2018-2019年最新大连市中考数学考前终极押题密卷【共3卷】【精准押题】
大连市2019年中考数学试卷及答案(WORD解析版)

辽宁省大连市2019年中考数学试卷一、选择题(共8小题,每小题3分,共24分)2.(3分)(2019•大连)如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()B3.(3分)(2019•大连)《2019年大连市海洋环境状况公报》显示,2019年大连市管辖海域4.(3分)(2019•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的6.(3分)(2019•大连)不等式组的解集是(),7.(3分)(2019•大连)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红C图,8.(3分)(2019•大连)一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积∴根据勾股定理得:圆锥的母线长为=5cm二、填空题(共8小题,每小题3分,共24分)9.(3分)(2019•大连)分解因式:x2﹣4=(x+2)(x﹣2).10.(3分)(2019•大连)函数y=(x﹣1)2+3的最小值为3.11.(3分)(2019•大连)当a=9时,代数式a2+2a+1的值为100.12.(3分)(2019•大连)如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=2cm.中点,题主要考查对三角形的中位线定理的理解和掌握,13.(3分)(2019•大连)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=35°.14.(3分)(2019•大连)如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为59m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)BAC=,代入数据即可求出观BAC=,AC=≈则该校女子排球队队员的平均年龄为15岁.16.(3分)(2019•大连)点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是>0.﹣﹣﹣﹣﹣>三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分)17.(9分)(2019•大连)(1﹣)++()﹣1.﹣+3=318.(9分)(2019•大连)解方程:=+1.19.(9分)(2019•大连)如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.AB=C D,20.(12分)(2019•大连)某地为了解气温变化情况,对某月中午12时的气温(单位:℃)(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为6天,占这个月总天数的百分比为20%,这个月共有30天;(2)统计表中的a=3,这个月中行12时的气温在12≤x<16范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.)的天数,根据扇形统℃的天数占该月总天数的百分比是:×四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.(9分)(2019•大连)某工厂一种产品2019年的产量是100万件,计划2019年产量达到121万件.假设2019年到2019年这种产品产量的年增长率相同.(1)求2019年到2019年这种产品产量的年增长率;(2)2019年这种产品的产量应达到多少万件?长率)22.(9分)(2019•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=8,b=280;(2)求小明的爸爸下山所用的时间.23.(10分)(2019•大连)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD ∥AC.(1)图中∠OCD=90°,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求CD的长.==2,,即∠BCO+==CD=3五、解答题(共3题,其中24题11分,25.26各12分,共35分)24.(11分)(2019•大连)如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围.AE=B===BEF=x)=,.)BE=﹣﹣.25.(12分)(2019•大连)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).DA=AGAD=,即.易证△,则有∴AD=GE=AD=BE=.的长为.平行线分线段成比26.(12分)(2019•大连)如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l 相交于点P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.(1)该抛物线的解析式为y=(x﹣m)2+2m﹣2(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段BC′上,求此时m的值.=,可得:=.(.解得:y=x+m=x 解得:.C==.=,.,都是分式方程的解...。
2019年辽宁省大连市中考数学试卷-答案

辽宁省大连市2019年初中毕业升学考试数学解析一、选择题1.【答案】A【解析】解:2-的绝对值是2.故选:A .2.【答案】B【解析】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B .3.【答案】D【解析】解:将数58 000用科学记数法表示为45.810⨯.故选:D .4.【答案】A【解析】解:将点(3,1)P 向下平移2个单位长度,得到的点P ′的坐标为(3,12)-,即(3,1)-, 故选:A .5.【答案】B【解析】解:5131x x +-≥,移项得5311x x ---≥,合并同类项得22x -≥,系数化为1得,1x -≥,在数轴上表示为:故选:B .6.【答案】C 【解析】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C 、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C .7.【答案】A【解析】解:33(2)8a a =--;故选:A .8.【答案】D【解析】解:两次摸球的所有的可能性树状图如下:∴14P =两次都是红球. 故选:D .9.【答案】C【解析】解:连接AC 交EF 于点O ,如图所示:∵四边形ABCD 是矩形,∴8AD BC ==,90B D ∠=∠=︒,AC ===∵折叠矩形使C 与A 重合时,EF AC ⊥,12AO CO AC === ∴90AOF D ∠=∠=︒,OAF DAC ∠=∠,∴则Rt Rt FOA ADC △∽△,∴AO ADAF AC= 解得:5AF =,∴853D F DF AD AF '==-=-=,故选:C .10.【答案】【解析】解:当0y =时,2112042x x -++=,解得:12x =-,24x =,∴点A 的坐标为(2,0)-;当0x =时,2112242y x x =++=, ∴点C 的坐标为(0,2); 当2y =时,2112242x x -++=, 解得:10x =,22x =,∴点D 的坐标为(2,2).设直线AD 的解析式为(0)y kx b k =+≠,将(2,0)A -,(2,2)D 代入y kx b =+,得:2022k b k b -+=⎧⎨+=⎩,解得:121k b ⎧=⎪⎨⎪=⎩, ∴直线AD 的解析式为112y x =+. 当(0x =时,1112y x =+=, ∴点E 的坐标为(0,1).当1y =时,2112142x x -++=,解得:11x =21x =+∴点P的坐标为(1-,点Q的坐标为(1+,∴1(1PQ ==故答案为:二、填空题11.【答案】130【解析】解:∵AB CD ∥,∴50B C ∠=∠=︒,∵BC DE ∥,∴180C D ∠+∠=︒,∴18050130D ∠=︒-︒=︒,故答案为:130.12.【答案】25【解析】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【答案】【解析】解:∵ABC △是等边三角形,∴60B BAC ACB ∠=∠=∠=︒,∵CD AC =,∴CAD D ∠=∠,∵60ACB CAD D ∠=∠+∠=︒,∴30CAD D ∠=∠=︒,∴90BAD ∠=︒,∴tan30AB AD ︒===故答案为14.【答案】5352x y x y +=⎧⎨+=⎩【解析】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩, 故答案为5352x y x y +=⎧⎨+=⎩. 15.【答案】3【解析】解:在Rt BCD △中,tan BC BDC CD ∠=, 则tan 10BC CD BDC =∠=,在Rt ACD △中,tan AC ADC CD∠=, 则tan 10 1.3313.3AC CD ADC =∠⨯=≈,∴ 3.33(m)AB AC BC =-=≈,故答案为:3.16.【答案】12【解析】解:从图1,可见甲的速度为120602=, 从图2可以看出,当67x =时,二人相遇,即:6(60)1207V +⨯=已,解得:已的速度80V =己, ∵已的速度快,从图2看出已用了b 分钟走完全程,甲用了a 分钟走完全程,120120160802a b -=-=, 故答案为12. 三、解答题17.【答案】解:原式346=+-34=+-7=.18.【答案】解:原式2(1)(1)112(2)2a a a a a -+=⨯--- 1122a a a +=-- =.19.【答案】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在ABF △和DCE △中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF DCE SAS △≌△∴AF DE =.20.【答案】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人, 被测试男生总数150.350÷=(人), 成绩等级为“及格”的男生人数占被测试男生总人数的百分比:505100%90%50-⨯=, 故答案为15,90;(2)被测试男生总数150.350÷=(人), 成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:5100%10850⨯=, 故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%, 该校八年级男生成绩等级为“良好”的学生人数18040%72⨯=(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题21.【答案】解:(1)设2016年到2018年该村人均收入的年平均增长率为x , 根据题意得:220000(1)24200x +=,解得:10.110%x ==,2 1.1x =(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200(110%)26620⨯+=(元).答:预测2019年村该村的人均收入是26 620元.22.【答案】解:(1)∵点(3,2)A 在反比例函数(0)k y x x =>的图象上, ∴326k =⨯=, ∴反比例函数6y x=; 答:反比例函数的关系式为:6y x=; (2)过点A 作AE OC ⊥,垂足为E ,连接AC , 设直线OA 的关系式为y kx =,将(3,2)A 代入得,23k =, ∴直线OA 的关系式为23y x =, ∵点(,0)C a ,把x a =代入23y x =,得:23y a =,把x a =代入6y x=,得:6y a =, ∴2,3B a a ⎛⎫ ⎪⎝⎭,即23BC a =,6,D a a ⎛⎫ ⎪⎝⎭,即6CD a = ∵32ACD S =△, ∴1322CD EC =,即163(3)22a a ⨯⨯-=,解得:6a =, ∴2633BD BC CD a a =-=-=; 答:线段BD 的长为3.23.【答案】(1)证明:作DF BC ⊥于F ,连接DB ,∵AP 是O 的切线,∴90PAC ∠=︒,即90P ACP ∠+∠=︒,∵AC 是O 的直径,∴90ADC ∠=︒,即90PCA DAC ∠+∠=︒,∴P DAC DBC ∠=∠=∠,∵APC BCP ∠=∠,∴DBC DCB ∠=∠,∴DB DC =,∵DF BC ⊥,∴DF 是BC 的垂直平分线,∴DF 经过点O ,∵OD OC =,∴ODC OCD ∠=∠,∵2BDC ODC ∠=∠,∴22BAC BDC ODC OCD ∠=∠=∠=∠;(2)解:∵DF 经过点O ,DF BC ⊥,∴132FC BC ==, 在DEC △和CFD △中,DCE FDC DEC CFD DC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DEC CFD AAS △≌△∴3DE FC ==,∵90ADC ∠=︒,DE AC ⊥,∴2DE AE EC =, 则292DE EC AE ==, ∴913222AC =+=, ∴O 的半径为134.五、解答题24.【答案】解:(1)当0x =时,3y =,当0y =时,4x =, ∴直线334y x =+与x 轴点交(4,0)A ,与y 轴交点(0,3)B ∴4OA =,3OB =,∴5AB ==,因此:线段AB 的长为5.(2)当CD OA ∥时,如图, ∵53BD OC =,OC m =, ∴53BD m =, 由BCD BOA △∽△得:BD BC BA BO=,即:53353m m -=,解得:32m =; ①当302m <≤时,如图1所示:32DE m =≤,此时点E 在AOB △的内部, 3002S m ⎛⎫= ⎪⎝⎭<≤; ②当332m <≤时,如图2所示:过点D 作DF OB ⊥,垂足为F ,此时在x 轴下方的三角形与CDF △全等,∵BDF BAO △∽△, ∴54BD BA DF OA ==, ∴4π3DF =,同理:BF m =, ∴23CF m =-, ∴2148(23)4233CDF S DF CF m m m π∆==-⨯=-, 即:2834332S m m m ⎛⎫=-< ⎪⎝⎭≤ ③当3m >时,如图3所示:过点D 作DF y ⊥轴,DG x ⊥轴,垂足为F 、G , 同理得:4π3DF =,BF m =, ∴3OF DG m ==-,443AG m =-, ∴111414(23)4(3)222323OGE ADG S S S OG GE AG GD m m m m ⎛⎫=-=⋅-=⨯⨯---- ⎪⎝⎭△△ ∴2226(3)3S m m m =+->答:223002834332226(3)3S m S S m m m S m m m ⎧⎛⎫= ⎪⎪⎝⎭⎪⎪⎛⎫==-⎨ ⎪⎝⎭⎪⎪=+-⎪⎩<≤<≤>25.【答案】证明:(1)∵AB AD =∴ABD ADB ∠=∠∵ADB ACB DAC ∠=∠+∠,ABD ABC ACB BAE ∠=∠=∠+∠∴BAE DAC ∠=∠(2)设DAC BAE α∠==∠,C β∠=∴ABC ADB αβ∠=∠=+∵290ABC C αββαβ∠+∠=++=+=︒,90BAE EAC EAC α∠+∠=︒=+∠ ∴2EAC β∠=∵AF 平分EAC ∠∴FAC EAF β∠=∠=∴FAC C ∠=∠,ABE BAF αβ∠=∠=+∴AF FC =,AF BF = ∴12AF BC BF == ∵ABE BAF ∠=∠,90BGA BAC ∠=∠=︒∴ABG BCA △∽△ ∴BG AB AC BC= ∵ABE BAF ∠=∠,ABE AFB ∠=∠∴ABF BAD △∽△ ∴AB BF BD AB =,且AB kBD =,12AF BC BF == ∴2BC k AB=,即12AB BC k = ∴12BG AC k = (3)∵ABE BAF ∠=∠,90BAC AGB ∠=∠=︒∴ABH C ∠=∠,且BAC BAC ∠=∠∴ABH ACB △∽△ ∴AB AH AC AB= ∴2AB AC AH =⨯设BD m =,AB km =, ∵12AB BC k= ∴22BC k m =∴AC ==∴2AB AC AH =⨯2()km AH =∴AH =∴242km k HC AC AH ⨯-=-==∴2142AH CH k =- 26.【答案】解:(1)22123(1:)4C y ax ax a a x a =--=--,顶点(1,4)a -围绕点(,0)P m 旋转180︒的对称点为(21,4)m a -,22(21):4C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -;(2)1a =-时,21(1)4:C y x --=,①当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=-+-=,无解; ②312t ≤…时,1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ③当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+,212(1)1y y t =-=-,解得:0t =或2(舍去0),故222(2)44:C y x x x =-=--;(3)0m =,22(14:)C y a x a =-++,点A 、B 、D 、A '、D '的坐标分别(1,0)、(3,0)-、(0,3)a 、(0,1)、(3,0)a -, 当0a >时,a 越大,则OD 越大,则点D '越靠左,当2C 过点A '时,2(01)41y a a =-++=,解得:13a =, 当2C 过点D '时,同理可得:1a =, 故:103a <≤或1a ≥;当0a <时,当2C 过点D '时,31a -=,解得:13a =, 故:13a ≤; 综上,故:103a <≤或1a ≥或13a -≤.。
大连市2019年中考数学试题含答案解析(word版)

2019辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2019辽宁大连,1,3分)﹣2的绝对值是( ) A . 2 B .-2 C .21 D .-21 【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A .2. (2019辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2019辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A . 1,2,3 B .,1,2,3 C .3,4,8 D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2019辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D. 5. (2019辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C.6. (2019辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2019辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B. 8. (2019辽宁大连,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2019辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2018-2019年大连市中考数学真题(附答案)

2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。
大连市【中考真题】2018、2019山西省各市中考试题及答案(3套,27页)

2018年山西省中考数学试卷(图片版)2018 年山西省中考数学试卷(解析版)第I 卷选择题(共30 分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D.1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3.下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633 ()2b ba a -=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=1(单5. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】 C【考点】 数 据 的 分 析【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 .6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为A. 6.06 ⨯104 立方米 /时B. 3.136 ⨯106 立方米 /时C. 3.636 ⨯106 立方米 /时D. 36.36 ⨯105 立方米 /时【答案】 C【考点】 科 学 计 数 法【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是()A.49 B. 13 C. 29 D. 19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498. 如图 ,在 Rt △ ABC中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( )A. 12B. 6D.【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:+-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D. 设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.。
2022届辽宁省大连市中考数学押题试卷及答案解析

2022届辽宁省大连市中考数学押题试卷一.选择题(共10小题,满分30分)1.(3分)如果一个有理数的绝对值是6,那么这个数一定是()A.6B.﹣6C.﹣6或6D.无法确定2.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 4.(3分)在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)5.(3分)不等式4x+12>0的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.7.(3分)x20不可以写成()A.(x4)5B.(±x2)10C.(x10)10D.(±x5)48.(3分)某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.某顾客刚好消费200元,则该顾客所获得返现金额低于30元的概率是( ) A .34B .23C .12D .139.(3分)如图,将一边长AB 为4的矩形纸片折叠,使点D 与点B 重合,折痕为EF ,若EF =2√5,则矩形的面积为( )A .32B .28C .30D .3610.(3分)如图,一段抛物线y =﹣x 2+9(﹣3≤x ≤3)为C 1,与x 轴交于A 0,A 1两点,顶点为D 1;将C 1绕点A 1旋转180°得到C 2,顶点为D 2;C 1与C 2组成一个新的图象.垂直于y 轴的直线l 与新图象交于点P 1(x 1,y 1),P 2(x 2,y 2),与线段D 1D 2交于点P 3(x 3,y 3),且x 1,x 2,x 3均为正数,设t =x 1+x 2+x 3,则t 的最大值是( )A .15B .18C .21D .24二.填空题(共6小题,满分18分,每小题3分)11.(3分)将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若∠EFG =52°,则∠2﹣∠1= °.12.(3分)已知2、3、5、5、7的众数是.13.(3分)如图,已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD,则tan∠FGD 的值为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是m.(小明的身高忽略不计,结果保留根号).16.(3分)甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是米.三.解答题(共4小题,满分39分)17.(9分)计算:(1)√75−√12+√3(2)√2×(√12+3√8)(3)(2√15−5√8)÷√10÷√10(4)(√27−√12)﹣(√18+√12)18.(9分)计算:a2−1b2−2b+1÷a+1b−1+1b−119.(9分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.20.(12分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放abD私锁共享单车,归为己用E其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.四.解答题(共3小题,满分28分)21.(9分)某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=kx(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=32,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五.解答题(共3小题,满分35分)24.(11分)如图,函数y=−13x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.(1)求k;(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗?为什么?25.(12分)△ABC 中,AC =BC ,∠ACB =α,点D 是平面内不与点A 和点B 重合的一点,连接DB ,将线段DB 绕点D 顺时针旋转α得到线段DE ,连接AE 、BE 、CD . (1)如图①,点D 与点A 在直线BC 的两侧,α=60°时,AE CD的值是 ;直线AE与直线CD 相交所成的锐角的度数是 度;(2)如图②,点D 与点A 在直线BC 两侧,α=90°时,求AE CD 的值及直线AE 与直线CD 相交所成的锐角∠AMC 的度数;(3)当α=90°,点D 在直线AB 的上方,S △ABD =12S △ABC ,请直接写出当点C 、D 、E 在同一直线上时,BE CD的值.26.(12分)把函数C 1:y =ax 2﹣2ax ﹣3a (a ≠0)的图象绕点P (m ,0)旋转180°,得到新函数C 2的图象,我们称C 2是C 1关于点P 的相关函数.C 2的图象的对称轴与x 轴交点坐标为(t ,0).(1)填空:t 的值为 (用含m 的代数式表示)(2)若a =﹣1,当12≤x ≤t 时,函数C 1的最大值为y 1,最小值为y 2,且y 1﹣y 2=1,求C 2的解析式;(3)当m =0时,C 2的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A ′D ′,若线A ′D ′与C 2的图象有公共点,结合函数图象,求a 的取值范围.2022届辽宁省大连市中考数学押题试卷参考答案与试题解析一.选择题(共10小题,满分30分)1.(3分)如果一个有理数的绝对值是6,那么这个数一定是()A.6B.﹣6C.﹣6或6D.无法确定解:如果一个有理数的绝对值是6,那么这个数一定是﹣6或6.故选:C.2.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.解:如图所示:它的俯视图是:.故选:C.3.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106解:将26.8万用科学记数法表示为:2.68×105.故选:C.4.(3分)在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)解:在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是(0,﹣3),故选:C.5.(3分)不等式4x+12>0的解集在数轴上表示正确的是()A .B .C .D .解:不等式4x +12>0, 移项得:4x >﹣12, 解得:x >﹣3,故选:C .6.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、是轴对称图形,是中心对称图形,故此选项正确; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项错误; 故选:B .7.(3分)x 20不可以写成( ) A .(x 4)5B .(±x 2)10C .(x 10)10D .(±x 5)4解:x 20=(x 4)5=(±x 2)10=(±x 5)4,而(x 10)10=x 100, 故选:C .8.(3分)某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.某顾客刚好消费200元,则该顾客所获得返现金额低于30元的概率是( ) A .34B .23C .12D .13解:用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中少于30元的有4种, ∴该顾客所获得返现金额低于30元的概率是412=13,故选:D .9.(3分)如图,将一边长AB 为4的矩形纸片折叠,使点D 与点B 重合,折痕为EF ,若EF =2√5,则矩形的面积为( )A .32B .28C .30D .36解:连接BD 交EF 于O ,如图所示: ∵折叠纸片使点D 与点B 重合,折痕为EF , ∴BD ⊥EF ,BO =DO ,OE =OF =12EF =√5, ∵四边形ABCD 是矩形, ∴AB =CD =4,∠BCD =90°, 设BC =x ,BD =√BC 2+CD 2=√x 2+42, ∴BO =√x 2+422,∵∠BOF =∠C =90°,∠CBD =∠OBF , ∴△BOF ∽△BCD , ∴OB BC=OF CD,即:√x2+422x=√54,解得:x=8,∴BC=8,∴S矩形ABCD=AB•BC=4×8=32,故选:A.10.(3分)如图,一段抛物线y=﹣x2+9(﹣3≤x≤3)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象.垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),且x1,x2,x3均为正数,设t=x1+x2+x3,则t的最大值是()A.15B.18C.21D.24解:由已知可得:A1(3,0),D1(0,9),将C1绕点A1旋转180°后,得到:D2(6,﹣9),新函数的对称轴为x=6,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),∵x1,x2均为正数,∴P1(x1,y1),P2(x2,y2)在第四象限,∴P1(x1,y1),P2(x2,y2)两点关于对称轴x=6对称,∴x1+x2=12,∵垂直于y轴的直线l与线段D1D2交于点P3(x3,y3),∴0≤x3≤6,∴t=x1+x2+x3=12+x3,当x3=6时,t有最大值18.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=28°.解:∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°.故答案为:28.12.(3分)已知2、3、5、5、7的众数是5.解:5出现的次数最多,是2次,因此众数是5,故答案为:5.13.(3分)如图,已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD,则tan∠FGD的值为√32.解:过D作DH⊥AB于H,如图所示:∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,AC=BC=AB=12,∵OD=OB,∴△ODB是等边三角形,∴BD=OB=12AB=6,∴CD=BC﹣BD=3,∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=12BD=3,DH=√3BH=3√3.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=12CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt△AFG中,∵∠AFG=30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12−92−3=92,∴tan∠GDH=GHDH=923√3=√32,∴tan∠FGD=tan∠GDH=√3 2,故答案为:√32.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 {5x +y =3x +5y =2 .解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛, 根据题意得:{5x +y =3x +5y =2,故答案为{5x +y =3x +5y =2.15.(3分)如图,为了测量塔CD 的高度,小明在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进60m 至B 处,测得仰角为60°,那么塔的高度是 30√3 m .(小明的身高忽略不计,结果保留根号).解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =60m .∴DC =BD •sin60°=60×√32=30√3(m ), 答:该塔高为30√3m , 故答案为:30√3.16.(3分)甲、乙两小朋友都从A 地出发,匀速步行到B 地(A 、B 两地之间为笔直的道路),甲出发半分钟后,乙才从A 地出发,经过一段时间追上甲,两人继续向B 地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是40米.解:设甲的速度为am/min,乙的速度为bm/min,由函数图象知,当x=1.5min时,y=0m,即两人第一次相遇,根据题意得,(1.5+0.5)a=1.5b,∴b=43a,∵当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,∴a+b=70÷12=140,∴a+43a=140,∴a=60(m/min),b=80(m/min),于是,当甲、乙之间的距离刚好是70米时,乙出发的时间为:1.5+70÷(80﹣60)=5(min),∴两人第二次相遇时的时间为:5+0.5=5.5(min),根据函数图象知,当x=7,5min时,乙到达了B地,此时,两人相距:(80﹣60)×(7.5﹣5.5)=40(m),∴甲与B两地的距离为:40m.故答案为:40.三.解答题(共4小题,满分39分)17.(9分)计算:(1)√75−√12+√3(2)√2×(√12+3√8)(3)(2√15−5√8)÷√10÷√10(4)(√27−√12)﹣(√18+√12)解:(1)√75−√12+√3=5√3−2√3+√3=4√3;(2)√2×(√12+3√8)=2√6+12;(3)(2√15−5√8)÷√10÷√10=2√32−5√45=√6−2√5;(4)(√27−√12)﹣(√18+√12)=3√3−√22−√24−2√3=√3−3√24.18.(9分)计算:a2−1b2−2b+1÷a+1b−1+1b−1解:原式=(a+1)(a−1)(b−1)2•b−1a+1+1b−1=a−1b−1+1b−1=a b−1.19.(9分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.证明:(1)在△AED 与△AEC 中{AE =AE ∠AED =∠AEC ED =EC∴△AED ≌△AEC (SAS ),∴∠D =∠C ,∵∠D =∠B ,∴∠B =∠C ,∴AB =AC ;20.(12分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点 频数(人数) A损坏零件 50 B破译密码 20 C乱停乱放 a D 私锁共享单车,归为己用bE其他 30 调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=60;b=40;m=15;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.解:(1)50÷25%=200人,c=200×30%=60人,b=200×20%=40人,30÷200=15%,故答案为:60;40;15;(2)360°×(1﹣25%﹣30%﹣20%﹣15%)=36°;答:扇形图中B组所在扇形的圆心角度数为36°.(3)100×20%=20(万人)答:持有D组观点的市民人数大约为20万人,四.解答题(共3小题,满分28分)21.(9分)某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?解:(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t),∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=kx(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D ,连接AC ,AD .(1)求该反比例函数的解析式;(2)若S △ACD =32,设点C 的坐标为(a ,0),求线段BD 的长.解:(1)∵点A (3,2)在反比例函数y =k x (x >0)的图象上,∴k =3×2=6,∴反比例函数y =6x ;答:反比例函数的关系式为:y =6x ;(2)过点A 作AE ⊥OC ,垂足为E ,连接AC ,设直线OA 的关系式为y =kx ,将A (3,2)代入得,k =23,∴直线OA 的关系式为y =23x ,∵点C (a ,0),把x =a 代入y =23x ,得:y =23a ,把x =a 代入y =6x ,得:y =6a , ∴B (a ,23a ),即BC ═23a , D (a ,6a ),即CD =6a∵S △ACD =32,∴12CD •EC =32,即12×6a ×(a −3)=32,解得:a =6, ∴BD =BC ﹣CD =23a −6a =3;答:线段BD 的长为3.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF 经过点O ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3,在△DEC 和△CFD 中,{∠DCE =∠FDC ∠DEC =∠CFD DC =CD,∴△DEC ≌△CFD (AAS )∴DE =FC =3,∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =DE 2AE =92,∴AC =2+92=132,∴⊙O 的半径为134.五.解答题(共3小题,满分35分)24.(11分)如图,函数y=−13x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.(1)求k;(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗?为什么?解:∵函数y=−13x+2的图象与x轴、y轴分别交于点A、B∴A(6,0),B(0,2)∴BO=2,AO=6∵OE,BE是菱形的边∴BE=OE∴∠ABO=∠BOE∵∠AOB=90°∴∠ABO+∠BAO=90°,∠BOE+∠AOE=90°∴∠BAO=∠AOE∴OE=AE∴AE=BE作EM ⊥AO ,作ED ⊥BO∴EM ∥BO ,DE ∥AO∴DE AO =BE AB =12,EM BO =AE AB =12 ∴ME =1,DE =3∴E (3,1)∵y =kx 的图象过E 点∴1=3k∴k =13∴解析式y =13x(2)是矩形.∵BC ⊥y 轴,AO ⊥y 轴∴BC ∥AO∴BE AE =CE EO =1∴OE =CE ,且AE =BE∴ACBO 是平行四边形且∠AOB =90°∴四边形ACBO 是矩形.25.(12分)△ABC 中,AC =BC ,∠ACB =α,点D 是平面内不与点A 和点B 重合的一点,连接DB ,将线段DB 绕点D 顺时针旋转α得到线段DE ,连接AE 、BE 、CD .(1)如图①,点D 与点A 在直线BC 的两侧,α=60°时,AE CD 的值是 1 ;直线AE与直线CD 相交所成的锐角的度数是 60 度; (2)如图②,点D 与点A 在直线BC 两侧,α=90°时,求AE CD 的值及直线AE 与直线CD 相交所成的锐角∠AMC 的度数; (3)当α=90°,点D 在直线AB 的上方,S △ABD =12S △ABC ,请直接写出当点C 、D 、E 在同一直线上时,BE CD 的值.解:(1)如图1,延长AE ,CD 交于点H ,∵将线段DB 绕点D 顺时针旋转α得到线段DE ,∴DE =BD ,∠BDE =60°,∴△BDE 是等边三角形,∴BD =BE ,∠DBE =60°,∵△ABC 是等边三角形,∴AB =BC ,∠ABC =∠DBE =60°,∴∠ABE =∠CBD ,且BE =BD ,AB =BC ,∴△ABE ≌△CBD (SAS )∴AE =CD ,∠DCB =∠BAE ,∴AE CD =1,∵∠BAC +∠ACB =120°,∴∠BAE +∠CAE +∠ACB =120°,∴∠CAE +∠ACB +∠BCD =120°∴∠CAE +ACH =120°,∴∠AHB =60°,故答案为:1,60.(2)∵AC =BC ,∠ACB =90°,∴AB =√2BC ,∠ABC =45°,∵将线段DB 绕点D 顺时针旋转90°得到线段DE ,∴DE =BD ,∠BDE =90°,∴BE =√2BD ,∠DBE =45°,∴∠DBE =∠ABC ,∴∠ABE =∠CBD ,且AB BC =√2=BE BD , ∴△ABE ∽△CBD ,∴AE CD =AB CB =√2,∠BAE =∠BCD ,∵∠BAC +∠ACB =135°=∠ACB +∠CAM +∠BAE ,∴∠ACB +∠CAM +∠BCD =∠CAM +∠ACM =135°,∴∠AMC =45°;(3)若点D ,点A 在直线BC 两侧,如图3,分别取AC ,BC 中点G ,H ,连接GH ,∵S △ABD =12S △ABC ,∴点D 在直线GH 上,∵∠ACB =∠BDE =90°,AC =BC ,DE =BD ,∴∠CAB =∠CBA =45°,∠DEB =∠DBE =45°,BE =√2BD ,∵点G ,点H 分别是AC ,BC 的中点,∴GH ∥AB ,∴∠DHB =∠ABC =45°,∵点C 、E 、D 三点共线,∴∠CDB =90°,且点H 是BC 中点,∴DH =CH =BH ,∴∠HCD =∠HDC ,且∠HCD +∠HDC =∠BHD =45°,∴∠HCD =∠HDC =22.5°,∵∠BED =∠BCE +∠CBE =45°,∴∠BCE =∠CBE =22.5°,∴BE =CE =√2BD ,∴CD =CE +DE =(√2+1)BD ,∴BE CD =√2√2+1=2−√2; 若点A ,点D 在直线BC 同侧,如图4,分别取AC ,BC 中点G ,H ,连接GH ,∵S △ABD =12S △ABC ,∴点D 在直线GH 上,∵∠ACB =∠BDE =90°,AC =BC ,DE =BD ,∴∠CAB =∠CBA =45°,∠DEB =∠DBE =45°,BE =√2BD ,∵点G ,点H 分别是AC ,BC 的中点,∴GH ∥AB ,∴∠DHC =∠ABC =45°,∵点C 、E 、D 三点共线,∴∠CDB =90°,且点H 是BC 中点,∴DH =CH =BH ,∴∠HBD =∠HDB ,且∠HBD +∠HDB =∠CHD =45°,∴∠HBD =∠HDB =22.5°,∵∠ECB =67.5°,∠EBC =∠EBD +∠DBC =67.5°,∴∠BCE =∠CBE =67.5°,∴BE =CE =√2BD ,∴CD =CE ﹣DE =(√2−1)BD ,∴BE CD =√2√2−1=2+√2, 综上所述:BE CD 的值为2−√2或2+√2.26.(12分)把函数C 1:y =ax 2﹣2ax ﹣3a (a ≠0)的图象绕点P (m ,0)旋转180°,得到新函数C 2的图象,我们称C 2是C 1关于点P 的相关函数.C 2的图象的对称轴与x 轴交点坐标为(t ,0).(1)填空:t 的值为 2m ﹣1 (用含m 的代数式表示)(2)若a =﹣1,当12≤x ≤t 时,函数C 1的最大值为y 1,最小值为y 2,且y 1﹣y 2=1,求C 2的解析式;(3)当m =0时,C 2的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A ′D ′,若线A ′D ′与C 2的图象有公共点,结合函数图象,求a 的取值范围.解:(1)C 1:y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a ,顶点(1,﹣4a )围绕点P (m ,0)旋转180°的对称点为(2m ﹣1,4a ),C 2:y =﹣a (x ﹣2m +1)2+4a ,函数的对称轴为:x =2m ﹣1,t =2m ﹣1,故答案为:2m ﹣1;(2)a =﹣1时,C 1:y =﹣(x ﹣1)2+4,①当12≤t <1时, x =12时,有最小值y 2=154, x =t 时,有最大值y 1=﹣(t ﹣1)2+4,则y 1﹣y 2=﹣(t ﹣1)2+4−154=1,无解;②1≤t ≤32时,x =1时,有最大值y 1=4,x =12时,有最小值y 2=154,y 1﹣y 2=14≠1(舍去);③当t>32时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=1 3,当C2过点D′时,同理可得:a=1,故:0<a≤13或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=−1 3,故:a≤−1 3;综上,故:0<a≤13或a≥1或a≤−13.。
最新中考数学押题预测密卷 有答案 最新题必考题必考题型1

最新中考数学押题预测密卷(考试时间120分钟满分120分)一、填空题(共8道题,每小题3分,共24分) 1、8的相反数是________。
2、因式分解:3244x x x -+==____________________________。
3、函数y =中自变量x 的取值范围是_________________________。
4、设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________.5、如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 cm .6、已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可 化简为_________________.7、如图,在平面直角坐标系中有一正方形AOBC,反比例函数过正方形AOBC 对角线的交点,半径为(4-的圆内切于△ABC ,则k 的值为________。
8、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a>2),半径为2,函数y =x 的图象被⊙P 割的弦AB的长为a 的值是________。
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共24分) 9、下列运算正确的是( )A 、 532a a a =+ B 、 ()4222-=-a aC 、 22232a a a -=- D 、 ()()2112-=-+a a a10、如图,在直角三角形ABC 中(∠C =900),放置边长分别3,4,x 的三个正方形,则x 的值为( )A 、 5B 、 6C 、7D 、 12FED CAk y x=11、某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是( ) A 、平均数为30 B 、众数为29 C 、中位数为31 D 、极差为512、下面四个几何体中,俯视图为四边形的是( )13、如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A 、12 B 、34 C 、D 、4514、小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A 、60512601015-=+x x B 、 60512601015+=-x xC 、60512601015-=-x xD 、 5121015-=+xx15、如图,Rt ⊿ABC 中AB=3,BC=4,∠B=90°,点B 、C 在两坐标轴上滑动。
辽宁省大连市2019-2020学年中考数学第三次押题试卷含解析

辽宁省大连市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,左、右并排的两棵树AB 和CD ,小树的高AB=6m ,大树的高CD=9m ,小明估计自己眼睛距地面EF=1.5m ,当他站在F 点时恰好看到大树顶端C 点.已知此时他与小树的距离BF=2m ,则两棵树之间的距离BD 是( )A .1mB .43mC .3mD .103m 2.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .2D .5cm4.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.5.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣46.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤168.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元9.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.4510.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π11.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22 人数 1 4 3 2 2A.20,19 B.19,19 C.19,20.5 D.19,2012.在下列交通标志中,是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.15.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.16.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.17.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是18.函数y1x 的自变量x的取值范围为____________.19.(6分)(1)计算:0353tan60502-+-+sin45°(2)解不等式组:3(1)5 2111 32x xx x++-⎧⎪+-⎨-≤⎪⎩f20.(6分)如图1,反比例函数kyx=(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.21.(6分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.22.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.23.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).24.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.25.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.27.(12分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH 的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴EGAG=EHCH=EG GHCH+,即24.5=27.5GH+,解得:GH=43,则BD=GH=43m , 故选:B .【点睛】 本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.2.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.3.C【解析】【分析】连接OC ,如图所示,由直径AB 垂直于CD ,利用垂径定理得到E 为CD 的中点,即CE=DE ,由OA=OC ,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC 的长,即为圆的半径.【详解】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴14cm 2CE DE CD ===, ∵OA=OC ,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴OC ==, 故选:C .【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.4.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.5.D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.7.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.9.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 11.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.12.C【解析】【分析】【详解】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.14.3 2【解析】【分析】由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=92,∴EC=BC﹣BE=92﹣3=32.故答案为32.【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15【解析】【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n的面积是,从而求出第8个正△A8B8C8的面积.正△A1B1C1的面积是3,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是3×14;因而正△A3B3C3与正△A2B2C2的面积的比也是14,面积是3×(14)2;依此类推△A n B n C n与△A n-1B n-1C n-1的面积的比是14,第n个三角形的面积是34(14)n-1.所以第8个正△A8B8C8的面积是34×(14)7=834.故答案为3.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.16.46【解析】【详解】如图作DH⊥AE于H,连接CG.设DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四边形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC与△GDE中,DG DG GDC GDE DC DE =⎧⎪∠=∠⎨⎪=⎩,∴△GDC ≌△GDE (SAS ),∴GC=GE ,∠DEG=∠DCG=∠DAF ,∵∠AFD=∠CFG ,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt △ADH 中,AD=8,AH=x ,DH=22x , ∴82=x 2+(2x )2, 解得:x=863, ∵△ADH ∽△AFD ,∴AD AH AF AD=, ∴AF=64863=46. 故答案为46.17.k≥,且k≠1【解析】 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k ≠1.考点:根的判别式.18.x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)7;(2)﹣2<x≤1.【解析】【分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】(1)0 3-++1(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.20.(1)(2)3,13y x=-;(3)14【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,),则1,﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠AD⊥y轴,则OD=1,后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t(0<t<),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(tt﹣1),则MN=t﹣3t+1,根据三角形面积公式得到S△CMN=12•t•(t﹣3t+1),再进行配方得到S=t﹣2)2+8(0<t<),最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=x,得,∴B点坐标为(1,,∴﹣1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=3;∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得1kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为﹣1;(3)设M点坐标为(t)(0<t<,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,33t﹣1),∴MN=23﹣(3t﹣1)=23﹣3t+1,∴S△CMN=12•t•(23﹣3t+1)=﹣3t2+12t+3=﹣3(t﹣3)2+93(0<t<23),∵a=﹣3<0,∴当t=3时,S有最大值,最大值为93.21.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.23.(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′B D=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.24.(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为1856分.【解析】【分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x﹣10)=4500﹣500,解得x=1856.答:小丽离距离图书馆500m时所用的时间为1856分.【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.25.内错角相等,两直线平行【解析】【分析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.26.(1)证明见解析;(1)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC ∽△BCA ,得出比例式,代入求出即可.试题解析:(1)证明:连接OE 、EC .∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°.∵D 为BC 的中点,∴ED=DC=BD ,∴∠1=∠1.∵OE=OC ,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB .∵∠ACB=90°,∴∠OED=90°,∴DE 是⊙O 的切线;(1)由(1)知:∠BEC=90°.在Rt △BEC 与Rt △BCA 中,∵∠B=∠B ,∠BEC=∠BCA ,∴△BEC ∽△BCA ,∴BE :BC=BC :BA ,∴BC 1=BE•BA .∵AE :EB=1:1,设AE=x ,则BE=1x ,BA=3x .∵BC=6,∴61=1x•3x ,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O 的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA 和△BEC ∽△BCA 是解答此题的关键.27.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019年最新大连市中考数学押题密卷A卷注:全面覆盖大连市中考考点,通过严格的分析整理而成,对今年的考试方向进行有效预测,密卷共分为三卷。
本密卷为押题卷一。
一、选择题(每题4分,共40分)1.(4分)-2的绝对值是()A.2 B.-2 C.12D.-122.(4分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(4分)下列运算正确的是()235222353475.(4分)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.76.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.7.(4分)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)8.(4分)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°9.(4分)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x10.(4分)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1.5cm C.πcm D.1cm二、填空题(每题4分,共16分)靶子,试估计小射手依次击中靶子的概率为_____。
14.(4分)一次函数y 1=kx+b (k ≠0)与反比例函数y 2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y 1>y 2,则x 的取值范围是 .三、解答题:(本大题共6小题,共44分)19.(8分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.20.(10分)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B 为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.B 卷四、填空题(每题4分,共20分)21.(4分)若m=2n+1,则m 2-4mn+4n 2的值是22.(4分)如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 . 23.(4分)如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是 .24.(4分)如图10,点A 在双曲线y =5x上,点B 在双曲线y =8x上,五、填空题(本大题共3个小题,共30分)26.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.876543212018-2019年最新大连市中考数学押题密卷A卷注:全面覆盖大连市中考考点,通过严格的分析整理而成,对今年的考试方向进行有效预测,密卷共分为三卷。
本密卷为押题卷二。
一、选择题(每题4分,共40分1.(4分) 2-3=()A.-1B.1C.-3D.32.(4分)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10-5克B.3.7×10-6克C.37×10-7克D.3.7×10-8克3.(4分)下列计算正确的是()2325235225.(4分)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.76.(4分)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥7.(4分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形8.(4分)如图,∠1=100°,∠C=70°,则∠A的大小是()C.第二、三、四象限D.第一、二、三象限10.(4分)如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.πa B.2πa C.12πa D.3a二、填空题(每题4分,共16分)球,摸出黄球的概率是 .三、解答题:(本大题共6小题,共44分)(2)解方程:22 222222 x x xx x x x++--=--17.(7分)在一个不透明的箱子中装有3个小球,分别标有A,B,C.这3个小球除所标字母外,其它都相同.从箱子中随机地摸出一个小球,然后放回;再随机地摸出一个小球.请你用画树形图(或列表)的方法,求两次摸出的小球所标字不同的概率.18.(7分)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD为多少米(结果可保留根号)19. (8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.B卷四、填空题(每题4分,共20分)21.(4分)已知ab=2,a-b=3,则a3b-2a2b2+ab3= 。
22.(4分)在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,则两次取出小球上的数字24.(4分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于。
25.(4分)如图,AB ,CD 是⊙O 的两条互相垂直的直径,点O1,O 2,O 3,O 4分别是OA 、OB 、OC 、OD 的中点,若⊙O 的半径为2,则阴影部分的面积为 。
五、填空题(本大题共3个小题,共30分)26.(8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 27.(10分)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB . (1)求证:△BCP ≌△DCP ; (2)求证:∠DPE=∠ABC ;(3)把正方形ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.CF是否平行,并说明理由.2018-2019年最新大连市中考数学押题密卷A 卷注:全面覆盖大连市中考考点,通过严格的分析整理而成,对今年的考试方向进行有效预测,密卷共分为三卷。
本密卷为押题卷三。
一、选择题(每题4分,共40分1.(4分)与-3互为倒数的是( )A .- 13B .-3C .13D .32.(4分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为( ) A .28.3×107 B .2.83×108 C .0.283×1010 D .2.83×109 3.(4分)下列各运算中,正确的是( ) 2326423225.(4分)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是( ) A .94,94 B .95,95 C .94,95 D .95,946.(4分)下列水平放置的几何体中,俯视图不是圆的是( )A .B .C .D .7.(4分)下列图形中,既是轴对称图形,又是中心对称图形的个数是( ) ①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆. A .2 B .3 C .4 D .5 8.(4分)矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分 D .两组对角分别相等9.(4分)如图,一次函数y=(m-2)x-1的图象经过二、三、四象限,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <2 4.(4分)如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( )A .4πB .π-12C .12D .4π + 12二、填空题(每题4分,共16分)12.(4分)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= .13.(4分)抛掷一枚质地均匀的硬币,落地后反面朝上的概率是.16.(7分)某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.频数分布表传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1)19.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.B卷四、填空题(每题4分,共20分)21、(4分)已知a+b=2,则a2-b2+4b的值为。