概率论与数理统计离散性讲义随机变量及其分布函数
离散型随机变量与概率分布

离散型随机变量与概率分布离散型随机变量(Discrete Random Variable)是指在一定范围内取有限个或可列个值的随机变量。
与之相对应的是连续型随机变量,后者可以取任意连续的值。
在概率论和数理统计中,离散型随机变量是一个重要的概念,它通常用于描述实验中可以明确计数的结果。
离散型随机变量的概率分布(Probability Distribution)描述了该变量取特定值的概率。
概率分布可以通过概率质量函数(Probability Mass Function,PMF)或累积分布函数(Cumulative Distribution Function,CDF)来表示。
下面将介绍离散型随机变量的概率质量函数和累积分布函数,并给出两个例子进行说明。
一、概率质量函数概率质量函数(PMF)是离散型随机变量取各个值的概率。
对于离散型随机变量X,其概率质量函数可以表示为P(X=x),其中x为该随机变量可能取的某个值。
概率质量函数需要满足以下两个条件:1. 非负性:对于所有可能的取值x,P(X=x) ≥ 0。
2. 概率的总和为1:所有可能取值的概率之和等于1,即∑P(X=x) = 1。
通过概率质量函数,我们可以计算出随机变量X取某个特定值的概率。
例如,假设有一个公平的六面骰子,投掷一次,随机变量X代表出现的点数。
则该骰子的概率质量函数为:P(X=1) = 1/6P(X=2) = 1/6P(X=3) = 1/6P(X=4) = 1/6P(X=5) = 1/6P(X=6) = 1/6二、累积分布函数累积分布函数(CDF)是离散型随机变量小于等于某个特定值的概率。
对于离散型随机变量X,其累积分布函数可以表示为F(x)=P(X≤x),其中x为该随机变量的某个值。
累积分布函数也需要满足概率的基本要求。
通过累积分布函数,我们可以计算出随机变量X小于等于某个特定值的概率。
以前述的六面骰子为例,该骰子的累积分布函数为:F(x) = P(X≤x)F(1) = 1/6F(2) = 2/6 = 1/3F(3) = 3/6 = 1/2F(4) = 4/6 = 2/3F(5) = 5/6F(6) = 1三、例子说明例子1:硬币投掷假设有一个公平的硬币,投掷一次,随机变量X代表正面朝上的次数。
《概率论与数理统计》课件-第2章随机变量及其分布 (1)

HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
概率论与数理统计-随机变量及其分布

解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
概率论与数理统计3.2 离散型随机变量及其分布律

(2)每次试验中事件 A 发生的概率相等, P( A) p
且 0 p1
则称这样的试验为n重伯努利(Bernoulli)试验
定理 (伯努利定理) 设在一次试验中,事件 A
发生的概率为 p(0 p 1), 则在 n 重贝努利
试验中,事件A恰好发生k次的概率为
P{ X
k}
C
k n
pk (1
解 设X:该学生靠猜测能答对的题数
则 X ~ B 5, 1
4
P至少能答对4道题 P X 4
P X 4 P X 5
C
4 5
1 4
4
3 4
1 5
4
1 64
某人进行射击,设每次射击的命中率 为0.02,独立射击400次,求至少击中 两次的概率。
称
pi P{ X xi } i 1,2,3,
为离散型随机变量X的概率分布或概率函数,也 称为分布列或分布律
表格形式
X x1 pi p1
x2 xn p2 pn
分布列的性质:
(1) pi 0 , k 1,2,
(2) pi 1
i
用这两条性质 判断一个函数 是否是分布律
解:将每次射击看成一次试验,设击中的次数 为X,则X~B(400,0.02),
P{ X
k}
C
k 400
(0.02)
k
(0.98)400
k
(k
0,1,2,..., 400)
所求概率为
P{X 2} 1 P{X 0} P{X 1}
1 (0.98)400 400(0.02)(0.98)399
概率论与数理统计课件 2.2 离散型随机变量及其概率分布

例5 某急救中心在间隔 t 时间段中收到呼救的次数 X ~ P(t 2) 且与事件间隔的起点无关(时间以小时计),试求: (1) 某天12:00~15:00之间没有收到呼救的概率; (2) 某天12:00~17:00之间至少收到1次呼救的概率.
解 (1) t 1512 3 X ~ P1.5
1、 二项分布 X ~ B(n, p).
P( X k) Cnk pk qnk k 0,1, 2, , n 当 n 1 时,称 X 服从参数为 p 的两点分布或0-1分布,记为
X ~ B(1, p) ,其分布律为
0 1
X ~ 1 p
p
如掷一枚均匀的硬币一次,用 X 表示出现正面的次数,则
性质2
设随机变量
Xn
~
B(n,
pn
)
,
且
lim
n
npn
,其中
0 为常数,
则对任意的非负整数 k ,有
lim
n
P(
X
n
k)
lim
n
Cnk
pnk
1 pn
nk k e
k!
泊松(Poisson)定理
若 X ~ B(n, p) , 则当 n 比较大,而 p 又很小时,
~
x1 p1
x2 p2
xn
pn
y
ቤተ መጻሕፍቲ ባይዱ
o x1 x2
xn
x
例直1到一首盒次元取件出有的5是件合,格已品知为其止中,有求2件首是次合取格到品合,格从品中时逐所一取取次出数元件的测分试布,
概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。
它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。
1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。
概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。
1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。
方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。
1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。
这些性质能够帮助我们更好地理解随机事件的规律和特征。
二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。
统计学广泛应用于社会调查、市场研究以及科学实验等领域。
2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。
它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。
2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。
点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。
2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。
它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。
2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。
方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。
三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。
通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。
3.2 医学研究数理统计在医学研究中具有广泛的应用。