二维随机变量及其分布函数

合集下载

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)

《概率论》二维随机变量及其分布函数的定义、基本性质

《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。

二维随机变量及其联合分布函数

二维随机变量及其联合分布函数

E-mail: xuxin@
实例1 炮弹的弹着点的 位置 (X,Y) 就是一个二维 随机变量. 实例2 考查某一地 区学 前儿童的发育情况 , 则儿 童的身高 H 和体重 W 就 构成二维随机变量(H,W). 说明 二维随机变量 ( X, Y ) 的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系.
0
+∞
−2 x
(1 − e )dx = [−e
−x
−2 x
2 −3x +∞ 2 1 + e ] |0 = 1 − = . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计 算的方法。特别是会根据不同形状的概率密度非零 区域与所求概率的事件区域G来处理这类问题。 与所求概率的
E-mail: xuxin@
( x, y ) 处的函数值就是事件
“随机点(X,Y)落在以点
( x, y )为右上顶点的角形区
域”的概率.
E-mail: xuxin@
分布函数具有下列基本性质:
(1)0 ≤ F ( x, y ) ≤ 1 (−∞ < x < +∞, −∞ < y < +∞) F 且对于任意固定的y, (−∞, y) = xlim F ( x, y ) = 0, →−∞
P{( X , Y ) ∈ G} =
( xi , y j )∈G
∑ P{ X = x , Y = y }
i j
F ( x, y )
E-mail: xuxin@
三、二维连续型随机变量
1、概念
定义5 设二维随机变量(X,Y)的分布函数为 F ( x, y ) 如果存在非负函数 f ( x, y ),使得对任意的X, Y均有 y x

二维随机变量及其分布

二维随机变量及其分布
5
一、二维随机变量的联合分布函数与边缘分布函数
1、联合分布函数: F(x,y)
(1)定义:设(X,Y)为二维随机变量,对任意实数 x、y, 称
F (x, y) P {X x , Y y} P {(X x) (Y y )}
为二维随机变量(X,Y)的联合分布函数。
6
(2)联合分布函数的几何意义 (X,Y)平面上随机点的 坐标
三、二维连续型随机变量
23
1、联合概率密度函数:f(x,y)
定义:设二维随机变量(X,Y)的分布函数为 F
(x,y),若存在非负函数f(x,y),使对任意实数
x,y 有
xy
F(x, y)
f (u,v)dudv
则称(X,Y)是二维连续型随机变量,f(x,y)称为(X, Y)的联合概率密度函数。
f (x, y)
0, 其他
求:(1)k; (2)P(Y X );
(3)分布函数F (x, y);
(4)P(0 X 1, o Y X )
26
解:(1)1
f (x, y)dxdy
y
dx
ke2x3ydy
0
0
0
x
k e2xdx e3ydy k
0
0
6
e2xdx 1 e2xd (2x)
X与Y独立.
43
例2:设二维随机变量(X,Y)的概率密度为
f
(
x,
y)
2,
0
x 0,
y, 0 其他
y
1
问X与Y是否独立。
解:f X (x)
f (x, y)dy
3
二维随机变量的定义:
设E是一个随机试验,其样本空间为S .设X、Y是定义在S 上的两个随机变量,由 X,Y 构成的向量(X,Y)称为S的 一个二维随机变量。

3.1 二维随机变量的定义、分布函数

3.1  二维随机变量的定义、分布函数
2 X
当 2 x, 且 1 y 0 时 F ( x , y ) P{ X x , Y y }
P{ X 2, Y 1} 1 1 4 6
0
-1
Y X
-1
0
1 2


Y 1


F ( x , y ) P{ X x , Y y } P{ X 1, Y 1}
二维连续型随机变量的联合概率密度的 性质
(1)非负性 (2)正则性
f ( x, y) 0
F ( ,)
(3)可导性


f ( x , y )dxdy 1
2 F ( x, y) f ( x, y) xy
(4)(X,Y)落在平面区域G上的概率
设二维随机变量(X,Y)的概率密度为
1 , SG 0, ( x , y ) G; ( x, y) G.
f ( x, y)
其中G是平面上的有界区域,其面积为SG 则称(X,Y)在D上服从均匀分布.
例题讲解
例1: 设二维随机变量(X,Y)在区域G上服从均匀分 布,其中G是曲线 y=x2 和y=x 所围成的区域,则
定义3.1.4 (二元连续型随机变量)
若存在非负函数 f(x,y),使对任意实数x,y, 二元随机变量(X,Y)的分布函数可表示成如下形式
F ( x , y ) PX x , Y y
f (u, v )dudv
x
y
则称(X,Y)是二元连续型随机变量。
f(x,y)称为二元随机变量(X,Y)的联合概率密度函数.
2 12 2 , 0.75时二元正态分布的 • 下图是当 钟形密度曲面图。

二维随机变量及其分布函数

二维随机变量及其分布函数

P{Y
1}
p1
p11
p21
p31
p41
p51
p61
1 6
0
1 6
, 0
1 6
0
1 2
P{Y
2}
p2
p12
p22
p32
p42
p52
p62
0
1 6
0
,1 6
0
1 6
1 2
即关于Y的边缘分布律为
Y
1
2
P
1/2
1/2
例2 设(X,Y)的联合分布律为
X Y
1
1
2
3
4
1 / 4 1 / 8 1 / 12 1 / 16
G
G1
dx
x 6e(2x3y) dy 3
0
0
5
四、均匀分布和正态分布
1.均匀分布
设D为xoy面上的有界区域,其面积为S,如果二维随机变量(X,Y)具
有概率密度
f
(x,
y)
1 S
,
0,
则称(X,Y)在区域D上服从均匀分布.
(x, y) D, 其它.
例3 设二维随机变量(X,Y)在 分布,求:
二维随机变量(X,Y)的分布函数F(x,y)具有性质: 1°0≤F(x,y),且对任意x,y有
F (, y) 0, F (x,) 0, F(,) 0, F(.,) 1 2°F(x,y)是变量x和y的单调不减函数.
3°F(x,y)关于x右连续,关于y也右连续
4°(X,Y)落在矩形区域x1<X≤x2,y1<Y≤y2上的概率为 .
P
{X
j 1
xi ,Y
y j }

3.1 二维随机变量及其分布

3.1  二维随机变量及其分布

可得
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即Y的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即X的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
由 概率密度函数性质 4,得
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
三、二维连续型随机变量及其概率分布
两个常见二维连续型概率分布
三、二维连续型随机变量及其概率分布
关于二维正态分布的说明 (1)服从二维正态分布的密度函数的典型图形见下图; (2)二维正态分布的两个边缘分布是一维正态分布。
解:(1)由二维随机变量分布函数的性质, 可得
一、二维随机变量及其分布函数
例:设二维随机变量(X, Y)的分布函数为
解:由(1)式可得
第一节 二维随机变量及其分布
二维随机变量及其分布函数
二维离散型随机变量及其概率分布 二维连续型随机变量及其概率密度
二、二维离散型随机变量及其概率分布

第一节 二维随机变量及其分布

第一节  二维随机变量及其分布
x y
xi x y j y
F (4)二维离散随机变量的分布函数为: x , y px i , y j
对单变量 x 或 y 来说都右连续的。 二维连续随机变量的分布函数 F(x , y)是连续函数。
4
几何意义 F(x, y)表示随机点(X, Y)落在以(x, y)为顶 点,且位于该点左下方的无穷矩形区域内的概率。
解 (1 ) f ( x, y ) dxdy 1
0



0
ce
( x y )
dxdy c 0 (e
y

( x y )
)
0
dy
c e dy c(e ) 0
y 0
c1
c 1
( 2)P ( X Y 1)
x y 1
f ( x, y ) dxdy
17
P ( X Y 1)

1 0
1 y
0
e
( x y ) 1
dxdy
y
x y1
e dy
1 y 0
1 y
0
e
x
dx e y (1 e y 1 )dy
0 y x
x
1 (e y e 1 )dy 1 2e
XY
1
0
1 3
2
1 3 1 3
1
2
7
例3.2 设随机变量X在1,2,3,4四个整数中等可能 地取值,另一个随机变量Y在1~X中等可能地取一整 数值,试求(X,Y)的分布律. 解 由乘法公式容易求得(X,Y)的分布律,易知3,4,j取不大于 i的正整数,且
11 P X i, Y j P Y j | X i P X i , i 4 i 1, 2,3, 4, j i.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设二维离散型随机变量 ( X ,Y ) 所有可能取的 值为 ( x i , y j ), i , j 1, 2,, 记 P{ X x i , Y y j } pij , i , j 1, 2,, 称此为二维离散型随机 变量 ( X ,Y ) 的分布律 , 或随机变量 X 和 Y 的联合分布律 .
对于任意固定的x ,当y2 y1时F ( x, y2 ) F ( x, y1 ).
2o
0 F ( x, y ) 1, 且有
lim F ( x , y ) 0, 对于任意固定的 y, F ( , y ) x
对于任意固定的 x , F ( x,) lim F ( x, y ) 0,
( 2)
f ( x , y ) d x d y F (, ) 1.

(3) 设 G 是 xOy 平面上的一个区域 , 点 ( X , Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
G
2 F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
例2 从一个装有3支蓝色、2支红色、3支绿色圆珠
笔的盒子里, 随机抽取两支, 若 X、Y 分别表示 抽出的蓝笔数和红笔数,求 ( X, Y ) 的分布律. 解 ( X, Y ) 所取的可能值是
( 0,0), ( 0,1), (1,0 ), (1,1), ( 0,2), ( 2,0).
3 2 3 8 3 抽取两支都是绿笔 抽取一支绿笔 , 一支红笔 P { X 0,Y 0} , 0 0 2 2 28 3 2 3 8 3 P { X 0,Y 1} , 0 1 1 2 14

( X, Y ) 的可能取为 (1, 2), ( 2, 1), ( 2, 2).
1 2 1 2 1 1 P{ X 1 , Y 2} , P{ X 2 , Y 1} , 3 2 3 3 2 3 2 1 1 P{ X 2 , Y 2} . 3 2 3
F ( x, y)
f ( u, v ) d u d v ,) 是连续型的二维随机变 量 , 函数 f ( x , y ) 称为二维随机变量 ( X , Y ) 的概率密度 , 或称为随机 变量 X 和 Y 的联合概率密度 .
2. 性质
(1) f ( x , y ) 0.
(2) 将 ( X,Y )看作是平面上随机点的坐标,
即有 {Y X } {( X ,Y ) G },
P{Y X } P{( X ,Y ) G }
y
YX
f ( x , y ) d x d y
G
G
O


0
y

2e
( 2 x y )
d xd y
x
1 . 3

(1) F ( x , y )
f ( u, v ) d u d v
y
x
y x ( 2 u v ) 2 e d u d v , x 0, y 0, 0 0 0, 其他.
(1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x , y ) 0, 其他.
证明
P{ x1 X x2 , y1 Y y2 }
P{ X x2 , y1 Y y2 } P{ X x1 , y1 Y y2 } P{ X x2 ,Y y2 } P{ X x2 ,Y y1 } P{ X x1 ,Y y2 } P{ X x1 ,Y y1 } 0, 故 F ( x 2 , y2 ) F ( x 2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
( 2,1)
0;
(2) 当1 x 2 , 1 y 2 时 ,
F ( x , y ) p11 0;
o
1
2
x
( 3) 当 1 x 2 , y 2 时 ,
F ( x , y ) p11 p12 1 3 ;
y
2(1,2) 1 (1,1)
( 2, 2 )
( 2,1)
o
1
2
x
(4) 当x 2 , 1 y 2 时 ,
F ( x , y ) p11 p21 1 3;
(5) 当 x 2 , y 2 时 , F ( x , y ) p11 p21 p12 p22 1.
所以( X ,Y ) 的分布为
0, x 1 或 y 1, 1 F ( x , y ) , 1 x 2, y 2, 或 x 2,1 y 2, 3 1, x 2, y 2.
3. 说明
几何上, z f ( x, y ) 表示空间的一个曲面.
f ( x, y ) d x d y 1,
表示介于 f (x, y)和 xOy 平面之间的空间区域的全部 体积等于1.
P {( X ,Y ) G } f ( x, y ) d x d y, G

1 1 P{ X i ,Y j } P{Y j X i }P{ X i } , i 4 i 1, 2, 3, 4, j i .
于是 ( X ,Y ) 的分布律为
Y
X
1
2
3
1 12
4
1 2
1 4
1 8 1 8
0 0 0
1 12
1 12
3
4
0 0
0
1 16 1 16 1 16 1 16
F ( x , y ) 的函数值就是随机点落在如图所示区域 内的概率 .
y
( x, y)
X x ,Y y
O
x
3. 分布函数的性质
1o F ( x , y ) 是变量 x 和 y 的不减函数 ,即对于任 意固定的 y , 当 x2 x1 时 F ( x2 , y ) F ( x1 , y ),
y
F ( ,) x lim F ( x , y ) 0 ,
y
F ( ,) x lim F ( x , y ) 1.
y
3o
F ( x , y ) F ( x 0, y ) , F ( x , y ) F ( x , y 0 ) ,
p2 j pij
例1 设随机变量 X 在 1, 2, 3, 4 四个整数中等可能地
取值 , 另一个随机变量 Y 在 1 ~ X 中等可能地取一 整数值 . 试求 ( X , Y ) 的分布律 .
解 { X i ,Y j } 的取值情况是 : i 1, 2, 3, 4,
j 取不大于 i 的正整数 . 且由乘法公式得
3 2 3 8 3 P { X 1,Y 1} , 1 1 0 2 14 3 2 3 8 1 P { X 0,Y 2} , 0 2 0 2 28 3 2 3 8 9 P { X 1,Y 0} , 1 0 1 2 28 3 2 3 8 3 P { X 2, Y 0} . 2 0 0 2 28
故所求分布律为
Y
X
0 1 2
0
1 2
3 28
9 28
3 28
3 14
1 28
3 14
0
0
0
例3 一个袋中有三个球,依次标有数字 1, 2, 2, 从 中任取一个, 不放回袋中,再任取一个,设每次取球 时,各球被取到的可能性相等,以 X , Y 分别记第一 次和第二次取到的球上标有的数字,求 ( X, Y ) 的 分布律与分布函数.
二维均匀分布和二维正态分布
1. 二维均匀分布
即 F ( x , y ) 关于 x 右连续, 关于 y 也右连续 .
4o 对于任意 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 ,
有 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
S
e
Y (e )
实例1 炮弹的弹着点的位置 ( X, Y ) 就是一个二 维随机变量. 实例2 考查某一地区学前儿童的发育情况, 则儿童 的身高 H 和体重 W 就构成二维随机变量 ( H, W ). 说明 二维随机变量 ( X, Y ) 的性质不仅与 X 、Y 有关,而且还依赖于这两个随机变量的相互关系.
2. 分布函数的定义
设 ( X ,Y ) 是二维随机变量, 对于任意实数 x , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P{ X x ,Y y } 称为二维随机变量 ( X ,Y ) 的分布函数 , 或称为随机变 量X 和 Y 的联合分布函数 .
p11 0,
1 p12 p21 p22 , 3
故 ( X , Y ) 的分布为
Y X
1
2
1 2
下面求分布函数.
0 13
13 13
(1) 当 x 1 或 y 1 时 ,
F ( x , y ) P { X x ,Y y }
y
2(1,2) 1
(1,1)
( 2, 2 )
一、二维随机变量及其分布
1.二维随机变量的定义
设 E 是一个随机试验 , 它的样本空间是 S {e } , 设 X X (e ) 和 Y Y (e ) 是定义在 S 上的随机变量 , 由它们构成的一个向量 ( X ,Y ) , 叫作二维随机向量或 二维随机变量 .
相关文档
最新文档