随机变量及其分布函数
随机变量的函数及其分布

返回主目录
第二章 随机变量及其分布
§5 随机变量的函数的分布
例 1设离散型随机X变 的量 分布律为
X -2
0
3
P1
1
1
6
3
2
随机Y 变 X 量 1,试 Y的 求分布律.
解: 随机变 YX 量 1的取值 3,为 1,2.
这些取值两两互不相同 .由此得随机变量 YX1
例 3(续)
Y=(X-1)2 同理,
X -1 0 1 2 pk 0.2 0.3 0.1 0.4
P{Y=1}=P{X=0}+P{X=2}=0.3+ 0.4=0.7,
P{Y=4}= P{X= -1}= 0.2,
所以,Y=(X-1)2 的分布律为:
Y0 1 4 pk 0.1 0.7 0.2
返回主目录
第六章 随机变量的函数及其分布
FY(y)P{Yy}P{X2 y}
y
P{ yX y} y fX(x)dx.
返回主目录
第六章 随机变量的函数及其分布
例 7(续)
y
FY(y) y fX(x)dx.
(2)利用 FY(y)fY(y)及变限定积分 得求 :
fY(y) 21y[fX( y)fX( y), y0,
2x, 0x1, fX(X)0, 其它 .
试求 Y=X-4 的概率密度.
解:(1) 先求 Y =X-4 的分布函数 FY(y):
F Y(y)P {Yy} P { X 4 y } P { X y 4 }
目 录 前一页 后一页 退 出
第二章 随机变量及其分布
§5
例4 设离散型随机X变的量分布律为
第二章随机变量及其分布函数

28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
第四章 随机变量及其分布

第一节 随机变量及其分布函数
一、 随机变量的概念
1、含义:用来表示随机现象结果的变量。 ①样本点本身是用数量表示的; T ②样本点本身不是用数量表示的。 H 总之,不管随机试验的结果是否具有数量的性 质,都可以建立一个样本空间和实数空间的对 应关系,使之与数值发生联系,用随机变量的 取值来表示事件。 2、定义:定义在样本空间Ω={ω}上的实值 函数X=X(ω)称为随机变量,常用大写英文字 母或小写希腊字母来表示,相应地,用小写英 文字母表示其取值。
为了方便地表示随机事件的概率及其运算,我 们引入了分布函数的概念。
定义:设X 是一随机变量,对x R,
称F ( x ) P ( X x )为随机变量X的分布函数;
并称X 服从分布F ( x ),记为X ~ F ( x ).
注:(1)分布函数表示的是随机事件的概率。 (2)分布函数与微积分中的函数没有区别。
P ( X 0) F (0) F (0 0) 0.8 0.3 0.5 P ( X 1) F (1) F (1 0) 1 0.8 0.2
X P
1 0.3
0 0.5
1 0.2
思考:X还能取 到其他数值吗?
例4 一汽车沿一街道行驶,需要经过三个设有红绿信号 灯的路口,且信号灯的工作相互独立,以X表示汽车首 次遇到红灯已通过的路口数,求X的概率分布列。 解:记Ai—汽车在第i个路口遇到红灯,i=1,2,3. 1 P ( Ai ) P ( Ai ) , 且A1 , A2 , A3相互独立. 2 X的可能取值为 0, 1, 2, 3.
共有10个不同的样本点
记X表示“空格个数”,则有
X ( ) 2
X ( ) 1 X ( ) 0
随机变量及其分布

• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
分布函数

F () lim F ( x) 1, F () lim F ( x) 0
x
x
(3) 右连续性:F(x)是右连续函数,即对任意的x0,有
lim
x
x
0F(x)F来自(x0)
➢这三个基本性质是判别分布函数的充要条件。
2
§ 2.1 随机变量及其分布函数
一、随机变量的分布函数
➢
例1
证明F ( x) 1 [arctan x ], x
2
➢是一个分布函数。
证 显然F(x)在整个数轴上是连续、单调严增函数,且
F () lim F ( x) 1, F () lim F ( x) 0
x
x
因此它满足分布函数的三条基本性质,故F(x)是一个分布 函数。
该函数称为柯西分布函数。
3
§2.1 随机变量及其分布函数
例2 设随机变量的分布函数为:
A Bex x 0 F(x)
0 x0
其中 0 是常数。 求 A, B。
解 因为分布函数右连续,故
又由F () 1得A 1, 从而B 1
§2.1 随机变量及其分布函数
二、用分布函数求事件的概率
随机变量X 的分布函数F(x)=P{Xx}本身就是事件的概率。
容易得到 P{X a} F (a) F (a 0) 前面已得到 P{a X b} F (b) F (a)
P{a X b}
F(b) F(a)
1
二、随机变量的分布函数
2、分布函数的性质
F(x) P{X x}
容易证明分布函数F(x)具有以下三条基本性质:
(1) 单调性:F(x)是定义在整个实数轴(–,+)上的单调 非减函数,即对任意的x1 < x2,有 F(x1) F(x2);
第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
随机变量及其分布

f ( x) lim
x 0
xLeabharlann x xlim P{x X x x} lim x
f (x)dx .
x 0
x
x 0
x
故 X的密度 f(x) 在 x 这一点的值,恰好是 X落在区间 (x,x+△x] 上的概率与区间长度 △x之比的极限. 这里,如果把概率理解为质 量, f (x)相当于线密度.
f (x)
a
ba
当x b时,
x
a
b
x
F (x) f (t)dt f (t)dt f (t)dt f (t)dt 1.
a
b
因此X ~ U(a, b)的分布函数为:
0
F ( x)
P( X
x)
x b
a
a 1
xa a xb
xb
例1 长途汽车起点站于每时的10分、25分、55分发
车,设乘客不知发车时间,于每小时的任意时刻随
解: 设X表示400次独立射击中命中的次数,则
X~B(400, 0.02),故 P{X2}=1- P{X=0}-P {X=1} =1-0.98400-(400)(0.02)(0.98399) =0.9972
例5 设有80台同类型设备,各台工作是相互独立的, 发生故障的概率都是0.01, 且一台设备的故障只能 由一个人处理. 考虑两种配备维修工人的方法,其一 是由4人维护,每人负责20台;其二是由3人共同维护 30台.试比较这两种方法在设备发生故障时不能及 时维修的概率大小.
称A为几乎不可能事件,B为几乎必然事件.
(4) 若x是f(x)的连续点,则 dF(x) F(x) f (x)
dx
设随机变量X的分布函数
F
随机变量及其分布函数

随机变量及其分布函数随机变量是描述随机事件的数学工具,它将随机事件映射到实数上。
我们可以将随机变量理解为一个函数,它将样本空间上的随机事件转化为一个实数。
随机变量的取值通常用大写字母来表示,例如X、Y、Z等,并且随机变量的取值可以是有限个或无限个。
随机变量的分布函数一个随机变量有着不同取值的可能性,而这些可能性可以用概率来描述。
针对一个随机变量而言,其取值在不同的范围内所对应的概率,就被称为该随机变量的分布函数。
分布函数通常用F(x)来表示,其中F是函数符号,x是随机变量的取值。
对于一个随机变量X,其分布函数定义为:F(x) = P(X≤x)其中P(X≤x)指的是随机变量X小于或等于x的概率。
因此,对于小于或等于x的所有可能取值,X的分布函数F(x)均可以计算出来。
随机变量的类型随机变量可以分为两类:离散随机变量和连续随机变量。
离散随机变量离散随机变量是只能取某些特定离散值的随机变量,它们通常意味着某个事件只能发生某些确定的次数。
例如,抛掷一颗骰子的结果就是一个典型的离散随机变量,因为其可能取的值只有1、2、3、4、5、6六种可能。
对于某个离散随机变量而言,它的分布函数是一个阶梯函数,在每个离散值处有一个跳跃,即:F(x) = P(X≤x) = ΣP(X=i),i≤x其中ΣP(X=i)表示随机变量取i的概率,i≤x表示X取i的所有取值小于或等于x。
例如,对于一个只能取0或1的离散随机变量X,其分布函数F(x)可以表示为:F(x) = P(X≤0) + P(X=1) = P(X=0) + P(X=1)其中P(X=0)和P(X=1)表示X取0和1的概率,因此:F(0) = P(X=0)F(1) = P(X=0)+P(X=1)连续随机变量连续随机变量是指可以取到任意实数值的随机变量,通常用于描述某个事件的结果可以连续变化的场景。
例如,衡量人的身高或体重就是一种典型的连续随机变量。
对于某个连续随机变量而言,由于它可以取到任意实数值,因此其分布函数也是一个连续函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其分布函数
将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。
分布函数则完整的表述了随机变量。
一、 随机变量与分布函数
(1) 随机变量:
取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。
分布函数:
[1] 定义:
设X 是一个随机变量,对任意实数x ,记作
(){}F x P X x ≤=,称()F x 为随机变量X 的分
布函数,又称随机变量X 服从分布()F x ,显然,函数
()F x 的定义域为(),-∞+∞,值域为[0,1]。
[2] 性质:
❶()F x 单调非降。
❷()0F -∞=、()1F +∞=。
❸()(0)F x F x =+,即()F x 一定是右连续的。
❹对于任意两个实数a b <,
{}()()P a X b F b F a <≤=-
❺对于任意实数0x ,
00
0{}()()P X x F x F x ==-- ❻000{}1{}1()P X x P X x F x >=-≤=- ❼000{}{)lim }(x x P X x P X x x F →-
=≤<=-
❽000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量
(1) 离散型随机变量
[1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者
无穷可列个,则称X 为离散型随机变量。
其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下:
[2] 性质:
❶0i p ≥
❷
1
1n
i
i p
==∑
❸分布函数()i i x x
F x p ==∑
❹1{}()()i i i P X
x F x F x -==-
(2) 连续型随机变量
[1] 概念:如果对于随机变量的分布函数()F x ,存在非
负的函数 ()f x ,使得对于任意实数x ,均有:
()()x
F x f x d x
-∞
=
⎰
则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。
[2]
连续型随机变量的密度函数的性质 ❶()0f x ≥
❷
()1f x dx +∞
-∞
=⎰
❸{}()()()P a X b F b F a f x dx +∞
-∞
<≤=-=
⎰
❹若()f x 在x 点连续,则()()F x f x '=
(3) 连续型随机变量和离散型随机变量的区别:
[1]
由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,0
{}()()0P X x F x F x ==--=;
而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。
[2]
概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1.
[3]
连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0.
[4]
对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即:
{}{}{}{}()()
()b
a
P a X b P a X b P a X b P a X b F b F a f x dx
<<=≤≤=<≤=≤<=-=
⎰。