确的命题个数是()A. 0B. 1C. 2D. 3【答案】C【解析】①取MN的中点为Q,连接MQ,易知:MQ⊥EF.的周长最大,即ME最大,也就是MQ最大,显然,当M在和A同时取到最大此时x=0或者1,故①错误;②的面积而∴满足等式,当时,,的面积最小值为,故②正确;③,此时为定值,,∴h亦为定值,故③正确故选:C10. 已知双曲线的右顶点为,以为圆心,半径为的圆与双曲线的某条渐近线交于两点,若,则双曲线的离心率的取值范围为()A. B. C. D.【答案】A【解析】过A作AB⊥PQ,垂足为B,则B为PQ的中点,即,点A到渐近线的距离为:,即,得到∴,,,又∴双曲线的离心率的取值范围为点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11. 由1、2、3、4、5、6、7七个数字组成七位数,要求没有重复数字且6、7均不得排在首位与个位,1与6必须相邻,则这样的七位数的个数是()A. 300B. 338C. 600D. 768【答案】D【解析】当1在首位时,6只有一种排法,7有四种排法,余下四数共有中排法,共有种;当1在个位时,同样共有96种;当1即不再首位也不在个位时,先把1和6排好,有种排法,再排7有3种排法,余下四数共有中排法,共有种综上:共有=768故选:D点睛:本题是一道带有限制条件的排列组合题目,这种问题的常用解题策略有:相邻问题捆绳法,不邻问题插空法,特殊元素(特殊位置)优先分析法,定序问题缩倍法,多排问题单排法,相同元素隔板法等等.12. 已知函数的图象上关于直线对称的点有且仅有一对,则实数的取值范围是()A. B.C. D.【答案】D【解析】作出如图:,因为函数,的图像上关于直线对称的点有且仅有一对,所以函数在[3,7]上有且只有一个交点,当对数函数的图像过(5,-2)时,由,当对数过(7,2)时同理a=,所以的取值范围为点睛:对于分段函数首先作出图形,然后根据题意分析函数在[3,7]上有且只有一个交点,根据图像可知当对数函数的图像过(5,-2)时,由,当对数过(7,2)时同理a=由此得出结果,在分析此类问题时要注意将问题进行转化,化繁为简再解题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量的夹角为,,那么__________.【答案】1因为,所以所以所以14. 在的展开式中,常数项是__________.【答案】【解析】第一个括号取,第二个括号为∴常数项是故答案为:15. 某几何体的三视图如图所示,若该几何体的外接球表面积为,则该几何体的体积为__________.【答案】【解析】该几何体的直观图为三棱锥.取AD的中点为O,由直角三角形斜边的中线为斜边的一半,可知OA=OB=OC=OD∴O为外接球的球心,又,得到OA=OB=OC=OD=,AD=BD=2,∴AB=∴该几何体的体积为故答案为:点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.16. 已知数列的通项公式为(表示不超过的最大整数),为数列的前项和,若存在满足,则的值为__________.【答案】108...........................当时,,显然不存在;当时,,显然不存在;当时,,解得:k=108故答案为:108三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,且满足.(1)求的大小;(2)求的最大值.【答案】(1);(2)【解析】试题分析:(1)由条件结合正弦定理得:,又,所以,再利用余弦定理即可得到答案;(2)利用内角和定理,化简得到,结合正弦函数的图象与性质得到最大值.试题解析:解:(1)根据可得,即在中,∵,∴,∴,∵,∴.(2)由(1)知,故,,,∵,∴,∴,∴的最大值为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18. 2016年6月22 日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9: 11.(1)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“国际教育信息化大会”的人数为,求的分布列及数学期望.附:参考公式,其中.临界值表:【答案】(1)列联表见解析,有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.(2)分布列见解析,【解析】试题分析:(Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;(Ⅱ)ξ的可能取值有0,1,2,3,求出相应的概率,可得ξ的分布列及数学期望.试题解析:解:(1)依题意可知,抽取的“青少年”共有人,“中老年”共有人. 完成的列联表如下:则,因为,所以有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.(2)根据题意知选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问,的取值可以为0,1,2,3,则,,,.所以的分布列为数学期望.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.19. 如图所示,正三棱柱的底面边长为2,是侧棱的中点.(1)证明:平面平面;(2)若平面与平面所成锐角的大小为,求四棱锥的体积.【答案】(1)证明见解析;(2)【解析】试题分析:(1)要证平面平面,转证平面,又,即证平面.(2)建立空间坐标系,由平面与平面所成锐角的大小为,得到,进而得到四棱锥的体积.试题解析:解:(1)如图①,取的中点,的中点,连接,易知又,∴四边形为平行四边形,∴.又三棱柱是正三棱柱,∴为正三角形,∴.又平面,,而,∴平面.又,∴平面.又平面,所以平面平面(2)(方法一)建立如图①所示的空间直角坐标系,设,则,得.设为平面的一个法向量.由得即.显然平面的一个法向量为,所以,即.所以. (方法二)如图②,延长与交于点,连接.∵,为的中点,∴也是的中点,又∵是的中点,∴.∵平面,∴平面.∴为平面与平面所成二面角的平面角.所以,∴.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20. 如图,已知椭圆的左、右顶点分别为,上、下顶点分别为,两个焦点分别为,,四边形的面积是四边形的面积的2倍.(1)求椭圆的方程;(2)过椭圆的右焦点且垂直于轴的直线交椭圆于两点,是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.【答案】(1);(2)【解析】试题分析:(1)由已知条件布列关于a,b的方程组,即可得到椭圆的方程;(2)因为,所以直线的斜率之和为0,设直线的斜率为,则直线的斜率为,联立方程利用根与系数的关系,进而得到直线的方程.试题解析:解:(1)因为,所以,①由四边形的面积是四边形的面积的2倍,可得.②由①可得,所以,所以.所以椭圆的方程为.(2)由(1)易知点的坐标分別为.因为,所以直线的斜率之和为0.设直线的斜率为,则直线的斜率为,,直线的方程为,由可得,∴,同理直线的方程为,可得,∴,,∴满足条件的直线的方程为,即为.21. 设函数.(1)当,求函数的单调区间;(2)当时,函数有唯一零点,求正数的值.【答案】(1)单调递增区间为,单调递减区间为;(2)【解析】试题分析:(1)求导,易知:函数的单调递增区间为,单调递减区间为.(2),对m进行分类讨论,得到函数的最小值,函数有唯一零点即函数的最小值为零.试题解析:解:(1)依题意,知,其定义域为,当时,,.令,解得.当时,.此时单调递增;当时, ,此时单调递减.所以函数的单调递增区间为,单调递减区间为.(2)由题可知,.令,即,因为,所以 (舍去),.当时,,在上单调递减,当时,,在上单调递增,所以的最小值为.因为函数有唯一零点,所以,由即可得,因为,所以,设函数,因为当时该函数是增函数,所以至多有一解.因为当时,,所以方程的解为,即,解得.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为 (为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程与圆的直角坐标方程;(2)设直线与圆相交于两点,求.【答案】(1);(2)【解析】试题分析:(1)消去直线l中的参数t,得到直线的普通方程,利用x=,得到圆的直角坐标方程;(2)利用勾股定理得到试题解析:解:(1)由可得.因为,所以,即.(2)由(1)知圆的圆心为,圆心到直线的距离,所以弦长为.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】试题分析:(1)原不等式等价于,解之即可;(2)利用绝对值三角不等式求出的最小值,若不等式恒成立,则m小于等于最小值. 试题解析:解:(1)不等式可化为,即,所以不等式的解集为.(2)等价于恒成立.因为,所以实数的取值范围为.。