山东省泰安市七年级下学期期中数学试卷

合集下载

2022-2023学年山东省泰安市东平县七年级(下)期中数学试卷(五四学制)(含解析)

2022-2023学年山东省泰安市东平县七年级(下)期中数学试卷(五四学制)(含解析)

2022-2023学年山东省泰安市东平县七年级(下)期中数学试卷(五四学制)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程中是二元一次方程组的是( )A. 3x−2y =1y =4z +1B. a =32b−3a =2+y =3+2x =4 D. mn =−1m +n =32.下列选项中属于命题的是( )A. 任意一个三角形的内角和一定是1800吗?B. 画一条直线C. 异号两数之和一定是负数D. 连结A 、B 两点3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°4.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,点数是偶数的概率是( )A. 12B. 14C. 16D. 15.下列事件:①两个锐角的和大于90°;②一个有理数的绝对值是负数;③阴天一定下雨;④彩票中奖的可能性是10%,买100张有10张会中奖.其中不确定事件有( )A. 1个B. 2个C. 3个D. 4个6.如图,能判定AD//BC 的条件是( )A. ∠3=∠2B. ∠1=∠2C. ∠B =∠DD. ∠B =∠17.在长为20m 、宽为16m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积为( )A. 16cm 2B. 32cm 2C. 36cm 2D. 40cm 28.一个角的两边与另一个角的两边分别平行,那么这两个角( )A. 相等B. 互补C. 相等或互补D. 不能确定9.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( )A. 19B. 29C. 49D. 5910.已知关于xy 的方程组4x +3y =11ax +by =−2和3x−5y =1bx−ay =6的解相同,则(a +b )2024的值为( )A. 0B. −1C. 1D. 202211.小军用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象l 1、l 2,如图所示,则这个方程组是( )A. y =−2x +2y =12x−1 B. y =−2x +2y =−x C. y =3x−8y =12x−3 D. y =−2x +2y =−12x−112.如图,∠ABD ,∠ACD 的角平分线交于点P ,若∠A =50°,∠D =10°,则∠P 的度数为( )A. 15°B. 20°C. 25°D. 30°二、填空题:本题共6小题,每小题4分,共24分。

2022年山东省泰安市泰山区七下期中数学试卷(五四制)(含答案)

2022年山东省泰安市泰山区七下期中数学试卷(五四制)(含答案)

2022年山东省泰安市泰山区七下期中数学试卷(五四制)1.在同一平面内两条直线的位置关系是( )A.相交或垂直B.垂直或平行C.平行或相交D.平行或重合2.如图,下列表示角的方法,错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC也可用∠O来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB,∠AOC,∠BOC3.化简(3a)3的结果是( )A.a3B.3a3C.9a3D.27a34.一种花粉颗粒半径约为0.00000325米,数字0.00000325用科学记数法表示为( )A.0.325×10−5B.325×10−7C.3.25×10−5D.3.25×10−65.下列计算结果为x4的是( )A.x8÷x2B.x3⋅x C.x2+x2D.x5−x6.下列运算正确的是( )A.(ab)3=ab3B.(a2)3=a5C.a−2=−a2D.(−2a2)3=−8a67.下列图形,根据∠1=∠2,能得到AB∥CD的是( )A.B.C.D.8.下列运算正确的是( )A.(a−b)2=a2−b2B.(a+b)2=a2+b2C.(2x+1)(1−2x)=4x2−1D.(−3x+1)(−3x−1)=9x2−19.两平行直线被第三条直线所截,内错角的角平分线( )A.互相重合B.互相平行C.互相垂直D.相交10.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1的度数为( )A.80∘B.50∘C.65∘D.55∘11.钟表上6时45分钟时,时针与分针的夹角为( )A.67.5∘B.75∘C.82.5∘D.90∘12.如图,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是( )A.图①B.图②C.图③D.图④13.如图,点C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=a,CD=b,则AB的值是( )A.a−b B.2a−b C.a+b D.2a+b14.已知实数a,b满足:a+b=4,ab=3,则a−b=( )A.2B.−5C.±2D.±515.计算:(π−3.14)0=.16. 直线 AB ,CD 相交于点 O ,OB 平分 ∠DOE ,若 ∠DOE =58∘,则 ∠AOC 的度数是 .17. 若 4a 2+ka +25 是一个完全平方公式计算的结果,则 k 的值是 .18. 一个角是 70∘29ʹ,则它的补角的度数是 .19. 计算:42022×0.252022= .20. 如图,直线 a ,b 都与直线 c 相交,给出下列条件:① ∠1=∠2;② ∠4=∠5;③ ∠4=∠6;④ ∠1+∠4=180∘,其中能判断 a ∥b 的条件是: (把你认为正确的序号填在横线上).21. 已知:A ,B ,C 三点在同一条直线上,且线段 AB =15 cm ,BC =5 cm ,则线段 AC =cm .22. 已知 a 2+2a =3,则 3a 2+6a −5 的值为 .23. 计算下列各题.(1) (−23ax 4y 3)÷(−56ax 2y 2)⋅(−15a 3x 2y ).(2) (−3a )3+a (−4a )2−(2a 2)2÷(−2a ).(3) (−3)0+(−2)3−(15)−2. (4) (x +2y )(2y −x )(x 2+4y 2).(5) (2a −3b )2−4(a +b )(a −2b ).24. 因为 ∠B =∠ ,根据 .所以 AB ∥CD ,因为 ∠BGC =∠ ,根据.所以CD∥EF,因为AB∥CD,CD∥EF,根据.所以AB∥.25.如图,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90∘.问:AD与BC平行吗?说明理由.26.如图,已知点C,D在线段AB上,且CD=13AD=14BC,点E,F是线段AD和BC的中点,EF=10cm,求AD,BC的长.27.先化简,再求值:(x+5y)(x−5y)−(4x3y−10xy3)÷2xy,其中x=−2,y=32.28.如图,已知∠1:∠2:∠3=2:3:4,∠AFE=60∘,∠BDE=120∘,写出图中平行的直线,并说明理由.29.探索;(x−1)(x+1)=x2−1;(x−1)(x2+x+1)=x3−1;(x−1)(x3+x2+x+1)=x4−1;(x−1)(x4+x3+x2+x+1)=x5−1;⋯⋯求:29+28+27+26+25+24+23+22+2+1的值.答案1. 【答案】C2. 【答案】B【解析】由于顶点O处,共有3个角,所以∠AOC不可以用∠O来表示,故B错误.故选B.3. 【答案】D4. 【答案】D5. 【答案】B6. 【答案】D7. 【答案】A【解析】A选项中,∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.8. 【答案】D9. 【答案】B【解析】∵AB∥CD,∴∠AEF=∠DFE,∵EM平分∠AEF,∠AEF,∴∠MEF=12∵FN平分∠EFD,∠EFD,∴∠EFN=12∴∠MEF=∠EFN,∴EM∥FN.10. 【答案】C【解析】∵折叠,∴∠1=∠2,∵∠1=∠2+50∘=180∘,∴2∠1=130∘,∴∠1=65∘.11. 【答案】A【解析】时针每分钟走0.5∘,分钟每分钟走6∘,45分钟时针走了45×0.5=22.5∘,∴6时45分钟时,时针与分针夹角为90∘−22.5∘=67.5∘.12. 【答案】A【解析】图①,∠α+∠β=180∘−90∘,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等,∠α=∠β;图④,∠α+∠β=180∘,互补.故选A.13. 【答案】B【解析】∵E是AC的中点,F是BD是中点,∴AE=CE,DF=BF,即CE=12AC,DF=12DB,∵EF=EC+CD+DF,∴12AC+CD+12DB=a,∴AC+2CD+DB=2a,∴AC+CD+DB=2a−b,即AB=2a−b.14. 【答案】C【解析】∵a+b=4,ab=3,∴(a−b)2=(a+b)2−4ab=42−4×3=4,∴a−b=±2.15. 【答案】1【解析】任意非零数字的0次方的值为1.故答案为:1.16. 【答案】29°【解析】∵OB平分∠DOE,∠DOE=58∘,∴∠BOD=12∠DOE=29∘,∴∠AOC=∠BOD=29∘.17. 【答案】±20【解析】∵4a2+ka+25是一个完全平方式,∴k=±2×√4×√25=±20.18. 【答案】109°31ʹ【解析】180∘−70∘29ʹ=109∘31ʹ.19. 【答案】1【解析】42022×0.252022 =(4×0.25)2022 =12022=120. 【答案】①②④【解析】① ∵∠1=∠2,可根据同位角相等,∴a∥b,② ∵∠4=∠6(对顶角相等),∴∠4=∠5即为∠6=∠5,根据同位角相等,∴a∥b,③ ∠4=∠6(对顶角相等),无法判断a∥b,④ ∵∠2+∠4=180∘,∠1+∠4=180∘,∴∠1=∠2(同位角相等),故可判断a∥b.21. 【答案】20或10【解析】如图,AB=15cm,BC=5cm,∴AC=AB+BC=20cm,∴AC=AB−BC=10cm,即AC的长为20cm或10cm.22. 【答案】4【解析】∵a2+2a=3,∴3a2+6a−5=3(a2+2a)−5=3×3−5=4.23. 【答案】(1)(−23ax4y3)÷(−56ax2y2)⋅(−15a3x2y)=45x2y⋅(−15a3x2y)=−12a3x4y2.(2)(−3a)3+a(−4a)2−(2a2)2÷(−2a) =−27a3+a⋅16a2−4a4÷(−2a)=−27a3+16a3+2a3=−9a3.(3)(−3)0+(−2)3−(15)−2 =1+(−8)−25=−7−25=−32.(4)(x+2y)(2y−x)(x2+4y2) =−(x+2y)(x−2y)(x2+4y2) =−(x2−4y2)(x2+4y2)=−(x4−16y4)=−x4+16y4.(5)(2a−3b)2−4(a+b)(a−2b)=4a2−12ab+9b2−4(a2−2ab+ab−2b2) =4a2−12ab+9b2−4a2+8ab−4ab+8b2 =17b2−8ab.24. 【答案】BGD内错角相等,两直线平行F同位角相等,两直线平行平行于同一直线的两直线平行EF25. 【答案】∵CE平分∠BCD,DE平分∠CDA,∴∠1=12∠ADC,∠2=12∠BCD.∵∠1+∠2=90∘,∴∠ADC+∠BDC=2(∠1+∠2)=180∘,∴AD∥BC(同旁内角互补,两直线平行).26. 【答案】∵CD=13AD=14BC,∴AD=3CD,BC=4CD,∵E,F分别是AD和BC的中点,∴ED=12AD,CF=12BC,∴ED=32CD,CF=2CD,∵EF=ED+CF−CD=32CD+2CD−CD=52CD.∴52CD=10cm,CD=4cm,AD=3CD=12cm.BC=4CD=16cm.27. 【答案】(x+5y)(x−5y)−(4x3y−10xy3)÷2xy =x2−25y2−(2x2−5y2)=x2−25y2−2x2+5y2=−x2−20y2.当x=−2,y=32时,原式=(−2)2−20×(32) 2=−4−45=−49.28. 【答案】AB∥DE,EF∥BC.∵∠1:∠2:∠3=2:3:4,∴180∘÷(2+3+4)=20∘,∴∠1=2×20∘=40∘,∠2=3×20∘=60∘,∠3=4×20∘=80∘,∵∠AFE=60∘,∠BDE=120∘,∠AFE=∠2,∠BDE+∠2=180∘,∴图中平行的直线有:AB∥DE,EF∥BC.29. 【答案】根据题意,总结规律,得:(x−1)(x9+x8+x7+⋯+x+1)=x10−1,当x=2时,(2−1)(29+28+27+⋯2+1)=210−1,∴29+28+27+⋯+2+1=210−1 =1023.。

山东省泰安市七年级下学期期中数学试题及答案

山东省泰安市七年级下学期期中数学试题及答案

山东省泰安市第二学期七年级数学期中试题一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分.)1.将如图所示的图案通过平移后可以得到的图案是( )A .B .C .D .2.N 95型口罩可阻隔直径为0000003.0米的飞沫,用科学记数法可将数0000003.0表示为( )A .6103-⨯B .6103.0-⨯C .81030-⨯D .7103-⨯ 3.下列各对数是二元一次方程23=+y x 的解的是( )A .⎩⎨⎧=-=24y xB .⎩⎨⎧-==22y xC .⎩⎨⎧-==11y xD .⎩⎨⎧==30y x 4.小马虎在下面的计算中只做对了一道题,他做对的题目是( )A . 1243a a a =⋅B .1243)(a a =C .743a a a =+D .248a a a =÷ 5.如图所示,下列条件能判断a ∥b 的有( )A .︒=∠+∠18021B . 31∠=∠C .︒=∠+∠18032D .42∠=∠6. 若方程组⎩⎨⎧=+=-132723y x y x 的解也是方程182=+y kx 的解,则k 的值为( ) A .1B .2C . 3D .47.如图,把一块含有45° 角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A . 15°B . 20°C .25°D .30°8.下列各式,不能用平方差公式计算的是( )A .()()y x y x 22-+B .()()x y y x ---22C . ()()y x y x 32+-D .()()3232-+++y x y x9. 明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问都多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管 3个或笔套 5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x 根,用于制作笔套的短竹数为y 根,则可列方程为( )A . 83000x y x y +=⎧⎨=⎩B . 8300035x y x y +=⎧⎨=⎩C. 8300053x y x y +=⎧⎨=⎩ D . 3583000x y x y +=⎧⎨=⎩10.如图所示,长方形中放入5张长为x ,宽为y 的相同的小长方形,其中A ,B ,C 三点在同一条直线上.若阴影部分的面积为52,大长方形的周长为36,则一张小长方形的面积为( )A .3B .4C .5D .6二、填空题(本题有8小题,每小题3分,共24分)11.计算()b a 23⋅-= .12.如图,直线a ,b 被直线c 所截,若∠4+∠5=180°,则可得a ∥b ,其依据是: .13.如图,CD 平分∠ACB ,DE ∥AC ,若∠2=35°,则∠1= 度. 14. 已知32=m ,52=n ,则n m +2的值为 .15.如果长方形的面积为a a a +-2343,宽为a ,则它的长是 .16. 在弹簧的弹性限度内,弹簧总长y (cm )与所挂物体质量x (kg )满足公式:y =kx +b (k , b 为常数).当所挂物体质量为1kg 时,弹簧总长为6.3cm ;当所挂物体质量为4kg 时,弹簧 总长为7.2cm .则当弹簧总长为8.4cm 时,所挂物体的质量为 kg .17.小慧去花店买鲜花,若买6支玫瑰和4支百合,则她所带的钱还剩11元;若买4支玫瑰和6支百合,则她所带的钱还缺5元.若她想购买10支百合,则她所带的钱还缺______元. 18.在一副三角尺中∠BP A =45°,∠CPD =60°,∠B =∠C =90°,将它们按如图所示摆放在量角器上,边PD 与量角器的0°刻度线重合,边AP 与量角器的180°刻度线重合.将三角尺PCD 绕点P 以每秒3°的速度逆时针旋转, 当三角尺PCD 的PC 边与180°刻度线重合时停止运动,则当运动时间t =______秒时,两块三角尺有一组边平行.三、解答题(本大题有6小题,第19~20题每题6分,第21~23题每题8分,第24题10分,共46分.解答需写出必要的文字说明、演算步骤或证明过程.)19. 计算:(1)0220223+- (2)()()ab ab -⋅322 20.先化简,再求值:2)()2(b a b a a ++-,其中3-=a ,5=b21.解下列方程(组):(1)⎩⎨⎧=-=+173x y y x (2)()()()()63232174-=-+---x x x x 22.如图,已知BC 平分∠ABD 交AD 于点E ,∠1=∠3.(1)说明AB ∥CD 的理由;(2)若AD ⊥BD 交于点D ,∠CDA =34°,求∠2的度数.23.今年疫情期间某物流公司计划用两种车型运输救灾物资,已知:用2辆A 型车和1辆B 型车装满物资一次可运11吨;用1辆A 型车和2辆B 型车装满物资一次可运13吨. (1)求1辆A 型车和1辆B 型车都装满物资一次可分别运多少吨?(2)该物流公司现有31吨救灾物资,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满.请你帮该物流公司设计租车方案.24. 图①是一个长为m ,宽为n 4()>m n 的长方形,用剪刀沿图中虚线剪开,把它平均分成形状和大小都一样的四个小长方形,然后按图②那样拼成一个正方形.(1)观察图②,可得:()()=--+22n m n m _____________;(2)若7=-n m ,6=mn ,求2)(n m +的值.(3)当()()82010=--x x 时,求2)302(-x 的值.答案一、选择题(每题3分,共30分)ADABD BCCBC二、填空题(每题3分,共24分)11. ab 6- 12. 同旁内角互补,两直线平行12. 70° 14. 1515. 1432+-a a 16. 817. 37 18. 10,15或25四、解答题(本大题有6小题,第19~20题每题6分,第21~23题每题8分,第24题10分,共46分.解答需写出必要的文字说明、演算步骤或证明过程.)19. 解:(1)原式=191+ ……………………2分 =910 ……………………1分 (2)原式=()ab b a -•-638……………………1分=748b a -……………………2分20. 解:原式=22222b ab a ab a +++-……………………2分= 222b a +……………………2分当3-=a ,5=b 时,原式=()4353222=+-⨯……………………2分21. 解:(1)①+②,得84=y ,即2=y ……………………1分把2=y 代入①,得76=+x ,得1=x ……………………1分∴原方程组的解是⎩⎨⎧==21y x ……………………2分 (2)()694774422-=--+--x x x x ……………………1分 694774422-=+-+--x x x x ……………………1分61611-=+-x16611--=-x ……………………1分∴2=x ……………………1分22. 解:(1)∵BC 平分∠ABD∴∠2=∠1……………………1分∵∠1=∠3……………………1分∴∠2=∠3……………………1分∴AB ∥CD.……………………1分(2)∵AD ⊥BD∴∠ADB=90°……………………1分∵∠CDA=34°∴∠CDB=∠ADB+∠CDA=124°……………………1分∵AB ∥CD.∴∠ABD=CDB ∠-︒180=56°……………………1分∵BC 平分∠ABD∴∠2=28°……………………1分23. 解:(1)设1辆A 型车装满物资一次可运x 吨,1辆B 型车装满物资一次可运y 吨由题意,得⎩⎨⎧=+=+132112y x y x ……………………2分 解得⎩⎨⎧==53y x ……………………1分 答:略 ……………………1分(2)由题意,得3153=+b a ……………………1分∵a ,b 均为非负整数∴⎩⎨⎧==52b a ,⎩⎨⎧==27b a ……………………2分 答:有两种租车方案:①租A 型车2辆,B 型车5辆;②租A 型车7辆,B 型车2辆.……………………1分24. 解:(1)mn 4 ……………………3分(2)由(1)得()()mn n m n m 422+-=+……………………2分 ∴()7364722=⨯+=+n m ……………………2分 (3)()()()[]222010302x x x ---=- ……………………1分 ()()[]()()x x x x ----+-=2010420102……………………1分 6884102=⨯-= ……………………1分。

泰安市七年级下学期数学期中考试试卷

泰安市七年级下学期数学期中考试试卷

泰安市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列运动属于平移的是()A . 旋转的电风扇B . 摆动的钟摆C . 用黑板擦沿直线擦黑板D . 游乐场正在荡秋千的人2. (2分)(2017·西安模拟) 下列计算正确的是()A . a2+a2=a4B . a8÷a2=a4C . (﹣a)2﹣a2=0D . a2•a3=a63. (2分) (2018八上·重庆期末) 下列各式从左边到右边的变形,是因式分解的是()A .B .C .D .4. (2分) (2016九上·黑龙江月考) 三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A . 11B . 15C . 11或15D . 不能确定5. (2分) (2018七下·瑞安期末) 如图,AB,CD被EF所截,交点分别为E,D,则∠1与∠2是一对()A . 同旁内角B . 同位角C . 内错角D . 对顶角6. (2分) (2017七下·东莞期中) 下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若,则;A . 1个B . 2个C . 3个D . 4个7. (2分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A . ①②③B . ①②C . ②③D . ①③8. (2分)如图,直线a,b被直线c所截,当a∥b时,下列说法正确的是()A . 一定有∠1=∠2B . 一定有∠1+∠2=90°C . 一定有∠1+∠2=100°D . 一定有∠1+∠2=180°9. (2分) (2020八上·张掖期末) 如图,正方体的每一面上都有一个正整数,已知相对的两个面上两数之和都相等,如果,,对面的数字为,,,则的值为()A .B .C .D .10. (2分)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()A . 8048个B . 4024个C . 2012个D . 1066个二、填空题 (共8题;共8分)11. (1分) (2019七下·姜堰期中) 将0.0000007用科学记数法表示为________.12. (1分) (2019八上·东莞月考) 若正n边形的每个内角都等于150°,则n =________,其内角和为________.13. (1分) (2016九上·黑龙江月考) 分解因式:a2﹣ab=________.14. (1分) (2018八上·太原期中) 如图,已知a,b,c分别是Rt△ABC的三条边长,∠C=90°,我们把关于x的形如y= 的一次函数称为“勾股一次函数”,若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是5,则c的值是________.15. (1分) (2018七下·于田期中) 将点P向下平移3个单位,向左平移2个单位后得到点,则点P坐标为________ .16. (1分) (2017七下·南京期中) 如图,∠1=70°,∠2=130°,直线m平移后得到直线n ,则∠3=________°.17. (1分) (2016九上·朝阳期末) 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为________.18. (1分) (2019七下·辽阳月考) 图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于________(2)试用两种不同的方法求图2中阴影部分的面积.方法1:________ 方法2:________(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x-y)2,4xy.________(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x-y)2=________三、解答题 (共8题;共81分)19. (20分)计算:(1)(﹣2x3)•xy3(2)(2x+3)(x﹣7)(3)(m+2n)(2n﹣m)(4)(x﹣2)(x2+4)(x+2)(5)(x+3)2(x﹣3)2(6)(x﹣2y+z)(x+2y﹣z)20. (10分) (2018八上·大石桥期末) 分解因式:(1)(2) 12-321. (5分)(2018·乌鲁木齐) 先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x= +1.22. (10分) (2019八下·锦江期中) 在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.23. (5分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D 不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.24. (10分)(2018·南开模拟) 如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.25. (10分) (2016七下·澧县期中) 如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为________;(2)观察图b,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是________;(3)若x+y=﹣6,xy=2.75,利用(2)提供的等量关系计算x﹣y的值.26. (11分) (2019七下·武汉月考) 如图1,△A BC中,D、E、F三点分别在AB,AC,BC三边上,过点D 的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.(1)求证:DE∥BC;(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F应该满足的位置条件,在图2中画出符合条件的图形并说明理由.(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、三、解答题 (共8题;共81分) 19-1、19-2、19-3、19-4、19-5、19-6、20-1、20-2、21-1、22-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

山东省泰安市七年级下学期数学期中考试试卷

山东省泰安市七年级下学期数学期中考试试卷

山东省泰安市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·长春模拟) 的值是()A . ﹣4B . 4C . ﹣2D . 22. (2分) (2020七下·莘县期末) 如图所示,下列说法:①∠1与∠C是同位角;②∠2与∠C是内错角;③∠3与∠B是同旁内角;④∠3与∠C是同旁内角,其中正确的是()A . ①②③B . ②③④C . ①③④D . ①②④3. (2分)下列说法正确的是()A . 有理数都是有限小数B . 无限循环小数都是无理数C . 有理数和无理数都可以用数轴上的点表示D . 无理数包括正无理数,0和负无理数4. (2分) (2019七下·封开期中) 如图,下列四组条件中,能判断AB∥CD的是()A . ∠1=∠2B . ∠BAD=∠BCDC . ∠ABC=∠ADC,∠3=∠4D . ∠BAD+∠ABC=180°5. (2分)在平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O、A的对应点分别为点O1、A1 .若点O(0,0),A(1,4),则点O1、A1的坐标分别是()A . (0,0),(1,4)B . (0,0),(3,4)C . (﹣2,0),(1,4)D . (﹣2,0),(﹣1,4)6. (2分) (2019七下·固阳期末) 已知点M(2m﹣1,1﹣m)在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .7. (2分)已知点P(a,b)在第三象限,则点Q(-a,-b)在第()象限。

A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2017七下·乌海期末) 下列说法不正确的是()A . 的平方根是B . -9是81的一个平方根C . 0.2的算术平方根是0.04D . -27的立方根是-39. (2分) (2019八下·长春月考) 下列方程中,没有实数根的是()A .B .C .D .10. (2分)下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A .B .C .D .11. (2分)直线a、b、c在同一平面内,(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a∥b,b∥c,c∥d,那么a∥d;(3)如果a∥b,b⊥c,那么a⊥c;(4)如果a与b相交,b与c相交,那么a与c相交.在上述四种说法中,正确的个数为()A . 1个B . 2个C . 3个D . 4个12. (2分)如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线相交于点E,与DC交于点F,且点F 为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A . 2B . 4C . 4D . 8二、填空题 (共6题;共6分)13. (1分) (2020七下·思明月考) 计算下列各题:⑴ 的平方根是________;⑵若,则 ________.⑶ ________;⑷比较大小:-2 ________-14. (1分) (2015七上·广饶期末) 把命题“对顶角相等”改写成“如果…那么…”的形式:________.15. (1分) (2020七下·恩施月考) 已知A(a,0),B(﹣3,0)且AB=7,则a=________.16. (1分) (2017七下·定州期中) 在横线上填写理由,完成下面的证明.如图,已知∠1+∠2=180°,∠B=∠3,求证∠C=∠AED证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(________)∴∠2=∠DFE(________)∴AB∥EF(________)∴∠3=∠ADE(________)又∵∠B=∠3(已知)∴∠B=∠ADE(________)∴DE∥BC(________)∴∠C=∠AED(________)17. (1分)(2018·遵义模拟) 如图,两条抛物线y1=- x2+1、y2=- x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线圈成的阴影部分的面积为________.18. (1分) (2020七上·海曙月考) 如图所示,一只青蛙,从A点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A点的左侧的某个位置处,请问这个位置到A点的距离最少是________厘米.三、解答题 (共8题;共66分)19. (10分)(2020·扶风模拟) 计算:20. (10分) (2016七下·明光期中) 计算:(1)﹣ +(π﹣3)0+|1﹣ |;(2)(﹣4x2y)2•(﹣xy2)÷(﹣2x5y3).21. (1分)如图,已知DE⊥AC于E点,BC⊥AC于点C,FG⊥AB于G点,∠1=∠2,求证:CD⊥AB.22. (5分)已知5+的小数部分是a,5﹣的小数部分是b,求:(1)a+b的值;(2)a﹣b的值.23. (10分) (2020八上·文水期末) 如图,已知∠AOB,点是边上一点,且∠ACD=∠AOB.(1)尺规作图:作∠AOB的平分线OE,交CD于点E.(保留作图痕迹,不写作法)(2)在(1)所作图形中,若∠AOB=30°,OC=4,求△OCE的面积.24. (10分) (2020七上·和平期末) 如图所示,已知O是直线AB上一点,∠BOE=∠FOD=90°,OB平分∠COD(1)图中与∠DOE互余的角是________(2)图中是否有与∠DOE互补的角?如果有,直接写出全部结果;如果没有,说明理由。

山东省泰安市七年级下学期数学期中考试试卷

山东省泰安市七年级下学期数学期中考试试卷

山东省泰安市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 25的算术平方根是()A .B .C .D .2. (2分)下列说法正确的是()A . 二元一次方程只有一个解B . 二元一次方程组有无数个解C . 二元一次方程组的解必是它所含的二元一次方程的解D . 三元一次方程组一定由三个三元一次方程组成3. (2分) (2020七上·德江期末) 如图,将一副三角板的直角顶点重合放置于处,则下列结论一定成立的是()A .B .C .D .4. (2分)若ab>0,则P(a,b)在()A . 第一象限B . 第一或第三象限C . 第二或第四象限D . 以上都不对5. (2分)解方程去分母正确的是()A .B .C .D .6. (2分)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)7. (2分) (2020八上·港南期末) 已知,则下列不等式不成立的是()A .B .C .D .8. (2分)某校七年级一班有x人,分y小组进行课外兴趣活动,若每组6人,则余4人,若每组7人,则不足5人,则全班的人数为()A . 60人B . 58人C . 62人D . 59人9. (2分)(2013·贵港) 下列四个式子中,x的取值范围为x≥2的是()A .B .C .D .10. (2分)下列判断错误的是().A . 除零以外任何一个实数都有倒数;B . 互为相反数的两个数的和为零;C . 两个无理数的和一定是无理数;D . 任何一个实数都能用数轴上的一点表示,数轴上的任何一点都表示一个实数.二、填空题 (共8题;共10分)11. (1分) (2017九上·姜堰开学考) 已知如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.若点P是AB上的一动点,则OP的取值范围是________.12. (1分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为________ .13. (1分) (2016七下·重庆期中) 已知x的算术平方根是8,那么x的立方根是________.14. (1分) (2017七下·靖江期中) 若是方程组的解,则 + =________15. (2分)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,13……的点OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1 , S2 , S3 ,S4…….则第一个黑色梯形的面积S1=________;观察图中的规律,第n(n为正整数)个黑色梯形的面积Sn=________.16. (1分)小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买________ 本.17. (1分) (2015七下·龙海期中) 若方程组的解也是方程3x+ky=10的一个解,则k=________.18. (2分)一列数按如下顺序排列:第一列第二列第三列第四列第五列第一行 2 4 6 8第二行 16 14 12 10第三行 18 20 22 24第四行 32 30 28 26则2016位于第________行,第________列.三、解答题 (共8题;共56分)19. (5分)计算:20. (10分) (2015八上·江苏开学考) 解下列方程组:(1);(2) .21. (3分)如图.下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.已知:________ ;结论:________ ;理由:________22. (3分) (2016八上·宁城期末) 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(-3,2)请按要求分别完成下列各小题:(1)画出△ABC关于y轴对称的△ ________,则点的坐标是________;(2)△ABC的面积是________.23. (5分)已知a是6﹣的小数部分,b是的小数部分,c是(﹣2)﹣1的整数部分,求a2c﹣b2c的值?24. (5分) (2016八上·阳新期中) 如图△ABC中,BE是∠ABC的外角平分线,BE交AC的延长线于E,∠A=∠E,求证:∠ACB=3∠A.25. (10分) (2017七下·嘉祥期末) 某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)1435售价(元/件)2043(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.26. (15分) (2018七下·越秀期中) 如图,在平面直角坐标系xoy中,已知A(6,0),B(8,6),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)写出点C的坐标;(2)当△ODC的面积是△ABD的面积的3倍时,求点D的坐标;(3)设∠OCD=α,∠DBA=β,∠BDC=θ,判断α、β、θ之间的数量关系,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共56分)19-1、20-1、20-2、21-1、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

2023—2024学年山东省泰安市东平县七年级下学期数学期中试卷

2023—2024学年山东省泰安市东平县七年级下学期数学期中试卷

2023—2024学年山东省泰安市东平县七年级下学期数学期中试卷一、单选题(★★) 1. 下列说法中,错误的有()①射线是直线的一部分②画一条射线,使它的长度为③线段和线段是同一条线段④射线和射线是同一条射线⑤直线和直线是同一条直线⑥数轴是一条射线,因为它有方向A.1个B.2个C.3个D.4个(★) 2. 一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为()A.41×10﹣6B.4.1×10﹣5C.0.41×10﹣4D.4.1×10﹣4(★★) 3. 在一条直线上有A、B、C三点,已知,,则的长是()A.B.C.或D.不能确定(★★) 4. 一条铁路有个火车站,若一列火车往返过程中必须停靠每个车站,则铁路局需为这条线路准备车票()种.A.B.C.D.(★★) 5. 从六边形的一个顶点出发,可以画出a条对角线,它们将六边形分成b个三角形,则的值为()A.36B.48C.4D.12(★) 6. 下列四个图中,能用、、三种方法表示同一个角的是()A.B.C.D.(★) 7. 下列计算正确的是()A.B.C.D.(★) 8. 将一个圆分成甲、乙、丙、丁四个扇形,它们面积之比为,扇形乙圆心角度数为()A.B.C.D.(★) 9. 已知,,下列说法正确的是()A.B.C.D.,,互不相等(★★) 10. 若,则()A.3B.6C.D.(★★) 11. 若是一个完全平方式,则m的值为()A.44B.22C.22或D.44或(★★★) 12. 如图,将长方形沿折叠,点D,C分别落在,的位置.若,则等于()A.B.C.D.二、填空题(★★) 13. 计算 ______ .(★) 14. 从十一边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十一边形分成三角形的个数是 _______ .(★★) 15. 若的乘积中不含项,则常数的值为 ______ .(★★) 16. 在每一时刻,分针和时针都存在夹角,此时钟表显示时,再过30分钟,分针与时针的夹角是 _______ .(★★) 17. 已知,,那么 ___________ .(★★) 18. 如果用★表示一种新的运算符号,而且规定有如下的运算法则:,则 _____ .三、解答题(★★★) 19. 计算(1)(2)(3)(4)(★) 20. 先化简,再求值(1) ,其中,;(2) 其中,.(★★★) 21. 如图,C为线段上一点,点B为的中点,且,.(1)求的长.(2)若点E在直线上,且,求的长.(★★) 22. 2021年我区在老旧小区改造方面取得了巨大成就,环境得到了很大改善,如图,有一块长为米,宽为米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为米的正方形和长为米,宽为米的长方形.(1)计算广场上需要硬化部分的面积;(2)当,时,求硬化部分的面积.(★★) 23. (1)若,求的值.(2)已知,求m的值.(★★★) 24. 如图,已知∠AOB=160°,OD是∠AOB内任意一条射线,OE平分∠AOD,OC平分∠BOD.(1)求∠EOC的度数;(2)若∠BOC=19°,求∠EOD的度数.(★★★) 25. 数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b、宽为a 的长方形.用A种纸片一张,B种纸片一张,C种纸片两张可拼成如图2的大正方形,(1)请用两种不同的方法求图2大正方形的面积(答案直接填到题中横线上)方法1:________________方法2:________________(2)观察图2,请你直接写出下列三个代数式:,,ab之间的等量关系为________________(3)根据(2)题中的等量关系,解决如下问题:①已知:,,求ab的值;②已知:,求的值.。

泰安市七年级下学期数学期中考试试卷

泰安市七年级下学期数学期中考试试卷

泰安市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·昭阳期中) 的相反数是()A .B .C .D .2. (2分) (2017七下·嵊州期中) 把图形甲进行平移,能得到的图形是()A .B .C .D .3. (2分) (2019七下·忠县期中) 下列计算正确的是()A . =±2B . ± =6C .D .4. (2分) (2020七下·天台月考) 在实数,,,0.232332333,中,无理数的个数为()A . 1个B . 2个C . 3个D . 4个5. (2分) (2016七下·莒县期中) 若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=()A . (2,﹣3)B . (﹣2,3)C . (2,3)D . (﹣2,﹣3)6. (2分) (2017八上·萍乡期末) 估计的值在()A . 1到2之间B . 2到3之间C . 3到4之间D . 4到5之间7. (2分) (2017七上·深圳期中) 已知a,b,c是三个有理数,它们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得()A . 2c﹣2bB . ﹣2aC . 2aD . ﹣2b8. (2分)如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A . 84B . 81C . 78D . 769. (2分)(2020·岑溪模拟) 如图,将绕点顺时针旋转35°,得,若,则()A . 65°B . 75°C . 55°D . 35°10. (2分)将△ABC的各个顶点的横坐标不变,纵坐标分别减3,连接三个新的点所成的三角形是由△ABC ()A . 向左平移3个单位所得B . 向右平移3个单位所得C . 向上平移3个单位所得D . 向下平移3个单位所得11. (2分) (2016七下·兰陵期末) 将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A . 4个B . 3个C . 2个D . 1个12. (2分) (2019七上·巴东期中) 如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要()根火柴棍.A . 3nB . 3n+2C . 2n+3D . 2n+1二、填空题 (共6题;共6分)13. (1分)如果用(7,8)表示七年级八班,那么八年级七班可表示成________.14. (1分) (2019七下·河南期中) 如果一个数的平方根和它的立方根相等,则这个数是________.15. (1分) (2018八上·启东开学考) 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角的度数分别________.16. (1分) (2016七下·老河口期中) 命题“同旁内角的平分线互相垂直”是________命题(填“真”或“假”).17. (1分)计算(x﹣y)2﹣x(x﹣2y)=________18. (1分)若a2+b2=7,ab=2,则(a-b)2的结果是________三、解答题 (共8题;共62分)19. (5分) (2019九上·东港月考)(1)解方程:(2)计算:20. (5分) (2018八上·灌云月考) 请把下列各数填入相应的集合中.2,0,2π,,2018,﹣0.030030003…有理数集合:{ …};无理数集合:{ …};非负整数集合:{ …}.21. (5分) (2019八上·驿城期中) 已知某一实数的平方根是和,求的值.22. (11分)(2019·鞍山) 如图,△ABC的三个顶点的坐标分别是A(2,4),B(1,1),C(3,2).①作出△ABC向左平移4个单位长度后得到的△A1B1C1 ,并写出点C1的坐标.②已知△A2B2C2与△ABC关于直线l对称,若点C2的坐标为(﹣2,﹣3),请直接写出直线l的函数解析式.注:点A1 , B1 , C1及点A2 , B2 , C2分别是点A,B,C按题中要求变换后对应得到的点.23. (1分) (2017七下·萧山期中) 如图,直线,将含有角的三角板ABC的直角顶点C放在直线m上,若,则的度数为________24. (5分) (2018七上·大庆期中) 如图所示的是用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用两个不同的代数式表示图中的阴影部分的面积,你能得到怎样的等式?(2)请用乘法公式说明你所得等式是正确的;(3)利用(1)中所得等式计算:已知(a+b)2=4,ab= ,求a-b.25. (15分) (2015八下·津南期中) 如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.26. (15分) (2020九上·德城期末) 如图,抛物线与轴交于,两点在的左侧),与轴交于点,点与关于抛物线的对称轴对称.(1)求抛物线的解析式及点的坐标;(2)点是抛物线上的一点,当的面积是8,求出点的坐标;(3)过直线下方的抛物线上一点作轴的平行线,与直线交于点,已知点的横坐标是,试用含的式子表示的长及△ADM的面积,并求当的长最大时的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共62分)19-1、19-2、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省泰安市七年级下学期期中数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)﹣2的相反数是()
A .
B . -2
C .
D . 2
2. (2分)如图,下列说法错误的是()
A . 若a∥b,b∥c,则a∥c
B . 若∠1=∠2,则a∥c
C . 若∠3=∠2,则b∥c
D . 若∠3+∠5=180°,则a∥c
3. (2分) (2019七下·南通月考) 下列各式中,正确的是()
A .
B .
C .
D .
4. (2分)下列各数中,无理数的个数有()
0,,,,2π,3.7878878887…(两个7之间依次多一个8),
A . 2个
B . 3个
C . 4个
D . 5个
5. (2分)已知二元一次方程2x﹣y=1,用y的代数式表示x为()
A . x=
B . x=
C . y=1﹣2x
D . y=2x﹣1
6. (2分)(2018·牡丹江模拟) 在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()
A . 6种
B . 7种
C . 8种
D . 9种
7. (2分)下列命题正确的有()个
①40°角为内角的两个等腰三角形必相似
②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750
③一组对边平行,另一组对边相等的四边形是平行四边形
④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1
⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。

A . 1个
B . 2个
C . 3个
D . 4个
8. (2分)下列命题中正确的是()
A . 三角形的高线都在三角形内部
B . 直角三角形的高只有一条
C . 钝角三角形的高都在三角形外
D . 三角形至少有一条高在三角形内
二、填空题 (共8题;共8分)
9. (1分) (2018八上·昌图期末) 已知2x﹣1的平方根是±3,则5x+2的立方根是________.
10. (1分) (2017九上·召陵期末) 如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为________.
11. (1分) (2019八上·盐田期中) 已知 =a,则 =________.
12. (1分)(2017·新泰模拟) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.
13. (1分) (2019八下·简阳期中) 已知关于的不等式组只有3个整数解,则实数的取值范围是________.
14. (1分)式子a2x>x(a2+1)成立,则x满足的条件是________
15. (1分) (2017七下·钦州期末) 若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是________.
16. (1分) (2018七上·武威期末) 若m、n满足,则的值等于________.
三、解答题 (共7题;共51分)
17. (10分) (2016七下·普宁期末) 已知∠MAN.
(1)用尺规完成下列作图:(保留作图痕迹,不写作法)
①作∠MAN的平分线AE;
②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;
(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.
18. (10分) (2015九上·山西期末) 计算:
(1)。

(2)解方程:。

19. (5分)在下面的方格纸中经过点C画与线段AB互相平行的直线l1 ,再经过点B画一条与线段AB垂
直的直线l2 .
20. (1分)化简=________
21. (5分)如图,已知直线l1∥l2 ,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P 点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P 点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
22. (5分)已知 2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.
23. (15分)在如图所示平面直角坐标系中,已知A(﹣2,2),B(﹣3,﹣2),C(3,﹣2).
(1)在图中画出△ABC;
(2)将△ABC先向上平移4个单位长,再向右平移2个单位长得到△A1B1C1,写出点A1,B1,C1的坐标;
(3)求△A1B1C1的面积.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共51分)
17-1、
17-2、18-1、18-2、
19-1、20-1、
21-1、
22-1、
23-1、23-2、23-3、。

相关文档
最新文档