初一上册数学图形的运动同步练习苏科版

合集下载

苏科版七年级数学上学期 5.2 图形的运动 同步 练习

苏科版七年级数学上学期 5.2 图形的运动 同步 练习

5.2 图形的运动一.选择题1.如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是()A.B.C.D.2.如图所示的正方体,用一个平面截去它的一个角,则截面不可能是(A.锐角三角形B.等腰三角形C.等腰直角三角形D.等边三角形3.把正方体的八个角切去一个角后,余下的图形有()条棱.A.12或15B.12或13C.13或14D.12或13或14或154.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.5.在平移、旋转和轴对称这些图形变换下,它们共同具有的特征是()A.图形的形状、大小没有改变,对应线段平行且相等B.图形的形状、大小没有改变,对应线段垂直,对应角相等C.图形的形状、大小都发生了改变,对应线段相等,对应角相等D.图形的形状、大小没有改变,对应线段相等,对应角相等6.如图,取编号为1﹣6的6个由小三角形组成的图案中的5块恰好无空隙的填成左侧的大图案,图中显示的所有小三角形都是全等的正三角形,且每一个图案都可以任意旋转、翻转.6个图案中有一个是用不上的,其中用不上的那个图案是()A.(2)B.(3)C.(4)D.(5)7.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移8.在方格纸中,图(1)中的图形N经过旋转平移后的位置如图(2)所示,那么下列说法正确的是()A.绕A点顺时针旋转90°,再向下平移3个单位B.绕A点逆时针旋转90°,再向下平移3个单位C.绕A点顺时针旋转90°,再向下平移5个单位D.绕A点逆时针旋转90°,再向下平移4个单位9.对如图的几何体变换位置或视角,则可以得到的几何体是()A.B.C.D.10.下面这个图形绕虚线旋转一周形成的哪个几何体()A.B.C.D.二.填空题11.圆锥可以看成是直角三角形以它的一条直角边所在的直线为轴,其余各边旋转一周而成的面所围成的几何体,那么圆台可以看成是,所在的直线为轴,其余各边旋转一周而成的面所围成的几何体;如果将一个半圆以它的直径所在的直线为轴旋转一周,所得的几何体应该是.12.用一个平面去截正方体,截得的平面图形是矩形,这时正方体被截成的两部分可以是6面体和6面体(如图).如果截法不同,那么被截成两部分的多面体还可以是.13.把立方体的八个角切去一个角后,余下几何体的棱共条(请写出所有可能的情况).14.在五行五列的方格棋盘上沿骰子的某条棱翻动骰子,骰子在棋盘上只能向它所在格的左、右、前、后格翻动.开始时骰子在3C处,如图1,将骰子从3C处翻动一次到3B处,骰子的形态如图2;如果从3C处开始翻动两次,使朝上,骰子所在的位置是.15.如图,一个正方体的每个面上分别标有数字1,2,3,4,5,6,根据图中该正方体①②③三种状态时所显示的数字,可推断“?”处的数字是.三.解答题16.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.17.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)18.一个圆柱体,如果把它的高截短3分米,它的表面积就减少18.84平方分米,这个圆柱的体积减少了多少立方分米?要把截下的高3分米的圆柱部分漆上油漆,要漆多少平方分米?参考答案一.选择题1.C.2.C.3.D.4.D.5.D.6.B.7.D.8.A.9.B.10.B.二.填空题11.为直角梯形以它的垂直于底边的腰;球体.12.5面体和5面体或一个5面体和1个6面体或一个5面体和1个7面体或一个4面体和1个7面体.13.12或13或14或15.14.2B或4B.15.1.三.解答题16.解:将△A1B1C1向上平移4个单位,再向右平移3个单位,然后绕点C1顺时针旋转90°即可得出将△A1B1C1重合到△A2B2C2上.17.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.18.解:18.84÷3=6.28(分米),6.28÷3.14÷2=1(分米),3.14×12×3=9.42(立方分米);3.14×12×2+18.84=25.12(平方分米).答:这个圆柱的体积减少了9.42立方分米,要漆25.12平方分米.。

苏科版数学七年级上5.2图形的运动同步练习含答案

苏科版数学七年级上5.2图形的运动同步练习含答案

5.2 图形的运动一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象7.下列说法正确的是()A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B .在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C .在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D .在平移和旋转图形中,对应角相等,对应线段相等且平行8.以下变换可以改变图形的大小的是( )A .位似变换B .旋转变换C .轴对称变换D .平移变换9.如图,矩形ABCD ,AB=a ,BC=b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V 乙,侧面积分别为S 甲、S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙10.视力表的一部分如图,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似11.观察图,在下列四种图形变换中,该图案不包含的变换是( )A .旋转B .轴对称C .位似D .平移12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来( )A .B .C .D .二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.15.用一个平面去截长方体,截面是平行四边形(填“可能”或“不可能”).16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数个,棱数4023条,试求出它的面数.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①、②、③,而面积都等于.(2)菱形②可以看做是由菱形①如何旋转得到的?答:.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?参考答案与解析一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换【分析】根据轴对称变换、平移变换、旋转变换和中心对称变换的概念进行判断即可.【解答】解:连接AB,作线段AB的垂直平分线,垂足为O,∴图形1以直线l为对称轴通过轴对称变换得到图形2,A可行;图形1以O为旋转中心,旋转180°得到图形2,C、D可行;故选:B.【点评】本题考查的是几何变换的类型,掌握轴对称变换、平移变换、旋转变换和中心对称变换的概念是解题的关键.2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合【分析】先证明△AEC≌△BFD,然后根据平移变换、旋转变换、位似变换和对称轴变换的性质进行判断.【解答】解:∵AB=CD,∴AC=BD,∵AE=BF,CE=DF,∴△AEC≌△BFD,∴△ACE向右平移AB的长度单位可以和△BDF重合.故选D.【点评】本题考查了几何变换的类型:熟练掌握平移变换、旋转变换、位似变换和对称轴变换的性质.3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转【分析】观察本题中图案的特点,根据对称、旋转的性质即可得出答案.【解答】解:观察图形可得:将甲图先轴对称变化,再逆时针旋转即可变成乙图;故选C.【点评】本题考查了几何变换的类型,用到的知识点是轴对称、旋转变化的性质:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.【分析】根据题意,一个长方形沿虚线旋转一周,所围成的几何体是圆柱.【解答】解:结合图形特征可知,所围成的几何体是圆柱.故选A.【点评】本题考查的是图形的旋转,考法较新颖,解题关键是正确理解常见图形的旋转情况.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.【点评】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象【分析】根据几何体的特征以及面动成体、线动成面的概念进行判断即可.【解答】解:(A)用一个平面去截一个正方体,截面可能为三角形、四边形、五边形或六边形,故(A)正确;(B)五棱柱的上下底面上各有5个顶点,所以共有10个顶点,故(B)正确;(C)沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆锥或底面重合的两个圆锥,故(C)错误;(D)将折起的扇子打开,属于“线动成面”的现象,故(D)正确.故选(C)【点评】本题主要考查了截一个几何体以及点、线、面、体的定义.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形.从运动的观点来看,点动成线,线动成面,面动成体.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【解答】解:A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选:B.【点评】此题主要考查了几何变换的类型,利用平移的性质分析得出是解题关键.8.以下变换可以改变图形的大小的是()A.位似变换 B.旋转变换 C.轴对称变换D.平移变换【分析】根据题意,结合选项一一分析,排除错误答案.【解答】解:A、形状不变,但大小可以改变的变换是相似变换,故正确;B、旋转变换是原图形中的点都绕着一个固定的中心点转动一个恒等的角度,故错误;C、轴对称变换是由反射产生一个图形的映象的过程,故错误;D、平移变换是原图形中的点都沿着平行的途径运动一个恒等的距离,故错误;故选A.【点评】本题考查的是相似变换定义,即形状相同,但大小不一定相同的变换是相似变换.9.如图,矩形ABCD ,AB=a ,BC=b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V 乙,侧面积分别为S 甲、S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案. 【解答】解:V 甲=π•b 2×a=πab 2, V 乙=π•a 2×b=πba 2, ∵πab 2<πba 2, ∴V 甲<V 乙, ∵S 甲=2πb •a=2πab , S 乙=2πa •b=2πab , ∴S 甲=S 乙, 故选:B .【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.10.视力表的一部分如图,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似【分析】开口向上的两个“E ”形状相似,但大小不同,因此它们之间的变换属于位似变换.如果没有注意它们的大小,可能会误选A .【解答】解:根据位似变换的特点可知它们之间的变换属于位似变换.故选D.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.11.观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转 B.轴对称C.位似 D.平移【分析】根据平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,可得答案.【解答】解:A、大小相同的图形是旋转得到的,故A正确;B、一个图形沿一条直线对着直线两旁的部分能完全重合,故B正确;C、位置相同、形状相同的图案、大小不同的图形是位似得到的,故C正确;D、图形没有平移,故D错误;故选:D.【点评】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,观察时要紧扣图形变换特点,认真判断.12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来()A.B.C.D.【分析】根据面动成体的原理以及空间想象力即可解.【解答】解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.【点评】考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【点评】主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.15.用一个平面去截长方体,截面可能是平行四边形(填“可能”或“不可能”).【分析】让截面不垂直于长方体,又经过长方体的4个面,动手操作可得到答案.【解答】解:当截面不垂直于长方体,又经过长方体的4个面时,得到截面为四边形,对边平行且相等,为平行四边形.【点评】解决本题的关键是理解截面经过几个面,得到的截面形状就是几边形;经过面相同,从不同的位置截取得到的多边形的形状也不相同.16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是②③④(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.【分析】根据平移和旋转的性质及其区别,平移变换对应线段平行,但旋转后对应线段不平行,即可得出答案.【解答】解:∵平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;∴结论一定正确的是②③④;故答案为:②③④.【点评】此题考查了图形变换的性质及其区别,关键是根据平移和旋转的性质及其区别解答.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于8立方分米.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.【点评】本题考查了截一个几何体,解答此题关键是先求出长宽高的和,再由条件推断出长、宽、高,然后根据体积公式解答.20.(•衡阳)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n 条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?【分析】观察此图可知此图形状,大小没变,只是位置发生了变化.由旋转平移的性质可知此图是通过旋转、平移得到.【解答】解:通过旋转、平移得到.以B为中心,逆时针旋转90°,向下平移1个单位,再向右平移5个单位.【点评】本题考查几何变换的类型及几种几何变换的特点,解答此题的关键是掌握旋转、平移的性质并熟悉图形特征.22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)根据三角形旋转是圆锥,可得几何体;(2)根据圆锥的体积公式,可得答案.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π,以5cm为轴的体积为×π()2×5=9.6π.【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.【分析】根据△A1B1C1和△A2B2C2的位置,结合各几何变换的类型进行判断即可.【解答】解:将△A1B1C1向上平移4个单位,再向右平移3个单位,然后绕点C1顺时针旋转90°即可得出将△A1B1C1重合到△A2B2C2上.【点评】本题考查了几何变换的类型,属于基础题,解答本题的关键是掌握几种几何变换的特点.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E 旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1 7914图2 6812图3 71015(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数个,棱数4023条,试求出它的面数.【分析】(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e=2求出即可.【解答】解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=,e=4023,f+v﹣e=2∴f+﹣4023=2,f=,即它的面数是.【点评】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0)、②(0,8)、③(﹣8,0),而面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?答:以坐标原点O为旋转中心,按逆时针方向旋转90°.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=﹣x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.【分析】(1)根据对称中心的概念即可找出答案,(2)根据旋转的特点即可得出答案,(3)根据对称特点及坐标即可得出解析式,(4)根据几何变换的特点即可得出答案.【解答】解:(1)根据对称中心的概念可知①(8,0)②(0,8)③(﹣8,0),S=12,故答案为①(8,0)②(0,8)③(﹣8,0),S=12,(2)根据旋转的特点可知:以坐标原点O为旋转中心,按逆时针方向旋转90°,故答案为以坐标原点O为旋转中心,按逆时针方向旋转90°,(3)根据题意得解析式为y=﹣x,(4)平移变换:菱形①沿x轴反方向(或从右往左)平移16各单位得到菱形③,旋转变换:菱形①以原点为旋转中心顺时针(或逆时针)旋转180°得到菱形③.【点评】本题主要考查了对称中心的概念、旋转的特点、解析式的求法、几何变换特点,难度适中.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【分析】(1)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(2)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(3)根据矩形旋转所的几何体的大小比较,可得答案.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3)。

2020苏科版数学七年级上5.2图形的运动同步练习含答案

2020苏科版数学七年级上5.2图形的运动同步练习含答案

5.2 图形的运动一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象7.下列说法正确的是()A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B .在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C .在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D .在平移和旋转图形中,对应角相等,对应线段相等且平行8.以下变换可以改变图形的大小的是( )A .位似变换B .旋转变换C .轴对称变换D .平移变换9.如图,矩形ABCD ,AB=a ,BC=b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V 乙,侧面积分别为S 甲、S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙10.视力表的一部分如图,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似11.观察图,在下列四种图形变换中,该图案不包含的变换是( )A .旋转B .轴对称C .位似D .平移12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来( )A .B .C .D .二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.15.用一个平面去截长方体,截面是平行四边形(填“可能”或“不可能”).16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2020个,棱数4023条,试求出它的面数.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①、②、③,而面积都等于.(2)菱形②可以看做是由菱形①如何旋转得到的?答:.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?参考答案与解析一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换【分析】根据轴对称变换、平移变换、旋转变换和中心对称变换的概念进行判断即可.【解答】解:连接AB,作线段AB的垂直平分线,垂足为O,∴图形1以直线l为对称轴通过轴对称变换得到图形2,A可行;图形1以O为旋转中心,旋转180°得到图形2,C、D可行;故选:B.【点评】本题考查的是几何变换的类型,掌握轴对称变换、平移变换、旋转变换和中心对称变换的概念是解题的关键.2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合【分析】先证明△AEC≌△BFD,然后根据平移变换、旋转变换、位似变换和对称轴变换的性质进行判断.【解答】解:∵AB=CD,∴AC=BD,∵AE=BF,CE=DF,∴△AEC≌△BFD,∴△ACE向右平移AB的长度单位可以和△BDF重合.故选D.【点评】本题考查了几何变换的类型:熟练掌握平移变换、旋转变换、位似变换和对称轴变换的性质.3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转【分析】观察本题中图案的特点,根据对称、旋转的性质即可得出答案.【解答】解:观察图形可得:将甲图先轴对称变化,再逆时针旋转即可变成乙图;故选C.【点评】本题考查了几何变换的类型,用到的知识点是轴对称、旋转变化的性质:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.【分析】根据题意,一个长方形沿虚线旋转一周,所围成的几何体是圆柱.【解答】解:结合图形特征可知,所围成的几何体是圆柱.故选A.【点评】本题考查的是图形的旋转,考法较新颖,解题关键是正确理解常见图形的旋转情况.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.【点评】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象【分析】根据几何体的特征以及面动成体、线动成面的概念进行判断即可.【解答】解:(A)用一个平面去截一个正方体,截面可能为三角形、四边形、五边形或六边形,故(A)正确;(B)五棱柱的上下底面上各有5个顶点,所以共有10个顶点,故(B)正确;(C)沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆锥或底面重合的两个圆锥,故(C)错误;(D)将折起的扇子打开,属于“线动成面”的现象,故(D)正确.故选(C)【点评】本题主要考查了截一个几何体以及点、线、面、体的定义.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形.从运动的观点来看,点动成线,线动成面,面动成体.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【解答】解:A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选:B.【点评】此题主要考查了几何变换的类型,利用平移的性质分析得出是解题关键.8.以下变换可以改变图形的大小的是()A.位似变换 B.旋转变换 C.轴对称变换D.平移变换【分析】根据题意,结合选项一一分析,排除错误答案.【解答】解:A、形状不变,但大小可以改变的变换是相似变换,故正确;B、旋转变换是原图形中的点都绕着一个固定的中心点转动一个恒等的角度,故错误;C、轴对称变换是由反射产生一个图形的映象的过程,故错误;D、平移变换是原图形中的点都沿着平行的途径运动一个恒等的距离,故错误;故选A.【点评】本题考查的是相似变换定义,即形状相同,但大小不一定相同的变换是相似变换.9.如图,矩形ABCD ,AB=a ,BC=b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V 乙,侧面积分别为S 甲、S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案. 【解答】解:V 甲=π•b 2×a=πab 2, V 乙=π•a 2×b=πba 2, ∵πab 2<πba 2, ∴V 甲<V 乙, ∵S 甲=2πb •a=2πab , S 乙=2πa •b=2πab , ∴S 甲=S 乙, 故选:B .【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.10.视力表的一部分如图,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似【分析】开口向上的两个“E ”形状相似,但大小不同,因此它们之间的变换属于位似变换.如果没有注意它们的大小,可能会误选A .【解答】解:根据位似变换的特点可知它们之间的变换属于位似变换.故选D.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.11.观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转 B.轴对称C.位似 D.平移【分析】根据平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,可得答案.【解答】解:A、大小相同的图形是旋转得到的,故A正确;B、一个图形沿一条直线对着直线两旁的部分能完全重合,故B正确;C、位置相同、形状相同的图案、大小不同的图形是位似得到的,故C正确;D、图形没有平移,故D错误;故选:D.【点评】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,观察时要紧扣图形变换特点,认真判断.12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来()A.B.C.D.【分析】根据面动成体的原理以及空间想象力即可解.【解答】解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.【点评】考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【点评】主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.15.用一个平面去截长方体,截面可能是平行四边形(填“可能”或“不可能”).【分析】让截面不垂直于长方体,又经过长方体的4个面,动手操作可得到答案.【解答】解:当截面不垂直于长方体,又经过长方体的4个面时,得到截面为四边形,对边平行且相等,为平行四边形.【点评】解决本题的关键是理解截面经过几个面,得到的截面形状就是几边形;经过面相同,从不同的位置截取得到的多边形的形状也不相同.16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是②③④(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.【分析】根据平移和旋转的性质及其区别,平移变换对应线段平行,但旋转后对应线段不平行,即可得出答案.【解答】解:∵平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;∴结论一定正确的是②③④;故答案为:②③④.【点评】此题考查了图形变换的性质及其区别,关键是根据平移和旋转的性质及其区别解答.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于8立方分米.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.【点评】本题考查了截一个几何体,解答此题关键是先求出长宽高的和,再由条件推断出长、宽、高,然后根据体积公式解答.20.(2020•衡阳)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n 条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?【分析】观察此图可知此图形状,大小没变,只是位置发生了变化.由旋转平移的性质可知此图是通过旋转、平移得到.【解答】解:通过旋转、平移得到.以B为中心,逆时针旋转90°,向下平移1个单位,再向右平移5个单位.【点评】本题考查几何变换的类型及几种几何变换的特点,解答此题的关键是掌握旋转、平移的性质并熟悉图形特征.22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)根据三角形旋转是圆锥,可得几何体;(2)根据圆锥的体积公式,可得答案.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π,以5cm为轴的体积为×π()2×5=9.6π.【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.【分析】根据△A1B1C1和△A2B2C2的位置,结合各几何变换的类型进行判断即可.【解答】解:将△A1B1C1向上平移4个单位,再向右平移3个单位,然后绕点C1顺时针旋转90°即可得出将△A1B1C1重合到△A2B2C2上.【点评】本题考查了几何变换的类型,属于基础题,解答本题的关键是掌握几种几何变换的特点.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E 旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1 7914图2 6812图3 71015(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2020个,棱数4023条,试求出它的面数.【分析】(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e=2求出即可.【解答】解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2020,e=4023,f+v﹣e=2∴f+2020﹣4023=2,f=2012,即它的面数是2012.【点评】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0)、②(0,8)、③(﹣8,0),而面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?答:以坐标原点O为旋转中心,按逆时针方向旋转90°.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=﹣x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.【分析】(1)根据对称中心的概念即可找出答案,(2)根据旋转的特点即可得出答案,(3)根据对称特点及坐标即可得出解析式,(4)根据几何变换的特点即可得出答案.【解答】解:(1)根据对称中心的概念可知①(8,0)②(0,8)③(﹣8,0),S=12,故答案为①(8,0)②(0,8)③(﹣8,0),S=12,(2)根据旋转的特点可知:以坐标原点O为旋转中心,按逆时针方向旋转90°,故答案为以坐标原点O为旋转中心,按逆时针方向旋转90°,(3)根据题意得解析式为y=﹣x,(4)平移变换:菱形①沿x轴反方向(或从右往左)平移16各单位得到菱形③,旋转变换:菱形①以原点为旋转中心顺时针(或逆时针)旋转180°得到菱形③.【点评】本题主要考查了对称中心的概念、旋转的特点、解析式的求法、几何变换特点,难度适中.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【分析】(1)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(2)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(3)根据矩形旋转所的几何体的大小比较,可得答案.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3)。

苏科版七年级上《5.2图形的运动》同步测试含答案

苏科版七年级上《5.2图形的运动》同步测试含答案

5.2图形的运动知识点1图形的形成1.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,这说明__________;时钟秒针旋转时,形成一个圆面,这说明__________;三角板绕它的一条直角边旋转一周,形成一个圆锥,这说明__________.2.教材“想一想”变式如图5-2-1所示,将平面图形绕轴旋转一周,得到的几何体是()图5-2-1图5-2-23.汽车的雨刷把玻璃上的雨水刷干净属于下列哪项的实际应用()A.点动成线B.线动成面C.面动成体D.以上选项都不对4.图5-2-3是由图5-2-4中哪个图形绕虚线旋转一周形成的()图5-2-3图5-2-4知识点2图形的旋转、翻折、平移5.2017·淮安区期末观察图5-2-6中的四幅图案,能通过平移图5-2-5的图案得到的是()图5-2-5图5-2-66.图5-2-7中通过翻折变换得到的是()图5-2-77.图5-2-8中,图形甲变成图形乙,既能用平移,又能用旋转的是()图5-2-88.如图5-2-9,笑脸②是由笑脸①经过________变换得到的.图5-2-99.将下列平面图案按要求分类.(填序号)图5-2-10可由一个基本图形经平移而成的图形:_________________________________________;可由一个基本图形经翻折而成的图形:________________________________________;可由一个基本图形经旋转而成的图形:_______________________________________.10.如图5-2-11所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“翻折”)图5-2-1111.如图5-2-12,请通过作图使直线一旁的图形沿直线翻折后能与直线另一旁的图形完全重合.图5-2-1212.如图5-2-13所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()图5-2-13图5-2-1413.用一个平面去截一个正方体,其截面形状不可能是________.(请你在“三角形”“四边形”“五边形”“六边形”“七边形”这五种图形中选择符合题意的图形填上即可)14.试将一个正方形花坛分成四块大小与形状均相同的图形,使之可以看成是经平移、旋转或翻折而成的.如图5-2-15①所示,分成的是四个正方形,如图5-2-15②所示,分成的是四个曲边图形.图5-2-1515.如图5-2-16,长方形的长和宽分别是7 cm和3 cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图①,绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图②,绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)图5-2-1616.如图5-2-17所示,图①~④都是平面图形.图5-2-17(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.图序顶点数边数区域数①46 3②③④(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间的关系.1.点动成线线动成面面动成体2.A[解析] 球体既可以由圆绕着直径所在直线旋转半周得到,也可以由半圆绕直径所在直线旋转一周得到,故A正确.3.B[解析] 汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选 B.4.A5.D[解析] 因为平移不改变图形的形状和大小,只改变图形的位置,所以A,B,C,D四幅图案中,能通过已知图案平移得到的是D选项.故选 D.6.B7.C[解析] A项,既可以通过翻折,也可以通过旋转180度得到;B项,只能通过平移得到;C项,既可以通过平移得到,也可以通过旋转得到;D项,通过旋转得到的.8.旋转9.⑤②③④⑤①④10.翻折旋转平移11.解:如图所示:12.B[解析] 按照题意,动手操作一下,可知展开后所得的图形是选项 B.故选 B.13.七边形14.解:答案不唯一,如图所示.15.解:(1)得到的是底面半径是7 cm,高是 3 cm的圆柱,V≈3.14×72×3=461.58(cm3),即得到的几何体的体积约是461.58 cm3.(2)得到的是底面半径是 3 cm,高是7 cm的圆柱,V≈3.14×32×7=197.82(cm3),即得到的几何体的体积约是197.82 cm3.16.解:(1)图序顶点数边数区域数①46 3②812 5③69 4④1015 6(2)设平面图形的顶点数为n,则边数=n+n2=3n2,区域数=n2+1.。

苏科版数学七年级上册_【同步练习】_图形的运动

苏科版数学七年级上册_【同步练习】_图形的运动

初一数学作业纸 班级 姓名 学号 成绩课题:5.2图形的运动 命题人: 审核人:一、选一选:1.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的 ( )2.将半圆绕它的直径旋转一周形成的几何体是 ( )A .圆柱B .圆锥C .球D .正方体3.如图所示的四个图形,既可通过翻折变换、又可通过旋转变换得到的( )A .①②③④B .①②③C .①③D .③4.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到 的是下列几幅图中的 ( )A B C D5.下列图形是四棱柱的侧面展开图的是( )二、解答题:6.如上右图所示,按要求完成作图(涂色)(1)将图形A 平移到图形B ;(2)将图形B 沿图中虚线翻折到图形C ;(3)将图形C 沿其右下方的顶点旋转180°到图形D 。

7.分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分。

A B C D8.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.三、拓展应用:9.如图所示,把大小为4×4的正方形方格分割成形状相同的两份,例如第一个图画法,请在下图中,再画出几种不同的分法。

10.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=底面积×高)11.图中,点A,B,C,P,Q,R显示了6名学生平均每周用于阅读课外书的时间和用于看电视的时间(单位:h).(1)用有序数对表示图中点A,B,C,P,Q,R.(2)图中方格纸的对角线的左上方的点有什么共同的特点?它右下方的点呢?(3)三角形ABC的图形经过怎样的变换后得到三角形PQR的图形?其中点A对应点P,点B对应点Q,点C对应点R.12.如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)15.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.。

5.2 图形的运动 苏科版七年级数学上册同步练习(解析版)

5.2 图形的运动 苏科版七年级数学上册同步练习(解析版)

5.2 图形的运动基础过关全练知识点1 线、面、体的形成 1.(2022江苏苏州姑苏期末)“狂风四起,乌云密布.一霎时,雨点连成了线,……”这句话中蕴含的数学现象是( )A.点动成线B.线动成面C.面动成体D.雨下得很大知识点2 图形的运动2.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了 .3.(2022江苏淮安洪泽期末)如图,把一个圆绕虚线旋转一周,得到的几何体是( )A B C D4.(2022江苏淮安淮阴期末)如图,长方形的长为3 cm,宽为2 cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 cm3.(结果保留π)5.如图,在边长为1的小正方形组成的网格中有一个△ABC,按要求回答下列问题:(1)△ABC的面积为 ;(2)画出将△ABC向右平移6格,再向上平移3格后的△A1B1C1;(3)画出△ABC绕点B顺时针旋转90°后的图形△A2BC2;(4)画出△ABC沿直线EF翻折后的图形△A3B3C.能力提升全练6.(2019广西南宁中考,1,)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是( )A B C D7.(2017山东枣庄中考,2,)将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )A.96B.69C.66D.998.(2022江苏南京溧水期末,6,)如图,把左边的图形绕着给定的虚线旋转一周后形成的几何体是( )A B C D 9.(2020江苏镇江中考,14,)点O 是正五边形ABCDE 的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图所示).这个图案绕点O 至少旋转 °后能与原来的图案重合. 素养探究全练10.[空间观念](1)图①是将线段AB向右平移1个单位长度,图②是将折线AB向右平移1个单位长度,请在图③中画出一条有两个折点的折线向右平移1个单位长度的图形(折线平移经过的部分用阴影表示);(2)若长方形的长为a,宽为b,请分别写出图①②和(1)中所画图形中除去阴影部分后剩余部分的面积;(3)如图④,在宽为10 m,长为40 m的长方形草地上有一条弯曲的小路,小路宽为1 m,求这块草地的面积.11.[空间观念]一个直角三角形的两条直角边长分别为6 cm,8 cm,斜边长为10 cm.(1)如果绕着斜边所在的直线旋转一周,形成的几何体是 ;(2)如果绕着长为6 cm的直角边所在的直线旋转一周,形成的几何体的体积是多少?(3)绕着斜边所在的直线旋转一周形成的几何体的体积与绕着长为8 cm的直角边所在的直线旋转一周形成的几何体的体积哪个大?V圆柱=πr2h,V球体=43πr3,V圆锥=13πr2h答案全解全析基础过关全练1.A “雨点连成了线”蕴含的数学现象是“点动成线”.2.答案 面动成体3.D 根据面动成体的原理可得选项D是一个圆绕虚线旋转一周得到的几何体.4.答案 12π或18π解析 当以该长方形的长边所在直线为轴时,V=π·22×3=12π cm3,当以该长方形的短边所在直线为轴时,V=π·32×2=18π cm3.5.解析 (1)3.(2)如图,△A1B1C1即为所求.(3)如图,△A2BC2即为所求.(4)如图,△A3B3C即为所求.能力提升全练6.D 题中的平面图形可以看作是由一个直角三角形和一个长方形组成的,根据面动成体原理,直角三角形绕直角边所在直线旋转一周可得圆锥,长方形绕一边所在直线旋转一周可得圆柱,那么所得到的立体图形可看作是一个组合图形,该组合图形的下面是圆锥,上面是圆柱.故选D.7.B 利用旋转的性质,结合6、9的特点得出答案.8.D 根据面动成体的原理可知左边的图形绕着给定的虚线旋转一周后形成的几何体是空心圆柱,故选D.9.答案 72解析 360°5=72°,故至少旋转72°后能与原来的图案重合.素养探究全练10.解析 (1)如图(答案不唯一).(2)题图①:ab-b;题图②:ab-b;(1)中所画图形:ab-b.(3)40×10-10×1=390(m 2).答:这块草地的面积是390 m 2.11.解析 (1)底面重合的两个圆锥.(2)易知形成的几何体是圆锥,V 圆锥=13π×82×6=128π(cm 3).(3)如图,设直角三角形斜边上的高为r,所以12×6×8=12×10r,解得r=245,所以绕着斜边所在的直线旋转一周形成的几何体的体积为13π××10=76.8π(cm 3).绕着长为8 cm的直角边所在的直线旋转一周形成的几何体的体积为1π×62×8=96π(cm3),3因为96π>76.8π,所以绕着长为8 cm的直角边所在的直线旋转一周形成的几何体的体积大.。

数学:5.2图形的变化同步练习(苏科版七年级上)

数学:5.2图形的变化同步练习(苏科版七年级上)

§5.2图形的变化
基础演练
1.由点动成,由线动成,由动成体。

2.矩形绕其一边旋转一周形成的几何体叫,直角三角形绕其中一条直角边旋转一周形成的几何体叫。

3.下列现象中是平移的是(
)A .将一张纸沿它的中线折叠 B .飞蝶的快速转动
C .电梯的上下移动
D .翻开书中的每一页纸张
能力升级
4.分析下图中四个图形是怎样形成的?
5.用六根火柴棒能否拼成四个一样大小的三角形?若能,请画图说明你的拼法。

6.如图所示的立体图形可以看作直角三角形ABC ()
A .绕AC 旋转一周得到
B .绕AB 旋转一周得到
C .绕BC 旋转一周得到
D .绕CD 旋转一周得到
7.如图所示,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得P 、Q 、M 、N 四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空:
由A 得到M ;由B 得到;由C 得到;由D 得到。

A B
C
D。

初一上册数学图形的运动同步练习苏科版

初一上册数学图形的运动同步练习苏科版

初一上册数学图形的运动同步练习苏科版接下来确实是查字典数学网为大伙儿提供的初一上册数学图形的运动同步练习,请大伙儿一定认真阅读,会对大伙儿的学习生活带来专门大的关心。

1. 在图形的平移、旋转、轴对称变换中,其相同的性质是().2. 如何样将图中△ABC变成右边的△A′B′C′?3. 在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.4. △DEF和△ABC有什么关系?假如△DEF是由△ABC通过某种变换得到的,那么又是什么变换?指出变换的过程.5. 阅读下面材料:把△ABC沿直线BC平行移动线段BC的长度,能够变到△DEC的位置;以BC为轴,把△ABC翻折180°,能够变到△DBC的位置;以点A为中心,把△ABC旋转180°,能够变到△AED的位置.像如此,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在题中,能够通过平行移动、翻折、旋转中的哪一种方法如何样变化,使△ABE变到△ADF的位置;②指线段BE与DF之间的关系,什么缘故?那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?小编为大伙儿提供的初一上册数学图形的运动同步练习大伙儿认真阅读了吗?最后祝同学们学习进步。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册数学图形的运动同步练习苏科版接下来就是查字典数学网为大家提供的初一上册数学
图形的运动同步练习,请大家一定仔细阅读,会对大家的学习生活带来很大的帮助。

1. 在图形的平移、旋转、轴对称变换中,其相同的性质是().
2. 怎样将图中△ABC变成右边的△A′B′C′?
3. 在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.
4. △DEF和△ABC有什么关系?如果△DEF是由△ABC经过某种变换得到的,那么又是什么变换?指出变换的过程.
5. 阅读下面材料:
把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;
以BC为轴,把△ABC翻折180°,可以变到△DBC的位置; 以点A为中心,把△ABC旋转180°,可以变到△AED的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在题中,可以通过平行移动、翻折、旋转中的哪一种方法
怎样变化,使△ABE变到△ADF的位置;
②指线段BE与DF之间的关系,为什么?
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?小编为大家提供的初一上册数学图形的运动同步练习大家仔细阅读了吗?最后祝同学们学习进步。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

相关文档
最新文档