核磁共振C谱F BENKE

合集下载

核磁共振碳谱

核磁共振碳谱
设单共振时偶合常数为J,双共振时偶合常数为J/
J/ J 2 HH2
当Δυ=0时,J/=0,就是完全去偶;当Δυ>0时, J/>0,就是偏共振去偶
22
特点: 1. 可识别碳的级别 伯碳(CH3)-q峰 仲碳(CH2)-t峰 叔碳(CH)-d峰 季碳(C)-S峰 2. 对于复杂且分子量大的分子,谱线间隔近或
4
第二节 碳谱的测定
一、宏观磁化强度矢量与核磁共振
宏观磁化强度矢量M是单位体积内核磁矩μ 的矢量和, 即:
N
M i i1
M// M0 M M
M 0
x
z B0 M+ y
M-
z B0 M0
y x
5
在X(X/)轴施加一个频率为υ0线偏振射频场, 磁场强度为B1,可分解为XY平面上两个旋转方向相 反频率为υ0(与自旋核进动频率相等)的圆偏振磁 场,此时M将产生章动,吸收能量产生核磁共振。
器频率,则该脉冲系列可展开成以υ0为中心的连续 的频率振动,简称频谱。
11
主带频谱范围为ω= 2/tp,中心频率为V0 , 在该范围内,谱线的 间隔距离△=1/tr、故 在该主带频谱范围内, 谱线的总数为:
12
即该射频脉冲系列相当于一台拥有4×105不同频 率、间隔为0.5Hz的射频波的多波道核磁共振仪,频 率范围是V0±2×105 , 可使分子中处于不同化学环 境下的所有13C(或1H)核同时共振,并得到含有所 有13C(或1H)核信息的FID信号。虽然各种FID信 号混合在一起,但频率和相位不同,可通过相敏检 测器检测并区别开来。以累加1次需2秒计算,即使 进行1万次累加,也只需要约5.5小时。这样,在采 用多次脉冲作用于试样,并将FID信号进行多次累 加后再进行傅立叶变换,对于像13C这样的低灵敏度 核来说,也可以得到一张好的NMR图谱

核磁共振碳谱

核磁共振碳谱

第四节
13C
NMR的解析及应用
一、解析步骤
与氢谱类似,要充分利用其提供的信息。 1 、尽量设法获取有关信息;如已知分子式,计 算不饱和度; 2 、确定谱线数目,推断碳原子数,注意分子对 称性; 3 、分析各碳原子的化学位移,推断碳原子所属 官能团; 4、推断合理结构式。
二、解析示例
例1、某未知物,分子式为C7H9N,碳谱如下,推断结构式。
1
3
2 1
5
4
(CH3)3CCH2CH(CH3)2
Analysis: C4H10O2
Structure: IUPAC Name: 1,2-dimethoxymethane
Analysis: C5H7O2N
Structure: IUPAC Name: ethyl cyanoacetate
Analysis: C6H10O
DEPT谱图A、B、C谱:
DEPT谱图R、Q及P谱:
还可以通过 A 、 B 及 C 谱的加减处理,而 得DEPT的 R、Q及P谱,分别只呈现 CH3、 CH2及CH的信号,而且都呈现向上的单 一谱线。 由于DEPT谱的定量性很强,因此不仅可 鉴别碳原子的类型,而且可判断碳原子 的数目,对于光谱解析十分有利。DEPT 已成为13C—NMR测定中的常规内容。
第三节 核磁共振碳谱
3.1 基本原理
• 在 C 的同位素中,只有 13C 有自旋现象, 存在核磁共振吸收,其自旋量子数 I=1/2 。 • 13C NMR的原理与1H NMR一样。 • 由 于 γc= γH /4 , 且 13C 的 天 然 丰 度 只 有 1.1%,因此13C核的测定灵敏度很低,大 约是H核的1/6000,测定困难。必须采用 一些提高灵敏度的方法:

核磁共振波谱法-碳谱

核磁共振波谱法-碳谱

1
2
图谱简单。虽然碳原子与氢原子之间的偶合常数较大,但由于它们的共振频率相差很大,所以-CH-、-CH2-、-CH3等都构成简单的 AX、AX2、AX3体系。因此可用一级谱解析,比氢谱简单的多。
三 13C NMR谱图
典型碳谱图谱 最常见的碳谱是宽带全去偶谱,每一种碳原子只有一条谱线。在去偶的同时,由于核的NOE效应,信号更为增强。但不同碳原子的T1不同,这对峰高影响不一样;不同核的NOE也不同; 峰高不能定量地反映碳原子数量。
*
5、缺电子效应
如果碳带正电荷,即缺少电子,屏蔽作用大大减弱,化学位移处于低场。
1
例如:叔丁基正碳离子(CH3)3C+的达到 327.8ppm。这 个效应也可用来解释羰基的13C 化学位移为什么处于较低 场,因为存在下述共振:
2
*
6、电场效应
在含氮化合物中,如含 -NH2的化合物,质子化作用后生成 – NH3+,此正离子的电场使化学键上电子移向 或碳,从而使它们的电子密度增加,屏蔽作用增大,与未质子化中性胺相比较,其 或碳原子的化学位移向高场偏移约 0.5-5ppm。这个效应对含氮化合物的碳谱指认很有用。
用于区分碳类型的一种技术。 INEPT称为低灵敏核的极化转移增强法。 DEPT称为不失真的极化转移增强法。 即去偶呈现单峰,又可以区分出碳的类型。 INEPT通过脉冲把灵敏度高的1H的自旋极化转移到13C核上去,13C信号强度增加4倍,进行测定,故灵敏度好。 DEPT谱法是INEPT法的一种改良方法。 DEPT的信号强度仅与脉冲的倾倒角有关。通过改变照射1H的的倾倒角(),使作45,90 ,135 变化并测定其13C NMR谱
*
磁各向异性的基团对核屏蔽的影响,可造成一定的差异。这种差异一般不大,而且很难与其它屏蔽的贡献分清(这一点与1H不同)。 但有时这种各向异性的影响是很明显的。如异丙基与手性碳原子相连时,异丙基上两个甲基由于受到较大的各向异性效应的影响,碳的化学位移差别较大,而当异丙基与非手性碳原子相连时,两个甲基碳受各向异性效应的影响较小,其化学位移的差别也较小。

第四章 核磁共振碳谱

第四章 核磁共振碳谱

3) 立体效应 ) 4) 其它影响 )
溶剂、氢键、温度等。 溶剂、氢键、温度等。
4、 各类碳的化学位移范围(图4.13 ,书143页) 、 各类碳的化学位移范围( 页
四、13C的化学位移的经验计算 的化学位移的经验计算 1. Sp3杂化碳的化学位移及经验计算 杂化碳的化学位移及经验计算 2. Sp2, sp1 杂化碳的化学位移及经验计算 五、
13C偶合及偶合常数 偶合及偶合常数
偶合的13CNMR谱图与1HNMR相似,出现谱图的 相似, 谱图与 相似 多重性, 多重性,裂分峰的数目由偶合核的自自旋量子数 和核的数目决定。 和核的数目决定。
谱的解析: 六、 13C NMR谱的解析: 谱的解析 1. 一般程序: 一般程序:
1)计算不饱和度。 )计算不饱和度。 2)识别谱图排除干扰峰(试剂峰、杂质峰)。 )识别谱图排除干扰峰(试剂峰、杂质峰)。 3)分析碳的杂化类型,与不饱和度相符合。 )分析碳的杂化类型,与不饱和度相符合。 4)用偏共振去偶谱分析与每种化学环境不同的碳直接相连的 ) 氢原子的数目,识别伯、 季碳,结合δ值推导出 氢原子的数目,识别伯、仲、叔、季碳,结合 值推导出 可能的基团及与其相连的可能基团。 可能的基团及与其相连的可能基团。 5)综合以上分析,推导可能结构,进行必要的经验计算进一 )综合以上分析,推导可能结构, 步验证结构。 步验证结构。 6)化合物结构复杂时,需结合其它谱图进行解析,必要时还 )化合物结构复杂时,需结合其它谱图进行解析, 可查阅标准谱。 可查阅标准谱。
δ值范围为 值范围为0-220ppm, 1HNMR的常用 值范围为 的常用δ值范围为 值范围为 的常用 值范围为0-10ppm.
2. 给出不与氢相连的碳的共振吸收峰, 给出不与氢相连的碳的共振吸收峰,

核磁共振碳谱详解

核磁共振碳谱详解

核磁共振碳谱(13C-NMR)Produced by Jiwu Wen•核磁共振碳谱的特点:1. 化学位移范围宽。

碳谱(13C-NMR)的化学位移δC通常在0~220 ppm之间(对于碳正可达330 ppm)。

离子δC比较:1H-NMR的化学位移δ通常在0~10 ppm之间。

Example:2. 13C-NMR给出不与氢相连的碳的共振吸收峰。

核磁共振碳谱(13C-NMR)可以给出季碳,羰基碳,氰基碳,以及不含氢原子的烯碳和炔碳的特征吸收峰。

3. 13C-NMR的偶合情况复杂,偶合常数大。

核磁共振碳谱(13C-NMR)中偶合情况比较复杂,除了1H-1H偶合,还有1H-13C以及1H,13C与其它自旋核之间的偶合。

1H-13C的偶合常数通常在125-250 Hz。

因此在谱图测定过程中,通常采用一些去偶技术。

4. 13C-NMR的灵敏度低。

•核磁共振碳谱的去偶技术 1. 质子宽带去偶(也称为质子噪声去偶)。

质子宽带去偶是一种双共振去偶技术,实验方法是:用一相当宽的频率(包括样品中所有氢核的共振频率)照射样品,消除13C-1H 之间的偶合,使每种碳原子只给出一条谱线。

2. 偏共振去偶(也称不完全去偶)。

这种去偶技术的实验方法是:采用一个频率范围很小、比质子宽带去偶功率弱很多的射频场(B 2),其频率略高于待测样品中所有氢核的共振吸收频率,使1H 与13C 之间在一定程度上去偶,不仅消除2J ~4J 的弱偶合,而且使1J 减小到J r (表观偶合常数)。

J r 和1J 之间的关系如下:r 12J J B /2∆νλπ=根据n+1规律,在偏共振去偶谱中,伯碳裂分为四重峰(用q表示),仲碳为三重峰(t),叔碳为两重峰(d),季碳以及不与氢相连的碳为单峰(s)。

Example:2-丁醇的宽带去偶谱2-丁醇的偏共振去偶谱2-丁酮的质子宽带去偶谱和偏共振去偶谱3. 质子选择性去偶。

4. 门控去偶和反转门控去偶。

主要用于定量分析。

C谱核磁检测

C谱核磁检测

NMR有H谱核磁,C谱核磁,P谱核磁,F谱核磁,DEPT谱核磁等,但是其中比较常用的方式非H谱核磁和C谱核磁莫属了,二者相辅相成,互为补充。

但是今天我们主要介绍一下其中的C谱检测。

C谱核磁:通常说的碳谱就是13C核磁共振谱。

由于13C与1H 的自旋量子数相同,所以13C的核磁共振原理与1H相同。

将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。

13C的天然丰度只有12C 的1.108%。

由于被检灵敏度小,丰度又低,因此检测13C比检测1H在技术上有更多的困难。

NMR C谱检测按工作方式可分为两种:1、连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱;2、脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。

连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、] 射频检测单元、数据处理仪器控制六个部分组成。

在C谱检测工作中溶剂的选择也很关键,不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测碳谱大约需要10mg 以上。

在解析核磁共振碳谱的时候一般先查看全去偶碳谱上谱线数与分子式中所含碳数是否相同?数目相同说明每个碳的化学环境都不同,分子无对称性;数目不相同(少)说明有碳的化学环境相同,分子有对称性;然后由偏共振谱,确定与碳偶合的氢数;最后由各碳的化学位移,确定碳的归属。

上海博焱检测技术服务有限公司专业提供NMR核磁,高温核磁,GPC分子量,XRD,TGA, DSC,SEM,TEM,GC-MS,LC-MS等各种大型仪器测试。

为广大高校,企业,研究所提供一站式检测服务,得到了广泛的赞誉和认可。

波谱分析课件—核磁共振碳谱

波谱分析课件—核磁共振碳谱
4、反转门控去偶
既无偶合信号,又无有NOE效应的谱图。
波谱分析课件—核磁共振碳谱
C4 C2
C1
C6
C5 C3
(CH3)2N 3
1 2
5
CHO
6
的反转门控去偶谱
4
C3C2
C1
C6
C4
C5
(CH3)2N
1
3
5
CHO 的门控去偶谱
6
2 波谱4分析课件—核磁共振碳谱
5、选择质子去偶
该方法类似于氢谱的自旋去偶法。且有NOE 效应存在。
13(41).5110.(82)
39.6
(6)
(3)
189.5 (5) 124.8
154.0
(CH3)2N
1
波3 谱分析课件5—核C6磁H共O振碳的谱 质子宽带去偶谱
24
2、偏共振去偶
方法:与质子宽带去偶相似,只是此时使用 的干扰射频使各种质子的共振频率偏离, 使碳上质子在一定程度上去偶,偶合常数 变小(剩余偶合常数)。峰的分裂数目不变, 但裂距变小,谱图得到简化,但又保留了 碳氢偶合信息。
在-2.5~55ppm之间。
• Grant和Paul提出了计算烷烃碳化学位移的经验公 式:
δci=-2.5+Σnij Aj + ΣS
式中-2.5为CH4的δ值(ppm);
nij为相对于ci的j位取代基的数目,j =α、β、、δ;
Aj为相对于Ci,j位取代基的位移参数; S为修正值 (表4-2)
波谱分析课件—核磁共振碳谱
同时不存在13C自身自旋-自旋裂分。
3. 给出不连氢的碳的吸收峰
可直接给出基团的特征峰,分子骨架结构的信息。
4. 不能用积分高度来计算碳的数目 5. 驰豫时间T1 可作为化合物特构鉴定的波谱

核磁共振c谱ppt

核磁共振c谱ppt

反转门控去偶法(Inverted Gated Decoupling)
4.3
13C的化学位移
4.3.1 屏蔽常数
σ=σd+σp+σa+σs
σd项反映由核周围局部电子引起的抗磁屏 蔽的大小;σp项主要反映与p电子有关的顺 磁屏蔽的大小,它与电子云密度、激发能量 和键级等因素有关;σa表示相邻基团磁各项 异性的影响;σs表示溶剂、介质的影响。
1H,1H化学位移相关谱(1H,1H COSY) Heteronuclear multiple-quantum correlation (HMQC) Heteronuclear multibond correlations: HMBC 2D NMR – homonuclear through space correlations: ROESY, NOESY
4.3.2 影响13C化学位移的因素
1. 碳杂化轨道
对于烃类化合物来说,sp3 碳的δ值范围在0~60 ppm;sp2杂化碳 的δ值范围在100~150ppm,sp杂化碳的δ值范围在60~95 ppm。
2.诱导效应 3.共轭效应 4. 立体效应 5.测定条件.如:溶解样品的溶剂、溶液的浓度、测定时的温度等。
4.2.2 核磁共振碳谱中几种去偶技术
为什么要去偶?如何去偶?
去偶后如何确定碳为C, CH, CH2, CH3 ?
常用的方法有:
质子宽带去偶法(Proton Broad Band Decoupling) 偏共振去偶法(Off-Resonance Decouping) 门控去偶法(Gated Decoupling)
2. 烯碳的δC值
• 烯碳为sp2杂化,其δC 为100~165 ppm之间。 烯碳的δC值可用经验公式进行计算: δCi = 123.3 + Σnij Ai + ΣS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核磁共振碳谱 (13C NMR )
特点 1) 谱的范围宽(一般200ppm), 分辨率高
2) 常采用质子去耦技术, 以避免信号重叠, 提高检测灵敏度
3) 信号强度和碳原子数一般不成比例
1
核磁共振碳谱 (13C NMR )
影响d13C的因素 1) 主要受顺磁屏蔽的影响
C的最低电子激发态与基态的能量差值越小, sP越大,
碳谱中的耦合现象及各种去耦方法 1) 碳谱中的耦合现象
13C-13C: 13C-1H:
可以忽略, 因为13C的天然丰度仅为1.1%
去耦
造成碳谱线相互重叠, 因此记录碳谱时必须对1H
4
核磁共振碳谱 (13C NMR )
碳谱中的耦合现象及各种去耦方法 1) 宽带去耦(质子噪声去耦): 测定碳谱时最常采用的去耦方式
宽带去耦谱图各峰的高度比不能代表各种碳原子的相
互比例数, 但具有一定识图经验后, 可以从谱线高度近 似估计碳原子数目5Βιβλιοθήκη 6789
10
11
NMR谱解析举例
Page 181-184
Page 193-199 习题 1-4, 17-20
12
d13C越大
2) 影响dH的因素, 同时也影响d13C
2
核磁共振碳谱 (13C NMR )
影响d13C的因素 3) 取代基并不只影响最靠近的13C, 而是要延伸好几个C
4) 从应用上来看, 各种类型的1H和13C的化学位移从高场到 低场的次序基本平行
Page 102 - 118
3
核磁共振碳谱 (13C NMR )
相关文档
最新文档