智能交通灯管理系统
基于STM32的智能交通灯系统设计

基于STM32的智能交通灯系统设计智能交通灯系统是一个基于STM32的控制系统,旨在改善交通流量管理和道路安全。
它利用STM32的高性能微控制器和实时操作系统,提供智能化的交通信号控制,可以根据实时交通状况进行灵活调整,从而最大限度地提高交通流量并减少交通拥堵。
该系统由以下几个主要组成部分组成:1. STM32微控制器:作为系统的核心,STM32微控制器采用先进的ARM Cortex-M处理器架构和强大的计算能力,用于控制信号灯的状态和计时功能,同时可以通过与其他传感器和设备的接口进行通信。
2.交通感应器:交通感应器通常包括车辆和行人检测器。
车辆检测器使用电磁或光电等技术监测车辆的存在和通过情况,行人检测器则使用红外传感器等技术检测行人的存在。
通过与STM32微控制器的接口,感应器可以将实时交通信息传输到控制系统中进行处理。
3. 通信模块:为了实现智能化的交通信号控制,交通灯系统与其他交通系统和设备之间需要进行数据交互。
通信模块使用嵌入式网络协议,如CAN或Ethernet,与其他交通设备进行通信,以便接收实时交通信息并将交通信号优化策略传输回控制系统。
4.人机交互界面:人机交互界面通常是一个触摸屏或面板,用于设置和调整交通信号控制的参数,以及显示交通信息和各个信号灯的状态。
通过与STM32微控制器的接口,人机交互界面可以实现与控制系统的交互。
系统的工作原理如下:1.交通感应器将车辆和行人的存在和通过情况传输到STM32微控制器。
2.STM32微控制器根据收到的交通信息,结合预设的交通信号控制策略,确定各个信号灯的状态和计时。
3.STM32微控制器通过通信模块与其他交通设备进行通信,接收实时交通信息,并将交通信号优化策略传输回控制系统。
4.人机交互界面用于设置和调整交通信号控制的参数,以及显示交通信息和各个信号灯的状态。
智能交通灯系统的设计目标是提高道路交通管理的效率和安全性。
通过实时监测交通情况,并根据实际需要进行灵活调整交通信号,可以减少交通拥堵和行车事故的发生。
智能交通工程师智能交通灯控制系统总结

智能交通工程师智能交通灯控制系统总结智能交通灯控制系统是现代智能交通工程中的关键技术之一,其作用是通过合理的信号控制,优化交通流量,提高道路通行效率,减少交通拥堵,提升交通安全性。
在本文中,将对智能交通灯控制系统进行总结和分析。
一、智能交通灯控制系统的基本原理智能交通灯控制系统的基本原理是根据不同时间段和交通流量情况,动态调整交通信号灯的工作方式。
系统通过收集和分析交通流量数据,综合考虑各种因素,如交通状况、道路情况、行人需求等,实时进行信号灯的控制和调整,以达到最佳的交通流动效果。
二、智能交通灯控制系统的组成部分1. 信号灯控制器:智能交通灯控制系统的核心部分,负责收集实时交通数据,并根据预设算法对交通信号进行控制。
2. 交通数据采集设备:包括交通监测器、车流量检测器、行人流量检测器等,用于实时采集交通数据。
3. 通信设备:用于信号灯控制器与其他设备之间的数据传输和通信。
4. 监控中心:对智能交通灯控制系统进行实时监控和管理,提供远程控制和故障排除等功能。
三、智能交通灯控制系统的优点1. 提高道路通行效率:通过实时调整交通信号,有效地减少交通拥堵,提高道路通行效率,缩短出行时间。
2. 提升交通安全性:智能交通灯控制系统能够根据实时交通数据和行人需求,合理调整信号灯的工作模式,提升交通安全性。
3. 节约能源:系统可以合理分配道路资源,减少过多的信号等待时间,降低能源的消耗。
4. 提供实时数据支持:通过智能交通灯控制系统,可以获取到大量的交通数据和统计信息,为交通规划和设计提供科学依据。
四、智能交通灯控制系统的发展趋势1. 多模态交通:随着城市交通方式的多样化,智能交通灯控制系统将会更加关注不同交通模式的协调与整合,提供更加智能化的交通出行体验。
2. 人工智能技术应用:人工智能技术的发展将为智能交通灯控制系统提供更高效的决策支持和信号控制算法,优化交通流量分配。
3. 智能城市的一部分:智能交通灯控制系统将融入智能城市的发展中,与其他智能设施进行联动,共同构建智慧出行的城市生态系统。
交通行业中的智能交通灯控制系统应用案例

交通行业中的智能交通灯控制系统应用案例智能交通灯控制系统在现代交通管理中发挥着关键作用。
它利用先进的技术和智能算法,实现交通信号灯优化,提高交通效率,减少交通堵塞和拥堵。
本文将探讨几个交通行业中的智能交通灯控制系统应用案例,展示其在不同场景下的应用效果和优势。
案例1:城市交通拥堵缓解城市交通拥堵是全球城市面临的共同挑战之一。
智能交通灯控制系统通过实时监测路况和交通流量,调整信号灯的时序,优化交通流动。
例如,在高峰时段,系统可以根据实时车辆数量和速度的变化,智能地调整信号灯的绿灯时间,以保证道路上的车辆能够更加顺畅地通过。
这样一来,交通堵塞和排队等待时间都能够明显减少,大大提高了道路的通行效率和交通网络的整体流畅性。
案例2:公交优先通行公交车在城市交通系统中扮演着重要角色,但常常面临信号灯红灯停车的困扰。
智能交通灯控制系统可以通过识别公交车辆并与其通信,实现对公交车的优先通行。
例如,在临近公交站台的路段,系统可以根据公交车的位置和行驶速度,提前将信号灯转为绿灯,确保公交车能够快速通过。
这样一来,不仅提高了公交车的效率,也鼓励更多的民众选择公共交通工具,减少汽车出行,缓解城市交通压力,改善空气质量。
案例3:应急车辆优先通行应急车辆的通行速度对救援行动至关重要。
智能交通灯控制系统可以利用车辆的实时位置和路线信息,将信号灯优先调整为绿灯,确保应急车辆畅通无阻。
例如,在接到应急呼叫后,系统能够迅速定位并识别应急车辆,优化交通信号以最大程度地减少延误。
这样一来,应急车辆能够迅速抵达目的地,提高救援效率,挽救更多生命。
案例4:行人和自行车安全保障行人和自行车在城市道路交通中占据重要地位,但也面临着安全隐患。
智能交通灯控制系统可以通过感应器和摄像头识别行人和自行车,为他们提供安全通行。
例如,当系统检测到行人或自行车等非机动车通过时,会根据实时情况调整信号灯的绿灯时间,确保他们安全地过马路。
这样一来,减少了交通事故的发生,保障了行人和自行车的安全。
智能交通灯控制系统

通过计算机、传感器和通信技术实现
可以根据实时交通情况进行调整和优化交通信号灯的控制
通信模块:实现与上位机或交通管理部门的数据传输与控制指令下达
传感器:检测交通流量、车辆位置等信息
控制器:根据传感器采集的数据,控制交通灯的灯光时序和配时方案
电源管理单元:为系统提供稳定可靠的电源供应,确保系统的稳定运行
提升安全性:通过实时监测和调整交通信号灯时间,提高交通安全性和减少事故发生。
智能交通灯控制系统的挑战与解决方案
传感器故障导致信号灯失灵
缺乏实时交通流数据,无法优化信号灯配时
无法准确判断交通拥堵级别,影响信号灯配时策略
缺乏智能化管理平台,无法实现统一管理和调度
研发成本高
设备采购和维护费用大
人员培训和管理费用高
解决方案:政府和企业合作,共同承担资金投入,降低成本压力
交通法规对智能交通灯控制系统的要求和规范
智能交通灯控制系统在政策法规方面的未来发展趋势
交通法规的更新对智能交通灯控制系统的挑战和机遇
相关法规对智能交通灯控制系统的影响和指导
缺乏公众对智能交通灯控制系统的统的认知度低
a click to unlimited possibilities
CONTENTS
智能交通灯控制系统的概述
智能交通灯控制系统的技术实现
智能交通灯控制系统的优势
智能交通灯控制系统的挑战与解决方案
智能交通灯控制系统的未来发展趋势
智能交通灯控制系统的概述
智能交通灯控制系统是一种先进的交通管理系统
旨在提高交通效率,减少交通拥堵和事故
添加标题
添加标题
城市交通管理需要智能化,智能交通灯控制系统能够提高交通管理效率。
交通拥堵问题日益严重,需要智能交通灯控制系统提供解决方案。
PLC的智能交通灯控制系统设计

PLC的智能交通灯控制系统设计智能交通灯控制系统设计是一种基于PLC技术的智能化交通管理系统,通过对交通信号灯控制进行智能化优化,实现交通流量的合理分配和交通管控的智能化管理,在提高道路通行效率的同时确保交通安全。
本文将介绍智能交通灯控制系统的设计理念、系统架构、功能模块、硬件设备和软件编程等方面。
一、设计理念智能交通灯控制系统的设计理念是通过PLC技术实现对交通信号灯的智能控制,根据车辆流量和道路情况实时调整信号灯的变化,合理分配绿灯时间,优化交通信号配时方案,提高道路通行效率和交通安全性。
系统应具有智能化、自适应性和实时响应性,能够有效应对不同交通情况,提供个性化的交通管控解决方案。
二、系统架构智能交通灯控制系统的架构主要包括传感器模块、PLC控制器、交通信号灯、通信模块和监控终端等部分。
传感器模块用于感知道路上的车辆流量和行驶方向等信息,将数据传输给PLC控制器;PLC控制器根据传感器数据实时调整信号灯控制策略;交通信号灯根据PLC控制器的指令变化显示不同颜色信号;通信模块用于系统与监控终端之间的数据通信,监控终端用于监控系统运行状态和实时操作。
三、功能模块智能交通灯控制系统的功能模块包括车辆检测模块、信号灯控制模块、通信模块和监控模块等。
车辆检测模块通过车辆检测器实时感知道路上的车辆流量和行驶方向等信息;信号灯控制模块根据车辆检测模块的数据智能调整信号灯配时,实现绿灯优先和拥堵车辆识别等功能;通信模块提供系统与监控终端之间的数据传输通道,实现数据交换和远程监控;监控模块实时监测系统运行状态和信号灯显示情况,可对系统进行远程操作和管理。
四、硬件设备智能交通灯控制系统的硬件设备主要包括传感器、PLC控制器、交通信号灯、通信模块和监控终端等部分。
传感器用于感知车辆流量和行驶方向等信息;PLC控制器用于处理传感器数据,实现信号灯的智能控制;交通信号灯显示不同颜色信号,指示不同车辆通行状态;通信模块提供系统与监控终端之间的数据传输通道;监控终端用于监控系统运行状态和实时操作。
智能交通灯控制系统设计

智能交通灯控制系统设计
1. 介绍
智能交通灯控制系统是一种基于现代技术的交通管理系统,旨在提高交通效率、减少交通拥堵和事故发生率。
本文将探讨智能交通灯控制系统的设计原理、功能模块和实现方法。
2. 设计原理
智能交通灯控制系统的设计原理主要包括以下几个方面: - 传感器检测:通过各类传感器实时监测路口车辆和行人情况,获取交通流量信息。
- 数据处理:将传感器采集到的数据经过处理分析,确定交通信号灯的相位和时长。
- 控制策略:根据不同情况制定合理的交通信号灯控制策略,优化交通流动。
3. 功能模块
智能交通灯控制系统通常包括以下几个功能模块: - 传感器模块:负责采集交通流量数据,如车辆和行人信息。
- 数据处理模块:对传
感器采集的数据进行处理和分析,生成交通控制方案。
- 控制模块:
实现交通信号灯的控制,根据控制策略调整信号灯状态。
- 通信模块:与其他交通设备或中心平台进行通信,实现数据共享和协调控制。
4. 实现方法
实现智能交通灯控制系统主要有以下几种方法: - 基于传统控制
算法:采用定时控制、车辆感应等方式设计交通灯控制系统。
- 基于
人工智能:利用深度学习等技术处理大量数据,实现智能化交通灯控制。
- 基于物联网技术:通过物联网技术实现交通信号灯与其他设备
的连接和信息共享,提高交通系统的整体效率。
5. 结论
智能交通灯控制系统的设计可以有效优化交通信号灯的控制策略,提高交通效率和安全性。
结合现代技术的发展,智能交通灯控制系统
将在未来得到更广泛的应用和发展。
智能交通中的智能路灯控制系统

智能交通中的智能路灯控制系统智能交通是当今社会高科技的缩影。
随着人工智能、物联网、云计算等技术的成熟,智能交通被赋予更多更广泛的含义。
其中智能路灯控制系统是智慧城市的一种基础设施,为交通管理和公共安全提供了更加便捷和高效的服务。
一、智能路灯控制系统的功能智能路灯控制系统是指对路灯进行监控、控制和管理的系统。
传统路灯控制系统主要依靠计时器、光控开关等方式进行控制,缺乏精确性和智能性。
而智能路灯控制系统采用无线通信技术将路灯信息传输至后台服务器,通过云计算、物联网等技术实现对路灯的远程监控和管理。
智能路灯控制系统的功能包括:1、实时监测和控制路灯的亮度和开关状态;2、自动检测人员、车辆等运动状态以及周围环境的光强度等参数,自动进行智能控制;3、智能判断交通流量和拥堵情况,调节路灯亮度,提高能源利用效率;4、实现远程手动控制和管理路灯的开关。
二、智能路灯控制系统的优势与传统路灯控制系统相比,智能路灯控制系统具有以下优势:1、精准控制和管理:传统路灯控制系统只能进行简单的时间控制和光控开关控制,而智能路灯控制系统可以实现对路灯的精细化、智能化控制。
2、智能化管理:智能路灯控制系统通过云计算、物联网等技术实现对路灯的远程管理,可以实时监控路灯的状况,并进行实时控制,提高管理效率和节能效果。
3、能源节约:智能路灯控制系统可以根据环境光强和交通流量等参数进行智能控制,节省能源和减少污染。
4、提高公共安全:智能路灯控制系统可以实时监测和报警,对于路灯故障、短路等情况进行智能判断和排查,提高公共安全。
三、智能路灯控制系统的应用智能路灯控制系统在智慧城市建设、交通管理、公共安全等方面都得到了广泛应用。
在智慧城市建设中,智能路灯控制系统可以实现路灯的精准化控制,帮助城市节省能源和减少污染。
在交通管理中,智能路灯控制系统可以通过实时监测和控制,减轻交通拥堵,提高车辆通行效率。
同时,在公共安全方面,智能路灯控制系统可以实时监测和报警,对于路灯故障、短路等情况进行智能判断和排查。
智能红绿灯控制系统

智能红绿灯控制系统简介智能红绿灯控制系统是一种基于人工智能技术的交通信号灯控制系统。
传统的红绿灯控制系统通常按照固定的时序来进行信号的切换,无法根据实时交通情况进行灵活的调整。
而智能红绿灯控制系统通过使用各种传感器和数据分析算法,可以实时感知道路上交通流量的变化,从而动态调整红绿灯的信号时序,优化交通流畅度,减少交通拥堵。
系统结构智能红绿灯控制系统主要包括以下几个组件:1.传感器模块:用于感知交通流量、车辆速度等信息。
常见的传感器包括摄像头、车辆识别器、环境光传感器等。
2.数据处理模块:对传感器采集的原始数据进行处理,提取有用的信息。
常见的数据处理算法包括图像识别算法、机器学习算法等。
态调整红绿灯的信号时序。
控制模块可以是一个专用的物理控制器,也可以是一个运行在服务器上的软件程序。
4.通信模块:用于与红绿灯设备进行通信,控制红绿灯的开关状态。
通信模块可以使用有线或无线通信技术,常见的技术包括以太网、蓝牙、WiFi等。
5.用户界面:提供给交通管理人员或工作人员使用的图形界面,可以实时监控红绿灯的状态,进行手动控制或调整参数。
工作流程智能红绿灯控制系统的工作流程通常包括以下几个步骤:1.数据采集:通过传感器模块采集交通流量、车辆速度等信息。
这些数据可以通过有线或无线方式传输到数据处理模块。
2.数据处理:数据处理模块对原始数据进行处理,提取有用的信息,如车辆数量、道路拥堵程度等。
采用机器学习算法的系统可能会使用历史数据进行训练,以改善其预测性能。
制模块判断当前交通状态,如判断是否需要进行信号切换。
判断的依据可以是预设的规则或者机器学习模型的输出。
4.信号调整:控制模块根据状态判断结果,通过通信模块向红绿灯设备发送信号调整指令,控制红绿灯的亮灭时序。
根据信号调整指令,红绿灯设备会相应地切换信号。
5.监控和管理:通过用户界面,交通管理人员可以实时监控红绿灯的状态,并可以手动进行控制和调整参数。
可以根据实时监控数据进行统计分析和优化策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省高等教育自学考试毕业论文论文题目:智能交通灯管理系统主考学校:武汉大学专业:电子信息工程技术指导教师:陈小桥考生姓名:魏超准考证号:013510210535 工作单位:武汉职业技术学院2012 年08 月31 日摘要介绍一种基于AT89C51单片机的智能交通灯的设计方法,模拟定周期交通信号灯的工作状态。
该系统通过红外接收器接收信号实现特种车辆自动放行;通过霍尔车辆检测电路采集路况信号,经单片机处理后,分配各车道的绿灯时间,实现车流动态调节;左拐、右拐、直行及行人的通行指示灯采用了发光二极管,此外,还添加了盲人提示声音电路,方便盲人过人行道;最后利用KEIL软件和TKS仿真器对交通灯控制系统进行编程和仿真。
关键词:交通灯;单片机;KEIL软件;TKS仿真Abstractone kind based on the AT89C51 single-chip microcomputer intelligent traffic light design method, simulation of periodic traffic signal lamp working state. The system through the infrared receiver for receiving the signal to achieve special vehicle automatic release by Holzer; vehicle detection circuit collect traffic signal, which is processed by the microcontroller, assigning each lane green time, realize the dynamic regulation; turn left, turn right, go straight and pedestrian traffic indicator lamp using light-emitting diodes, in addition, also added the blind prompt sound circuit, facilitate the blind sidewalk; finally using KEIL software and TKS emulator for traffic light control system programming and simulation 。
Key words : traffic lights; single chip microcomputer; KEIL software; TKS simulation引言 (1)第一章智能交通灯的总体设计. (2)1.1 智能交通灯的通行方案论证. (8)1.2 智能交通灯灯系统框图. (8)1.3 智能交通灯的工作原理. (8)第二章智能交通灯硬件系统设计. (7)2.1 单片机说明 (8)2.2 各模块电路 (29)2.3 74LS373 和TC4511BP简介 (8)2.4八段LED数码管显示电路 (8)第三章智能交通灯软件系统设计 (9)3.1 软件设计思路 .......................... 错误!未定义书签3.2 程序设计流程 .......................... 错误!未定义书签第四章智能交通灯控制系统软件调制 (26)4.1 TKS 仿真器 (26)4.2 集成开发环境KEIL ...................................... 错误!未定义书签4.3 系统软件调试 . (29)小结 (18)致谢词 (18)参考文献 (18)引言由于我国经济的快速发展从而导致了汽车数量的猛增,大中型城市的城市交通,正面临着严峻的考验,从而导致交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。
日常的交通堵塞成为人们司空见惯而又不得不忍受的问题,在这种条件下,结合我国城市道路交通的实际情况,开发出真正适合我们自身特点的智能信号灯控制系统已经成为当前的主要任务。
随着电子技术的发展,利用单片机技术对交通灯进行智能化管理,已成为目前广泛采用的方法。
本文采用了51系列单片机AT89C51为中心器件设计交通灯控制系统。
第一章智能交通灯的设计原理1.1智能交通灯的方案论证图2.1.1是一个典型的十字路口示意图。
从图中可知:(1)东西方向和南北方向信号灯控制是中心对称的,即无论是主干道还是支干道两侧系统对同方向的信号灯控制是同步的(2)人行道无论哪个方向,系统对两侧4个信号灯的控制也是同步的,且人行道的红绿灯变化和行车道的红绿灯变化应是一致的。
(3)通过对上面整体思路分析,可以用单片机P2 口和P0 口,锁存芯片和显示译码芯片的配合来实现控制LED丁和数码管。
通过锁存芯片实现单片机口的分时复用,简单易行,且编程简单,能实现数据的快速交换以及单片机的资源利用。
图2.1.1典型十字路口交通灯示意图1.2智能交通灯系统框图该交通灯控制系统有以下几个部分组成:车辆检测电路、特种车 转换模块、单片机、显示时间电路,信号灯。
系统框图如图1.2所示 图1.2系统框图1.3智能交通灯的工作原理本系统运用单片机对交通灯控制系统实施控制,通过直接控制 信号灯的状态变化,指挥交通的具体运行,运用了 LED 数码管显示倒 计时以提醒行驶者,更添加了盲人提示音电路,方便视力障碍群体通 行,更具人性化。
在此基础上,加入了特种车辆自动通行控制模块和 霍尔车流量检测电路,经单片机进行具体处理,及时调整通行方向。
通过P0和P2用做输出显示控制口。
P0 口通过锁存器芯片74LS373 和显示译码器芯片TC4511BF 分时复用控制LED 数码管实现行车道上 红绿灯规律变化。
P2 口当作普通输出口直接控制人行道红绿灯控制 规律变。
LED 数码管通过静态显示方式实现倒计时读秒。
上电复位 RSTP0自动/手动键 霍尔车检电路AT89C51系统处理INT1 特殊车辆转换模块 INTO P2 | 〉人行道红黄绿信 号第二章智能交通灯硬件设计2.1 单片机说明单片机微型计算机是微型计算机的一个重要分支, 也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
AT89C51单片机是美国ATME公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4KB 闪存、128BRAM、32根I/O 口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25〜5.50V的电压工作范围和0〜24MHz工作频率,使用AT89C51单片机时无须外扩存储器。
因此,交通灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。
2.1.1 AT89C51单片机硬件结构AT89C51是8051系列单片机的典型产品,是一种带 4K 字节闪存 可编程可擦 除只读存储器(FPERO —Flash Programmable and Erasable Read Only Memory )的单片机芯片,它采用静态 CMOS 工 艺制造8位微处理器,最高工作频率位24MHZAT89C5惮片机包含 中央处理器,程序存储器(RO )数据存储器(RAM ,定时/计算器, 并行接口,串行接口和中断系统等几大单元及数据总线,地址总线 和控制总线等二大总线,如图2.1.1所示:图2.1.1总线结构现在说明如下:(1) 中央处理器(CPU中央处理器(CPU 是单片机芯片中最复杂,最核心的智能部件, 是8为数据宽度的处理器,能处理8位二进制数据或代码。
CPU 负责 控制,指挥和调度整个单元系统协调的工作, 用于完成运算和控制功 能。
(2) 数据存储器(RAMAT89C51 内部有256B 的数据存储器 RAM 其中有128个8位数 据存储单元和 128个专用寄存器, 他们是统一编址的, 专用寄存器只 能用于存放控制指令数据,用户只能访问,不能用于存放用户数据。
( 3)存储器( ROM )Hf]i —1fe 序存储器 数磅存储器 屣时计数爲nr TH 川并行]70口] |串行邇営口 中断系统8051AT89C51 内部有4KB的制度程序存储器ROM用来存放程序或程序运行过程中不会改变的原始数据(4)中断系统AT89C51 共有5个中断源,其中2个用于外部中断,2 个用于定时/ 计时器中断,1 个用于串行口中断。
全部中断分为高级和低级2 个优先级别。
(5)定时/ 计时器AT89C51内部有两个16位的定时/计时器T0和T1,以实现定时或计数产生中断用于控制程序转向。
(6)串行接口AT89C51 内部含有1 个全双工串行接口,以实现单片机和其他设备之间的串行数据传送。
(7)I/O 口AT89C51内部有4个8位并行I/O端口(PO, P1, P2和P3),可以实现数据的并行输入和输出。
(8)时钟振荡电路AT89C51内置最高频率达12Hz的时钟电路,但石英晶体和微调电容需外接。
石英电路可为单片机产生时钟脉冲序列。
2.1.2 AT89C51 单片机的管脚说明AT89C51单片机内部总线是单总线结构,即数据总线和地址总线是公用的。
89C51有40条引脚,这40条引脚可分为I/O 接口线,电 源线,控制线,外接晶体线4部分。
89C51单片机为双列直插式 封装结构,引脚如图3.1.2所示图3.1.2 89C51引脚分配图VCC:电源电压。
GND 接地。
RST :复位输入端,高电平有效。
P0 口: P0 口为一个8位双向I/O 口,每脚可吸收 8TTL 门电 流。
P0口即可作地址/数据总线使用,又可以作为通用的 I/O 口使 用。
当CPU 访问片外存储器时,P0 口分时先作低8位地址总线,后 作双向数据总线,此时,P0 口就不能再作I/O 口使用了。
在访问期 间激活要使用上拉电阻>XTAL1XTAL2PO.O/ADOP0.1/AD1 P0.2/AD2P0^/AD3 P0^AD4 户 0 5/AD5 P0 6/AD6 P0.7/AD7F2.0/A8 P2.-t/,A9P2 2?A10P2.3/A11P2.4/A12P2.5/A13P2.e/A14 P2 7/A15P3,0/RXE>P3.VTXP P3-2/iFrro F3.3/INTtP3 4/TO P3 5/T1P3.6WFT P3.7/RF丄23 45B71S0-1-2--3- 4-5_- 6-7_ zz ——--」一二RSTP1 0 P1.1 P1 2 P1.3 P1.4 P1.6F1 5 P1 7P1 口:P1 口是一个带内部上拉电阻的8位双向I/O 口,P1口缓冲器能接收输出4TTL门电流。