【高中教学案】4-1:第二讲 知识归纳与达标验收 - 2018数学人教A版选修4-1创新应用教学案
2018学年高中数学选修4-1课件:本讲高效整合2 精品

3.掌握圆的切线性质及判定方法,能解决与圆的切线有 关的问题.
4.通过弦切角定理的推导,体会特殊到一般,分类讨论 运动变化和化归的思想.并且掌握弦切角的定义及性质,能解 决与弦切角有关的问题.
5.掌握相交弦定理、割线定理、切割线定理以及切线长 定理,能应用这些定理解决与圆有关的比例线段问题.
[命题探究]
(1)求证:BC2=BD·BA; (2)若AC=6,DE=4,求PC的长.
解析: (1)证明:∵AB 是⊙O 的直径, ∴∠BCA=90°,
∵PC 为⊙O 的切线,∴∠BCD=∠BAC.
∵BD⊥PD,∴∠BDP=∠BCA=90°, ∴Rt△BDC∽Rt△BCA,
∴BBCA=BBDC,∴BC2=BD·BA.
答案: D
3.如图,在 Rt△ABC 中,∠C=90°,
AC=4,BC=3,以 BC 上一点 O 为圆心作⊙
O 与 AB 相切于 E,与 AC 相切于 C,又⊙O
与 BC 的另一个交点为 D,则线段 BD 的长为
()
A.1
B.12
C.13
D.14
解析: 连结 OE,则△OBE∽△ABC, ∴OACE=OABB=BCA-BOE, 即O4E=3-5OE,∴OE=43, ∴BD=BC-2OE=3-83=13.
又∵∠ADE=∠DAE,∴EA=ED. 又∵AE是⊙O的切线,∴AE2=EC·EB. 又∵EA=ED,∴ED2=EC·EB.
[跟踪训练]
1.“圆的切线垂直于经过切点的半径”的逆命题是( ) A.经过半径外端点的直线是圆的切线 B.垂直于经过切点的半径的直线是圆的切线 C.垂直于半径的直线是圆的切线 D.经过半径的外端点并且垂直于这条半径的直线是圆的 切线 答案: D
2017-2018学年高中数学人教A版选修4-5:第四讲 本讲知识归纳与达标验收

对应学生用书P45考情分析通过分析近三年的高考试题可以看出,不但考查用数学归纳法去证明现成的结论,还考查用数学归纳法证明新发现的结论的正确性.数学归纳法的应用主要出现在数列解答题中,一般是先根据递推公式写出数列的前几项,通过观察项与项数的关系,猜想出数列的通项公式,再用数学归纳法进行证明,初步形成“观察—归纳—猜想—证明”的思维模式;利用数学归纳法证明不等式时,要注意放缩法的应用,放缩的方向应朝着结论的方向进行,可通过变化分子或分母,通过裂项相消等方法达到证明的目的.真题体验1.(安徽高考)数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.解:(1)先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1,可得c<0.(2)(i)假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c -x n +1≤(1-c )(c -x n ).③ 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1. x n <1-c 和c -x n <(1-c )n -1两式相加, 知2c -1<(1-c )n -1对任意n ≥1成立. 根据指数函数y =(1-c )n 的性质,得2c -1≤0, c ≤14,故0<c ≤14. (ii)若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0. 即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立.(1)当n =1时,x 1=0<c ≤12,结论成立.(2)假设当n =k (k ∈N *)时结论成立,即:x k <c .因为函数f (x )=-x 2+x +c 在区间⎝⎛⎦⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列. 由(i)(ii)知,使得数列{x n }单调递增的c 的范围是⎝⎛⎦⎤0,14. 2.(江苏高考)已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式nf n -1π4+π4f n ⎝⎛⎭⎫π4=22都成立.解:由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx2,于是f 2(x )=f ′1(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2, 类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2. 因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2.因此当n =k +1时,等式也成立.综合①②可知等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4= sin ⎝⎛⎭⎫π4+n π2(n ∈N *). 所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=22(n ∈N *).对应学生用书P45归纳—猜想—证明不完全归纳的作用在于发现规律,探求结论,但结论是否为真有待证明,因而数学中我们常用归纳——猜想——证明的方法来解决与正整数有关的归纳型和存在型问题.[例1] 已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N +), (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式. [解] (1)a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10, a 4=S 3=a 1+a 2+a 3=5+5+10=20, 猜想a n =5×2n -2(n ≥2,n ∈N +).(2)①当n =2时,a 2=5×22-2=5,公式成立. ②假设n =k 时成立,即a k =5×2k -2(k ≥2.k ∈N +), 当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k =5+5+10+…+5×2k -2 =5+5(1-2k -1)1-2=5×2k -1.故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N +有a n =5×22n -2.所以数列{a n }的通项a n =⎩⎪⎨⎪⎧5, n =1,5×2n -2, n ≥2.数学归纳法的应用归纳法是证明有关正整数n 的命题的一种方法,应用广泛.用数学归纳法证明一个命题必须分两个步骤:第一步论证命题的起始正确性,是归纳的基础;第二步推证命题正确性的可传递性,是递推的依据.两步缺一不可,证明步骤与格式的规范是数学归纳法的一个特征.[例2] 求证tan α·tan 2α+tan 2α·tan 3α+…+tan(n -1)α·tan nα=tan nαtan α-n (n ≥2,n ∈N+).[证明] (1)当n =2时,左边=tan α·tan 2α, 右边=tan 2αtan α-2=2tan α1-tan 2α·1tan α-2=21-tan 2α-2=2tan 2α1-tan 2α=tan α·2tan α1-tan 2α =tan α·tan 2α,等式成立. (2)假设当n =k 时等式成立,即tan α·tan 2α+tan 2α·tan 3α+…+tan(k -1)α·tan kα=tan kαtan α-k .当n =k +1时,tan α·tan 2α+tan 2α·tan 3α+…+tan(k -1)αtan kα+tan kα·tan(k +1)α =tan kαtan α-k +tan kα·tan(k +1)α =tan kα[1+tan α·tan (k +1)α]tan α-k=1tan α[tan (k +1)α-tan α1+tan (k +1)α·tan α][1+tan(k +1)α·tan α]-k =1tan α[tan(k +1)α-tan α]-k =tan (k +1)αtan α-(k +1),所以当n =k +1时,等式也成立.由(1)和(2)知,n≥2,n∈N+时等式恒成立.[例3]用数学归纳法证明:n(n+1)(2n+1)能被6整除.[证明](1)当n=1时,1×2×3显然能被6整除.(2)假设n=k时,命题成立,即k(k+1)(2k+1)=2k3+3k2+k能被6整除.当n=k+1时,(k+1)(k+2)(2k+3)=2k3+3k2+k+6(k2+2k+1)因为2k3+3k2+k,6(k2+2k+1)都能被6整除,所以2k3+3k2+k+6(k2+2k+1)能被6整除,即当n=k+1时命题成立.由(1)和(2)知,对任意n∈N+原命题成立.[例4]设0<a<1,定义a1=1+a,a n+1=1a n+a,求证:对一切正整数n∈N+,有1<a n<11-a.[证明](1)当n=1时,a1>1,又a1=1+a<11-a,命题成立.(2)假设n=k(k∈N+)时,命题成立,即1<a k<11-a.∴当n=k+1时,由递推公式,知a k+1=1a k+a>(1-a)+a=1.同时,a k+1=1a k +a<1+a=1-a21-a<11-a,∴当n=k+1时,命题也成立,即1<a k+1<11-a.综合(1)和(2)可知,对一切正整数n,有1<a n<11-a.对应学生用书P53(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等式12+22+32+…+n 2=12(5n 2-7n +4)( )A .n 为任何正整数时都成立B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立解析:分别用n =1,2,3,4,5验证即可. 答案:B2.用数学归纳法证明不等式1+123+133+…+1n 3<2-1n (n ≥2,n ∈N +)时,第一步应验证不等式( )A .1+123<2-12B .1+123+133<2-13C .1+123<2-13D .1+123+133<2-14解析:第一步验证n =2时不等式成立,即1+123<2-12.答案:A3.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:左端为n +2项和,n =1时应为三项和, 即1+a +a 2. 答案:C4.用数学归纳法证明2n >n 2(n ∈N +,n ≥5)成立时,第二步归纳假设的正确写法是( ) A .假设n =k 时命题成立 B .假设n =k (k ∈N +)时命题成立 C .假设n =k (k ≥5)时命题成立 D .假设n =k (k >5)时命题成立 解析:k 应满足k ≥5,C 正确. 答案:C5.用数学归纳法证明:“(n +1)(n +2)…(n +n )=2n ·1·3…(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”两边同乘以一个代数式,它是( )A .2k +2B .(2k +1)(2k +2) C.2k +2k +1 D.(2k +1)(2k +2)k +1解析:n =k 时,左边为f (k )=(k +1)(k +2)…(k +k ) n =k +1时,f (k +1)=(k +2)(k +3) …(k +k )(k +k +1)(k +k +2) =f (k )·(2k +1)(2k +2)÷(k +1) =f (k ) ·(2k +1)(2k +2)k -1答案:D6.平面内原有k 条直线,它们的交点个数记为f (k ),则增加一条直线l 后,它们的交点个数最多为( )A .f (k )+1B .f (k )+kC .f (k )+k +1D .k ·f (k ) 解析:第k +1条直线与前k 条直线都相交且有不同交点时,交点个数最多,此时应比原先增加k 个交点.答案:B7.用数学归纳法证明34n +1+52n +1(n ∈N +)能被8整除时,若n =k 时,命题成立,欲证当n =k +1时命题成立,对于34(k+1)+1+52(k+1)+1可变形为( )A .56×34k +1+25(34k +1+52k +1) B .34×34k +1+52×52k C .34k +1+52k +1 D .25(34k +1+52k +1)解析:由34(k +1)+1+52(k +1)+1=81×34k +1+25×52k +1+25×34k +1-25×34k +1 =56×34k +1+25(34k +1+52k +1). 答案:A8.数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( )A.4(n +1)2B.2n (n +1)C.12n -1D.12n -1解析:由a 2=S 2-S 1=4a 2-1得a 2=13=22×3由a 3=S 3-S 2=9a 3-4a 2得a 3=12a 2=16=23×4.由a 4=S 4-S 3=16a 4-9a 3得a 4=35a 3=110=24×5,猜想a n =2n (n +1).答案:B9.上一个n 层的台阶,若每次可上一层或两层,设所有不同上法的总数为f (n ),则下列猜想正确的是( )A .f (n )=nB .f (n )=f (n -1)+f (n -2)C .f (n )=f (n -1)·f (n -2)D .f (n )=⎩⎪⎨⎪⎧n (n =1,2)f (n -1)+f (n -2)(n ≥3)解析:当n ≥3时f (n )分两类,第一类从第n -1层再上一层,有f (n -1)种方法;第二类从第n -2层再一次上两层,有f (n -2)种方法,所以f (n )=f (n -1)+f (n -2)(n ≥3).答案:D10.已知f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( )A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立B .若f (4)≥16成立,则当k ≥4时,均有f (k )<k 2成立C .若f (7)≥49成立,则当k <7时,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立解析:∵f (k )≥k 2成立时f (k +1)≥(k +1)2成立,当k =4时,f (4)=25>16=42成立. ∴当k ≥4时,有f (k )≥k 2成立. 答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.用数学归纳法证明1+2+3+4+…+n 2=n 4+n 22(n ∈N +),则n =k +1时,左端应为在n =k 时的基础上加上____________________.解析:n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+…+(k +1)2. 所以增加了(k 2+1)+…+(k +1)2. 答案:(k 2+1)+…+(k +1)212.设f (n )=⎝⎛⎭⎫1+1n ⎝⎛⎭⎫1+1n +1)…⎝⎛⎭⎫1+1n +n ,用数学归纳法证明f (n )≥3,在假设n =k 时成立后,f (k +1)与f (k )的关系是f (k +1)=f (k )·________________.解析:f (k )=⎝⎛⎭⎫1+1k ⎝ ⎛⎭⎪⎫1+1k +1…⎝ ⎛⎭⎪⎫1+1k +k ,f (k +1)=⎝ ⎛⎭⎪⎫1+1k +1⎝ ⎛⎭⎪⎫1+1k +2…⎝ ⎛⎭⎪⎫1+1k +k⎝ ⎛⎭⎪⎫1+1k +k +1·⎝ ⎛⎭⎪⎫1+1k +k +2 ∴f (k +1)=f (k )·⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2k k +1答案:⎝⎛⎭⎫1+12k +1⎝⎛⎭⎫1+12k +2kk +113.设数列{a n }满足a 1=2,a n +1=2a n +2,用数学归纳法证明a n =4·2n -1-2的第二步中,设n =k 时结论成立,即a k =4·2k -1-2,那么当n =k +1时,应证明等式________成立.答案:a k +1=4·2(k+1)-1-214.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列,则S 2,S 3,S 4分别为__________,猜想S n =__________.解析:因为S n ,S n +1,2S 1成等差数列. 所以2S n +1=S n +2S 1,又S 1=a 1=1.所以2S 2=S 1+2S 1=3S 1=3,于是S 2=32=22-12,2S 3=S 2+2S 1=32+2=72,于是S 3=74=23-122,由此猜想S n =2n -12n -1.答案:32,74,158 2n -12n -1三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)用数学归纳法证明,对于n ∈N +,都有11×2+12×3+13×4+…+1n (n +1)=nn +1.证明:(1)当n =1时,左边=11×2=12,右边=12,所以等式成立.(2)假设n =k 时等式成立,即11×2+12×3+13×4+…+1k (k +1)=kk +1, 当n =k +1时,11×2+12×3+13×4+…+1k (k +1)+1(k +1)(k +2) =k k +1+1(k +1)(k +2) =k (k +2)+1(k +1)(k +2)=(k +1)2(k +1)(k +2)=k +1k +2. 即n =k +1时等式成立.由(1)、(2)可知,对于任意的自然数n 等式都成立.16.(本小题满分12分)在数列{a n }中,a 1=a 2=1,当n ∈N +时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }各项均为3的倍数.证明:(1)∵a 1=a 2=1,故a 3=a 1+a 2=2,a 4=a 3+a 2=3. ∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数, 则n =k +1时,b k +1=a 4(k +1)=a 4k +4=a 4k +3+a 4k +2= a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设知,a 4k 是3的倍数,又3a 4k +1是3的倍数,故可知b k +1是3的倍数,∴n =k +1时命题也正确.综合(1)(2)可知,对正整数n ,数列{b n }的各项都是3的倍数.17.(本小题满分12分)如果数列{a n }满足条件:a 1=-4,a n +1=-1+3a n2-a n(n =1,2,…),证明:对任何自然数n ,都有a n +1>a n 且a n <0.证明:(1)由于a 1=-4,a 2=-1+3a 12-a 1=-1-122+4=-136>a 1.且a 1<0,因此,当n =1时不等式成立. (2)假设当n =k (k ≥1)时,a k +1>a k 且a k <0,那么 a k +1=-1+3a k2-a k<0,a k +2-a k +1=-1+3a k +12-a k +1--1+3a k2-a k=5(a k +1-a k )(2-a k +1)(2-a k )>0.这就是说,当n =k +1时不等式也成立, 根据(1)(2),不等式对任何自然数n 都成立. 因此,对任何自然数n ,都有a n +1>a n .18.(本小题满分14分)已知点的序列A n (x n,0),n ∈N +,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,…(1)写出x n 与x n -1,x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n .计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. 解:(1)当n ≥3时,x n =x n -1+x n -22;(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 1+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=-12⎝⎛⎭⎫-12a =14a , 由此推测a n =⎝⎛⎭⎫-12n -1a (n ∈N +). 用数学归纳法证明:①当n =1时,a 1=x 2-x 1=a =⎝⎛⎭⎫-120a ,公式成立. ②假设当n =k 时,公式成立,即a k =⎝⎛⎭⎫-12k -1a 成立.那么当n =k +1时, a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12⎝⎛⎭⎫-12k -1a =⎝⎛⎭⎫-12(k +1)-1a ,公式仍成立,根据①和②可知,对任意n ∈N +,公式a n =⎝⎛⎭⎫-12n -1a 成立.模块综合检测对应学生用书P55(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式|3x -2|>4的解集是( ) A .{x |x >2}B .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-23 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-23或x >2 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -23<x <2 解析:因为|3x -2|>4,所以3x -2>4或3x -2<-4,所以x >2或x <-23.答案:C2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a解析:因为-1<b <0,所以b <b 2<1. 又因为a <0,所以ab >ab 2>a . 答案:D3.若x ∈R ,则“|x |<2”是“|x +1|<1”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 解析:由|x |<2解得-2<x <2, 由|x +1|<1解得-2<x <0. 因为{x |-2<x <0}{x |-2<x <2},所以“|x |<2”是“|x +1|<1”的必要不充分条件.答案:A4.关于x 的不等式,|5x -6|<6-x 的解集为( ) A.⎝⎛⎭⎫65,2 B.⎝⎛⎭⎫0,65 C .(0,2)D.⎝⎛⎭⎫65,+∞ 解析:原不等式⇔x -6<5x -6<6-x ⇔⎩⎪⎨⎪⎧5x -6>x -6,5x -6<6-x⇔⎩⎨⎧x >0,x <2⇔0<x <2, 故原不等式的解集为(0,2). 答案:C5.设x >0,y >0,且x +y ≤4,则下列不等式中恒成立的是( ) A.1x +y ≤14 B.1x +1y ≥1C.xy ≥2D.1xy ≥14解析:因为x >0,y >0,所以x +y ≥2xy .又因为x +y ≤4,所以2xy ≤4.当且仅当x =y =2时,取等号.∴0<xy ≤4.∴1xy ≥14.答案:D6.若不等式14n +1+14n +5+14n +9+…+18n +1<m25对于一切n ∈N +恒成立,则自然数m的最小值为( )A .8B .9C .10D .12解析:令b n =14n +1+14n +5+14n +9+…+18n +1,则b k +1-b k =14k +5+14k +9+…+18k +1+18k +5+18k +9-⎝ ⎛⎭⎪⎫14k +1+14k +5+…+18k +1=18k +5+18k +9-14k +1<0. ∴b k +1<b k ,∴数例{b n }为递减数例,要b n <m 25恒成立,只需b 1<m25,∴15+95<m 25得m >779, ∴m 的最小值为8. 答案:A7.若a >0,使不等式|x -4|+|x -3|<a 在R 上的解集不是空集的a 的取值是( ) A .0<a <1 B .a =1 C .a >1D .以上均不对解析:函数y =|x -4|+|x -3|的最小值为1,所以 |x -4|+|x -3|<a 的解集不是空集,需a >1. 答案:C8.函数y =2x -3+8-4x 的最大值为( ) A. 3 B.53C. 5D. 2解析:由已知得函数定义域为⎣⎡⎦⎤32,2, y =2x -3+2×4-2x ≤[12+(2)2][(2x -3)2+(4-2x )2]=3,当且仅当2x -31=4-2x 2,即x =53时取等号.∴y max = 3. 答案:A9.一长方体的长,宽,高分别为a ,b ,c 且a +b +c =9,当长方体体积最大时,长方体的表面积为( )A .27B .54C .52D .56解析:∵9=a +b +c ≥33abc ,∴abc ≤27, 当且仅当a =b =c =3时取得最大值27, 此时其表面积为6×32=54. 答案:B10.记满足下列条件的函数f (x )的集合为M ,当|x 1|≤1,|x 2|≤1时,|f (x 1)-f (x 2)|≤4|x 1-x 2|,又令g (x )=x 2+2x -1,由g (x )与M 的关系是( )A .g (x )MB .g (x )∈MC .g (x )∉MD .不能确定解析:g (x 1)-g (x 2)=x 21+2x 1-x 22-2x 2=(x 1-x 2)·(x 1+x 2+2),|g (x 1)-g (x 2)|=|x 1-x 2|·|x 1+x 2+2| ≤|x 1-x 2|(|x 1|+|x 2|+2)≤4|x 1-x 2|, 所以g (x )∈M . 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.⎪⎪⎪⎪2x -1x <3的解集是________________.解析:∵⎪⎪⎪⎪⎪⎪2x -1x <3, ∴|2x -1|<3|x |.两边平方得4x 2-4x +1<9x 2, ∴5x 2+4x -1>0,解得x >15或x <-1.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >15. 答案:(-∞,-1)∪⎝⎛⎭⎫15,+∞12.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是________. 解析:用分析法比较,a >b ⇔3+5>2+ 6 ⇔8+215>8+212,同理可比较得b >c .答案:a >b >c13.若x <0,则函数f (x )=x 2+1x 2-x -1x 的最小值是________.解析:令t =x +1x,因为x <0.所以-⎝⎛⎭⎫x +1x ≥2.所以t ≤-2.则g (t )=t 2-t -2=⎝⎛⎭⎫t -122-94.所以f (x )min =g (-2)=4. 答案:414.有一长方体的长,宽,高分别为x ,y ,z ,满足1x 2+1y 2+1z 2=9,则长方体的对角线长的最小值为________.解析:∵(x 2+y 2+z 2)⎝⎛⎭⎫1x 2+1y 2+1z 2≥(1+1+1)2=9, 即x 2+y 2+z 2≥1. 当且仅当x =y =z =33时取等号, ∴长方体的对角线长l =x 2+y 2+z 2的最小值为1.答案:1三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.解:(1)由题设知:|x +1|+|x -2|-5≥0,在同一坐标系中作出函数y =|x +1|+|x -2|-5的图像,可知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0, 即|x +1|+|x -2|≥-a .|x +1|+|x -2|≥|x +1+2-x |=3,∴-a ≤3, ∴a ≥-3.∴a 的取值范围是[-3,+∞).16.(本小题满分12分)已知x ,y ,z ∈(0,+∞),x +y +z =3. (1)求1x +1y +1z 的最小值;(2)证明:3≤x 2+y 2+z 2<9. 解:(1)因为x +y +z ≥33xyz >0, 1x +1y +1z ≥33xyz>0, 所以(x +y +z )⎝⎛⎭⎫1x +1y +1z ≥9,即1x +1y +1z ≥3, 当且仅当x =y =z =1时,1x +1y +1z 取得最小值3.(2)证明:x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3.又x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy + yz +zx )<0,所以3≤x 2+y 2+z 2<9.17.(本小题满分12分)(辽宁高考)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集为M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)证明:由g (x )=16x 2-8x +1≤4,得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34. 因此N =⎩⎨⎧⎭⎬⎫x -14≤ x ≤ 34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤ x ≤ 34.当x ∈M ∩N 时,f (x )=1-x ,于是 x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=x ·f (x ) =x (1-x )=14-⎝⎛⎭⎫x -122≤14. 18.(本小题满分14分)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =12-12b n .(1)求数列{a n },{b n }的通项公式.(2)设数列{a n }的前n 项和为S n ,试比较1b n 与S n +1的大小,并说明理由.解:(1)由题意可得a 2=3,a 5=9, ∴d =13(a 5-a 2)=2,a 1=1,a n =2n -1又由T n =12-12b n 得T n +1=12-12b n +1,相减得b n +1=-12b n +1+12b n ,b n +1=13b n ,由T 1=b 1=12-12b 1得b 1=23.∴{b n }是以13为首项,13为公比的等比数列,则b n =⎝⎛⎭⎫13n.(2)可求得S n=n2,S n+1=(n+1)2,1b n=3n当n=1时,S2=4>1b1=3,当n=2时,S3=9=1b2,当n=3时,S4=16<1b3=27.猜想当n≥3时,S n+1<1b n,即(n+1)2<3n.证明:①当n=3时,42<27,不等式成立.②假设n=k(k≥3)时不等式成立,即(k+1)2<3k.则n=k+1时,3k+1=3·3k>3(k+1)2=3k2+6k+3=k2+4k+4+2k2+2k-1=(k+2)2+2k2+2k-1>(k+2)2,即n=k+1时不等式成立.由①②知,n≥3时,3n>(n+1)2.第21页。
高中数学人教A版必修4教案:探究数列和数学归纳法

高中数学人教A版必修4教案:探究数列和数学归纳法数列和数学归纳法是高中数学中比较重要的知识点之一,下面我们将通过教案的形式来探究这个知识点。
一、教学目标1.了解数列的基本概念,并学会求解数列的通项公式;2.了解数列的性质,加深对数列的理解;3.掌握数列的求和公式,学会运用数列求和公式解决实际问题;4.掌握数学归纳法的基本思想和方法,并能运用数学归纳法解决实际问题;二、教学过程1.讲解数列的基本概念和求解通项公式数列是由各项按一定顺序排列成的序列,可以用 a1,a2,a3,……,an,…… 表示。
其中,a1 表示第一项,an 表示第 n 项,a1,a2,a3,……,an,…… 表示数列的项。
通项公式是数列中任意一项与项号 n 之间的关系式,可以表示为 an=f(n)。
例如,等差数列的通项公式可以表示为 an=a1+(n-1)d。
2.讲解数列的性质数列有很多性质,如有限数列、无限数列、单调数列、周期数列等等。
其中,等差数列的首项、公差、项数、末项、公式等性质很重要。
3.讲解数列的求和公式数列的求和公式有等差数列求和公式、等比数列求和公式等。
例如,等差数列的求和公式可以表示为 Sn=n(a1+an)/2。
4.讲解数学归纳法的基本思想和方法数学归纳法是在自然数范围内证明某个命题或结论成立的一种数学方法,由数学家 Blaise Pascal 首先提出。
它的基本思想是:通过证明某个结论在 n=1 时成立,以及如果它在 n=k 时成立,那么它在n=k+1 时也成立,从而证明这个结论对于所有自然数都成立。
5.运用数学归纳法解决实际问题通过数学归纳法,我们可以证明很多数学命题和结论,例如等差数列求和公式、等比数列求和公式等。
三、教学方法教学方法主要采用讲授、演示、实践和自主学习等方式。
1.讲授:老师向学生讲解数列、数列的性质、求解通项公式、求和公式和数学归纳法的基本思想和方法等知识点。
2.演示:老师通过数列的图像、数值表格等形式向学生展示数列的基本特征和性质。
2017-2018学年高中数学人教A版选修4-1创新应用教学案:第一讲 知识归纳与达标验收 Word版含答案

【人教A 版】2017-2018学年高中数学选修4-1创新应用教学案[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:由CD =2,AB =4,EF =3, 得EF =12(CD +AB ),∴EF 是梯形ABCD 的中位线,则梯形ABFE 与梯形EFCD 有相同的高,设为h , 于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB=3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6,于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2= 8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]平行线分线段相关定理线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH . [证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求ECAE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =ECAE, 两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.相似三角形的判定与性质常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =ABCB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ. 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠B CD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD . ∴S △FBA S △FCD =(F A FD)2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA =2-1-18=78.射影定理为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,EF ⊥AB于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =ACAD .∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =ABAC . ∴CE DF =BD CE. ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC = 2 cm ,则CD 和BC的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm). 答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC=5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2= 2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(ADAB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14B.13C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12. 答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:∵AB ∥CD , ∴△ABF ∽△EDF . ∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13. ∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:∵DE ∥BC , ∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CDDE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB 和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC , ∴AM MB =AD BD =AD DC =AN NC. ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC ,∵AB =AC ,AD 是中线, ∴AD 是△ABC 的对称轴, 故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB , ∴∠PFC =∠ABP , 故∠PCE =∠PFC ,∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PBPD. ∵AD ∥BC ,∴PC PG =PBPD .∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2).∴S △CMB =80(m 2).∴△CMB地带的花费为80×8=640元.(2)S△ABMS△AMD =BMDM=BCAD=2,∴S△ABM=2S△AMD=40(m2).同理:S△DMC=40(m2).所剩资金为:1600-160-640=800元,而800÷(S△ABM+S△DMC)=10(元/m2).故种植茉莉花刚好用完所筹集的资金.11。
2018-2019高二数学人教A版选修4-5学案:4.1数学归纳法导学案 Word版含解析

4.1 数学归纳法学习目标1.了解数学归纳法的原理.2.了解数学归纳法的使用范围.3.会用数学归纳法证明一些简单问题.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。
二、合作探究思考探究 探究1.数学归纳法的第一步n的初始值是否一定为1?探究2.在用数学归纳法证明数学命题时,只有第一步或只有第二步可以吗?为什么?名师点拨:1.归纳法由一系列有限的特殊事物得出一般结论的推理方法,通常叫作归纳法.它是人们发现规律,产生猜想的一种方法.归纳法又分完全归纳法和不完全归纳法.(1)不完全归纳法不完全归纳法是根据事物的部分特例(而不是全部)得到一般结论的方法.用不完全归纳法得出的结论不一定是正确的,应设法去证明结论是正确的或举出反例说明结论是不正确的.(2)完全归纳法如果验证一切可能的特殊事物,得出一般性的结论,这种归纳法称为完全归纳法.完全归纳法是验证所有情况后得出的结论,因此结论是正确的.然而对于数量多,乃至无穷多个,是不能做到一一验证的.对于无穷多个的事物,常用不完全归纳法去发现规律,得出结论,并设法予以证明,数学归纳法就是解决这类问题的证明方法.2.数学归纳法数学归纳法用于证明与正整数有关的数学命题,它是在归纳的基础上进行演绎推证,所得结论是正确的.(1)数学归纳法的原理从数学归纳法的定义可以看出,它强调的就是两个基本步骤,第一步,验证n =n 0时,命题成立,称为奠基.第二步,是假设递推,这两步都非常重要,缺一不可.第一步,证明了n =n 0时,命题成立,n =n 0成为后面递推的出发点.第二步的归纳假设n =k (k ∈N +,k ≥n 0)就有了依据,在n =n 0成立时,n 0+1成立,n 0+2成立……这样就可以无限推理下去,而证n =k +1就是替代了无限的验证过程,所以说数学归纳法是一种合理,切实可行的证明方法,它实现了从有限到无限的飞跃.(2)应用数学归纳法的一般步骤①验证n =n 0(n 0为使命题有意义的最小正整数)命题成立;②假设当n =k (k ≥n 0,k ∈N +时),命题成立,利用假设证明n =k +1时命题也成立.由①和②知,对一切n ≥n 0的正整数命题成立.3.如何正确运用数学归纳法(1)适用范围,与正整数有关的数学命题.(2)验证n =n 0是基础,找准n 0,它是使命题成立的最小正整数,不一定都是从1开始.(3)递推是关键,数学归纳法的实质是递推,即从n =k 到n =k +1的推理过程,必须用上假设,否则不是数学归纳法.(4)正确寻求递推关系,①在验证n =n 0时,不妨多写出几项,这样可能找出递推关系;②在解决几何命题时,可先用特例归纳出规律,即找出f (k )到f (k +1)的图形的变化情况;③对于整除性问题,往往添加项凑出假设.【例1】 看下面的证明是否正确,如果不正确,指出错误的原因,并加以改正.用数学归纳法证明:1-2+4-8+…+(-1)n -1·2n -1=(-1)n -1·+. 2n 313 【证明】 (1)当n =1时,左边=1,右边=+=1,等式成立.2313(2)假设n =k 时,等式成立,即1-2+4-8+…+(-1)k -12k -1=(-1)k -1·+.2k 313则当n =k +1时,有1-2+4-8+…+(-1)k -1·2k -1+(-1)k ·2k= =- =-(-1)k +1· =(-1)k ·+.1- -2 k +11- -2 13 -2 k +13132k +132k +1313这就是说,当n =k +1时,等式也成立.由(1)与(2)知,对任意n ∈N +等式成立.【变式训练1】 用数学归纳法证明:n ∈N +时,++…+=.11×313×51 2n -1 2n +1 n 2n +1【例2】 设x ∈N +,n ∈N +,求证:x n +2+(x +1)2n +1能被x 2+x +1整除.【变式训练2】 求证:二项式x 2n -y 2n (n ∈N +)能被x +y 整除.【例3】 平面上有n 条直线,其中任意两条直线不平行,任意三条不过同一点,求证:这n条直线把平面分割成f (n )=块区域.n 2+n +22【变式训练3】 已知n 个圆中每两个圆相交于两点,且无三圆过同一点,用数学归纳法证明这n 个圆把平面分成n 2-n +2部分.参考答案1.归纳法由一系列有限的特殊事物得出一般结论的推理方法,通常叫作归纳法.它是人们发现规律,产生猜想的一种方法.归纳法又分完全归纳法和不完全归纳法.(1)不完全归纳法不完全归纳法是根据事物的部分特例(而不是全部)得到一般结论的方法.用不完全归纳法得出的结论不一定是正确的,应设法去证明结论是正确的或举出反例说明结论是不正确的.(2)完全归纳法如果验证一切可能的特殊事物,得出一般性的结论,这种归纳法称为完全归纳法.完全归纳法是验证所有情况后得出的结论,因此结论是正确的.然而对于数量多,乃至无穷多个,是不能做到一一验证的.对于无穷多个的事物,常用不完全归纳法去发现规律,得出结论,并设法予以证明,数学归纳法就是解决这类问题的证明方法.2.数学归纳法数学归纳法用于证明与正整数有关的数学命题,它是在归纳的基础上进行演绎推证,所得结论是正确的.(1)数学归纳法的原理从数学归纳法的定义可以看出,它强调的就是两个基本步骤,第一步,验证n=n0时,命题成立,称为奠基.第二步,是假设递推,这两步都非常重要,缺一不可.第一步,证明了n=n0时,命题成立,n=n0成为后面递推的出发点.第二步的归纳假设n=k(k∈N+,k≥n0)就有了依据,在n=n0成立时,n0+1成立,n0+2成立……这样就可以无限推理下去,而证n=k+1就是替代了无限的验证过程,所以说数学归纳法是一种合理,切实可行的证明方法,它实现了从有限到无限的飞跃.(2)应用数学归纳法的一般步骤①验证n=n0(n0为使命题有意义的最小正整数)命题成立;②假设当n=k(k≥n0,k∈N+时),命题成立,利用假设证明n=k+1时命题也成立.由①和②知,对一切n≥n0的正整数命题成立.3.如何正确运用数学归纳法(1)适用范围,与正整数有关的数学命题.(2)验证n=n0是基础,找准n0,它是使命题成立的最小正整数,不一定都是从1开始.(3)递推是关键,数学归纳法的实质是递推,即从n=k到n=k+1的推理过程,必须用上假设,否则不是数学归纳法.(4)正确寻求递推关系,①在验证n =n 0时,不妨多写出几项,这样可能找出递推关系;②在解决几何命题时,可先用特例归纳出规律,即找出f (k )到f (k +1)的图形的变化情况;③对于整除性问题,往往添加项凑出假设.探究1.提示 不一定.探究2.提示 不可以.这两个步骤缺一不可,只完成步骤①而缺少步骤②,就作出判断可能得出不正确的结论.因为单靠步骤①,无法递推下去,即n 取n 0以后的数时命题是否正确,我们无法判定.同样,只有步骤②而缺少步骤①时,也可能得出不正确的结论,缺少步骤①这个基础,假设就失去了成立的前提,步骤②也就没有意义了.【例1】【解】 从上面的证明过程可以看出,是用数学归纳法证明等式成立.在第二步中,证n =k +1时没有用上假设,而是直接利用等比数列的求和公式,这是错误的.第二步正确证法应为:当n =k +1时,1-2+4-8+…+(-1)k -1·2k -1+(-1)k 2k=(-1)k -1·++(-1)k ·2k 2k 313=-(-1)k ·+(-1)k ·2k +2k 313=(-1)k ·2k +(-13+1)13=(-1)k ·+.2k +1313即当n =k +1时,等式也成立.【变式训练1】证明 (1)当n =1时,左边==,右边==,11×31312×1+113左边=右边,∴等式成立.(2)假设n =k 时,等式成立,即++…+=.11×313×51 2k -1 2k +1 k 2k +1则当n =k +1时,++…++11×313×51 2k -1 2k +1 1 2k +1 2k +3=+==k 2k +11 2k +1 2k +3 2k 2+3k +1 2k +1 2k +3 2k +1 k +1 2k +1 2k +3==.k +12k +3k +12 k +1 +1即当n =k +1时,等式也成立.由(1),(2)可知对一切n ∈N +等式成立.【例2】【证明】 (1)当n =1时,x 3+(x +1)3=[x +(x +1)]·[x 2-x (x +1)+(x +1)2]=(2x +1)(x 2+x +1),结论成立.(2)假设n =k 时,结论成立,即x k +2+(x +1)2k +1能被x 2+x +1整除,那么当n =k +1时,x (k +1)+2+(x +1)2(k +1)+1=x ·x k +2+(x +1)2(x +1)2k +1=x [x k +2+(x +1)2k +1]+(x +1)2(x +1)2k +1-x (x +1)2k +1 =x [x k +2+(x +1)2k +1]+(x 2+x +1)(x +1)2k +1.由假设知,x k +2+(x +1)2k +1及x 2+x +1均能被x 2+x +1整除,故x (k +1)+2+(x +1)2(k +1)+1能被x 2+x +1整除,即n =k +1时,结论也成立.由(1)(2)知,原结论成立.【变式训练2】证明 (1)当n =1时,x 2-y 2=(x +y )(x -y ),∴命题成立.(2)假设n =k 时,x 2k -y 2k 能被x +y 整除,那么n =k +1时,x 2(k +1)-y 2(k +1)=x 2·x 2k -y 2·y 2k=x 2(x 2k -y 2k )+x 2y 2k -y 2·y 2k =x 2(x 2k -y 2k )+y 2k (x 2-y 2).∵x 2k -y 2k 与x 2-y 2都能被x +y 整除,∴x 2(x 2k +y 2k )+y 2k (x 2-y 2)能被x +y 整除.即n =k +1时,命题也成立.由(1)(2)知,对任意的正整数n 命题成立.【例3】【证明】 (1)当n =1时,一条直线把平面分割成2块.而f (1)==2,命题成立.12+1+22(2)假设n =k 时,k 条直线把平面分成f (k )=块区域,那么当n =k +1时,设k +1条直k 2+k +22线为l 1,l 2,l 3…l k ,l k +1,不妨取出l 1,余下的k 条直线l 2,l 3…,l k ,l k +1将平面分割成f (k )=k 2+k +22块区域, 直线l 1被这k 条直线分割成k +1条射线或线段,它们又分别将各自所在区域一分为二,故增加了k +1块区域,所以f (k +1)=f (k )+k +1=+k +1==,这就k 2+k +22k 2+3k +42 k +1 2+ k +1 +22是说,当n =k +1时,命题也成立.由(1)(2)知,命题对一切n ∈N +成立.【变式训练3】证明 (1)当n =1时,1个圆把平面分成两部分,而2=12-1+2.所以当n =1时,命题成立.(2)假设n=k时命题成立,即k个圆把平面分成k2-k+2部分.当n=k+1时,平面上增加第k+1个圆,它与原来的k个圆中的每个圆都相交于两个不同点,共2k个交点,而这2k个交点把第k+1个圆分成2k段弧,每段弧把原来的区域隔成了两块区域,∴区域的块数增加了2k块.∴k+1个圆把平面划分成的块数为(k2-k+2)+2k=k2+k+2=(k+1)2-(k+1)+2,∴当n=k+1时命题也成立.根据(1)(2)知,命题对n∈N+都成立.。
4-4数学归纳法 教学设计- -2023-2024学年高中数学新教材同步备课(人教A版

4.4数学归纳法本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习数学归纳法前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。
但由于有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。
因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法。
数学归纳法亮点就在于,通过有限个步骤的推理,证明n取无限多个正整数的情形,这也是无限与有限辨证统一的体现。
并且,本节内容是培养学生严谨的推理能力、训练学生的抽象思维能力、体验数学内在美的很好的素材。
发展学生逻辑推理、直观想象、数学运算和数学建模的的核心素养。
课程目标学科素养A.了解数学归纳法的原理.B.能用数学归纳法证明一些简单的数学命题.1.数学抽象:数学归纳法的原理2.逻辑推理:运用数学归纳法证明数学命题3.数学建模:运用多米诺骨牌建立数学归纳法概念重点:用数学归纳法证明数学命题难点:数学归纳法的原理.多媒体我们先从多米诺骨牌游戏说起,码放骨牌时,要保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下。
这样,只要推到第1块骨牌,就可导致第骨牌倒下,就可导致第骨牌,都能全部倒下。
(1)第一块骨牌倒下;(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下问题2:你认为条件(2)的作用是什么?如何用数学语言来描述(1)第一块骨牌倒下;(2)若第K块骨牌倒下时,则使相邻的第(2)假设当n=k (k ∈N *)时猜想成立, 即11×4+14×7+17×10++…+1(3k -2)(3k+1)=k3k+1,当n=k+1时,11×4+14×7+17×10+…+1(3k -2)(3k+1)+1[3(k+1)-2][3(k+1)+1]=k 3k+1+1(3k+1)(3k+4)=3k 2+4k+1(3k+1)(3k+4)=(3k+1)(k+1)(3k+1)(3k+4)=k+13(k+1)+1,所以,当n=k+1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立. (1)“归纳—猜想—证明 的一般环节(2)“归纳—猜想—证明 的主要题型 ①已知数列的递推公式,求通项或前n 项和.②由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.③给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n 都成立的一般性命题.跟踪训练2数列{a n}满足S n=2n-a n(S n为数列{a n}的前n 项和),先计算数列的前4项,再猜想a n,并证明.解:由a 1=2-a 1,得a 1=1; 由a 1+a 2=2×2-a 2,得a 2=32; 由a 1+a 2+a 3=2×3-a 3,得a 3=74;由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158.猜想a n =2n -12n -1.下面证明猜想正确:(1)当n=1时,由上面的计算可知猜想成立. (2)假设当n=k 时猜想成立, 则有a k =2k -12k -1,五、课时练由于教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。
教育最新K122018-2019学年高中数学人教A版选修4-4学案:第二讲本讲知识归纳与达标验收-含答案

[对应学生用书P33]考情分析通过对近几年新课标区高考试题的分析可见,高考对本讲知识的考查,主要是以参数方程为工具,考查直线与圆或与圆锥曲线的有关的问题.真题体验1.(湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为x 29+y 24=1,所以其右顶点为(3,0).由题意知0=3-a ,解得a =3.答案:32.(陕西高考)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:由三角函数定义知yx =tan θ(x ≠0),y =x tan θ, 由x 2+y 2-x =0得,x 2+x 2tan 2θ-x =0,x =11+tan 2θ=cos 2θ, 则y =x tan θ=cos 2θtan θ=sin θcos θ,又θ=π2时,x =0,y =0也适合题意,故参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案:⎩⎨⎧x =cos 2θ,y =sin θcos θ(θ为参数)3.(新课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离 d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.[对应学生用书P33]1.消参的常用方法(1)代入消参法,是指由曲线的参数方程中的某一个(或两个)得到用x (或y ,或x ,y )表示参数的式子,把其代入参数方程中达到消参的目的.(2)整体消参法,是指通过恰当的变形把两式平方相加(或相减、相乘、相除)达到消参的目的,此时常用到一些桓等式,如sin 2θ+cos 2θ=1,sec 2θ=tan 2θ+1,⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4等. 2.消参的注意事项(1)消参时,要特别注意参数的取值对变量x ,y 的影响,否则易扩大变量的取值范围.(2)参数方程中变量x ,y 就是参数的函数,可用求值域的方法确定变量x ,y 的取值范围.[例1] 参数方程⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2表示的曲线是什么? [解] 化为普通方程是:x 2+y 2=25,∵-π2≤θ≤π2, ∴0≤x ≤5,-5≤y ≤5.∴表示以(0,0)为圆心,5为半径的右半圆. [例2] 将参数方程⎩⎪⎨⎪⎧x =35t +1,y =t 2-1(t 为参数)化为普通方程.[解] 由x =35t +1得t =53(x -1),代入y =t 2-1,得y =259(x -1)2-1,即为所求普通方程.1.直线参数方程的标准形式直线参数方程的一般形式为⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),只有当b ≥0,a 2+b 2=1时,上述方程组才为直线的参数方程的标准形式,直线经过的起点坐标为M 0(x 0,y 0),直线上另外两点M 1(x 1,y 1),M 2(x 2,y 2)对应的参数分别为t 1,t 2,这时就有|M 0M 1|=|t 1|,|M 0M 2|=|t 2|,|M 1M 2|=|t 1-t 2|.2.直线参数方程的应用直线的参数方程应用十分广泛,特别在计算与圆锥曲线的相交弦的弦长时,可以利用参数的几何意义和弦长公式求解,这样可以避免因运用直线和圆锥曲线的方程所组成的方程组求解导致的烦琐运算,从而简化解题过程,优化解题思路.3.应用直线的参数方程求弦长的注意事项 (1)直线的参数方程应为标准形式. (2)要注意直线倾斜角的取值范围. (3)设直线上两点对应的参数分别为t 1,t 2. (4)套公式|t 1-t 2|求弦长.[例3] 已知点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长. [解] 设弦AB 所在的直线方程为 ⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数), 代入方程y 2=4x 整理得: t 2sin 2α+4(sin α-cos α)t -8=0.①因为点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1,t 2满足关系t 1+t 2=0.即sin α-cos α=0. 因为0≤α<π,所以α=π4. ∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4·8sin 2π4=8.圆心为(a ,b ),半径为r 的圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θ,y =b +r sin θ(θ为参数); 长半轴为a ,短半轴为b ,中心在原点的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数),圆、椭圆的参数方程在计算最大值、最小值和取值范围等问题中有着广泛的应用,利用圆、椭圆的参数方程将上述问题转化为三角函数的最值问题,利用三角函数的变换公式可以简化计算,从而避免了繁杂的代数运算.[例4] (新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.[解] (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.[对应学生用书P37](时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知曲线的方程为⎩⎨⎧x =2t ,y =t (t 为参数),则下列点中在曲线上的是( )A .(1,1)B .(2,2)C .(0,0)D .(1,2)解析:当t =0时,x =0且y =0.即点(0,0)在曲线上. 答案:C2.直线x +y =0被圆⎩⎨⎧x =3cos θ,y =3sin θ(θ为参数)截得的弦长是( )A .3B .6C .2 3D. 3解析:圆的普通方程为x 2+y 2=9,半径为3,直线x +y =0过圆心,故所得弦长为6.答案:B3.点P (1,0)到曲线⎩⎨⎧x =t 2,y =2t (其中t 为参数且t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2解析:点P 与曲线⎩⎪⎨⎪⎧x =t 2,y =2t(t ∈R )上的点之间的距离d =(x -1)2+(y -0)2=(t 2-1)2+(2t )2=t 2+1≥1. 答案:B4.参数方程⎩⎨⎧x =cos 2θ,y =sin θ(θ为参数)所表示的曲线为( )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线解析:x +y 2=cos 2θ+sin 2θ=1,即y 2=-x +1. 又x =cos 2θ∈[0,1],y =sin θ∈[-1,1], ∴为抛物线的一部分. 答案:A5.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3) B .点(2,0) C .点(1,3)D .点(0,π2)解析:令x =2cos θ,y =3sin θ,则动点(x ,y )的轨迹是椭圆:x 24+y 29=1,∴曲线过点(2,0).答案:B6.已知三个方程:①⎩⎨⎧ x =t ,y =t 2;②⎩⎨⎧x =tan t ,y =tan 2t ;③⎩⎨⎧x =sin t ,y =sin 2t (都是以t 为参数).那么表示同一曲线的方程是( ) A .①②③ B .①② C .①③D .②③解析:①②③的普通方程都是y =x 2,但①②中x 的取值范围相同,都是x ∈R ,而③中x 的取值范围是-1≤x ≤1.答案:B7.直线⎩⎨⎧x =-2-2t ,y =3+2t (t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:可以把直线的参数方程转化成标准式,或者直接根据直线参数方程的非标准式中参数的几何意义可得(-2)2+(2)2·|t |=2,可得t =±22,将t 代入原方程,得⎩⎪⎨⎪⎧ x =-3,y =4或⎩⎪⎨⎪⎧x =-1,y =2,所以所求点的坐标为(-3,4)或(-1,2).答案:C8.(安徽高考)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2D .2 2解析:由题意得,直线l 的普通方程为y =x -4,圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =|2-0-4|2=2,直线l 被圆C 截得的弦长为222-(2)2=2 2. 答案:D9.已知圆的渐开线⎩⎨⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数)上有一个点的坐标为(3,0),则渐开线对应的基圆的面积为( )A .πB .3πC .6πD .9π解析:把已知点(3,0)代入参数方程得⎩⎪⎨⎪⎧3=r (cos φ+φsin φ),①0=r (sin φ-φcos φ),②由②得φ=tan φ,所以φ=0,代入①得,3=r ·(cos 0+0),所以r =3,所以基圆的面积为9π.答案:D10.已知方程x 2-ax +b =0的两根是sin θ和cos θ(|θ|≤π4),则点(a ,b )的轨迹是( )A .椭圆弧B .圆弧C .双曲线弧D .抛物线弧解析:由题知⎩⎪⎨⎪⎧ sin θ+cos θ=a ,sin θ·cos θ=b ,即⎩⎪⎨⎪⎧a =sin θ+cos θ,b =sin θ·cos θ.a 2-2b =(sin θ+cos θ)2-2sin θ·cos θ=1. 又|θ|≤π4.∴表示抛物线弧. 答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析:曲线C 的普通方程为(x -2)2+y 2=1, 由题意知,|2k -0|1+k 2=1,∴k =±33.答案:±3312.双曲线⎩⎨⎧x =tan θ,y =2sec θ(θ为参数)的渐近线方程为______________.解析:双曲线的普通方程为y 24-x 2=1, 由y 24-x 2=0,得y =±2x ,即为渐近线方程. 答案:y =±2x13.已知点P 在直线⎩⎨⎧x =3+4t ,y =1+3t (t 为参数)上,点Q 为曲线⎩⎪⎨⎪⎧x =53cos θ,y =3sin θ(θ为参数)上的动点,则|PQ |的最小值等于________.解析:直线方程为3x -4y -5=0,由题意,点Q 到直线的距离d =|5cos θ-12sin θ-5|5=|13cos (θ+φ)-5|5,∴d min =85,即|PQ |min=85. 答案:8514.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于M 点,则|MM 0|=________.解析:由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数)代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据t 的几何意义可知|MM 0|=6(3+1).答案:6(3+1)三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)(福建高考)已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t(t为参数),圆C 的参数方程为⎩⎨⎧ x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解:(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4, 解得-25≤a ≤2 5.16.(本小题满分12分)在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y2=1上的一个动点,求S =x +y 的最大值.解:因为椭圆x 23+y 2=1的参数方程为⎩⎪⎨⎪⎧ x =3cos φ,y =sin φ(φ为参数).故可设动点P 的坐标为()3cos φ,sin φ,其中0≤φ<2π. 因此,S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ =2sin ⎝ ⎛⎭⎪⎫φ+π3. 所以当φ=π6时,S 取得最大值2. 17.(本小题满分12分)已知曲线C 1:⎩⎨⎧ x =-4+cos t ,y =3+sin t(t 是参数),C :⎩⎨⎧x =8cos θ,y =3sin θ(θ是参数) (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎨⎧x =3+2t ,y =-2+t (t 是参数)距离的最小值. 解:(1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1, C 1为圆心是(-4,3),半径是1的圆.C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|.从而当cos θ=45,sin θ=-35时,d 取得最小值855.18.(本小题满分14分)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的极坐标方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M ,N ,求|PM |+|PN |的取值范围.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧ x =4+t cos α,y =2+t sin α(t 为参数). ∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2-4x =0.(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧ Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝ ⎛⎭⎪⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝ ⎛⎭⎪⎫α+π4, 由α∈⎝ ⎛⎭⎪⎫0,π2,得α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴22<sin ⎝ ⎛⎭⎪⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,42].。
2018-2019学年高中数学人教A版选修4-4学案:第一讲 本讲知识归纳与达标验收 Word版含答案

[对应学生用书P13]考情分析通过对近几年新课标区高考试题的分析可知,高考对本讲的考查集在考查极坐标方程、极坐标与直角坐标的互化等.预计今后的高考中,仍以考查圆、直线的极坐标方程为主.真题体验1.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=π2(ρ∈R)和ρcos θ=2C.θ=π2(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1解析:由题意可知,圆ρ=2cos θ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcos θ=2,故选B. 答案:B2.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R)的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x2+y2=4y,即x2+(y-2)2=4,圆心为(0,2).将θ=π6(ρ∈R)化成直角坐标方程为x-3y=0,由点到直线的距离公式可知圆心到直线的距离d=|0-23|2= 3.答案: 33.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ, ∴x 2+y 2=2y +4x ,即x 2+y 2-4x -2y =0. 答案:x 2+y 2-4x -2y =0.[对应学生用书P13]利用问题的几何特征,建立适当坐标系,主要就是兼顾到它们的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.[解] 以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立平面直角坐标系,如图,则A ⎝⎛⎭⎪⎫0,32a ,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0.设P (x ,y ),则|P A |2+|PB |2+|PC |2=x 2+⎝⎛⎭⎪⎫y -32a 2+⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2≥a 2,当且仅当x =0,y =36a 时,等号成立.∴所求的最小值为a 2,此时P 点的坐标为P ⎝⎛⎭⎪⎫0,36a ,即为正三角形ABC的中心.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.[解] 将⎩⎨⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1中,得(2x -5)2+(2y +6)2=1. 化简,得(x -52)2+(y +3)2=14.该曲线是以(52,-3)为圆心,半径为12的圆.θ)=0如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处,一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.求轨迹方程的方法有直接法、定义法、相关点代入法,在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,建立极坐标系,求顶点A 的轨迹的极坐标方程.[解] 如图:令A (ρ,θ), △ABC 内,设∠B =θ,∠A =θ2, 又|BC |=10,|AB |=ρ.由正弦定理,得ρsin (π-3θ2)=10sin θ2, 化简,得A 点轨迹的极坐标方程为ρ=10+20cos θ.互化的前提依旧是把直角坐标系的原点作为极点,x 轴的正半轴作为极轴并在两种坐标系下取相同的单位长度.互化公式为x =ρcos θ,y =ρsin θρ2=x 2+y 2,tan θ=yx (x ≠0)直角坐标方程化极坐标方程可直接将x =ρcos θ,y =ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x ,y 代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] (天津高考)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.[解析] 由于圆和直线的直角坐标方程分别为x 2+y 2=4y 和y =a ,它们相交于A ,B 两点,△AOB 为等边三角形,所以不妨取直线OB 的方程为y =3x ,联立⎩⎨⎧x 2+y 2=4y ,y =3x ,消去y ,得x 2=3x ,解得x =3或x =0,所以y =3x =3,即a =3.[答案] 3[例5] 在极坐标系中,点M 坐标是(2,π3),曲线C 的方程为ρ=22sin(θ+π4); 以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 经过点M和极点.(1)写出直线l的极坐标方程和曲线C的直角坐标方程;(2)直线l和曲线C相交于两点A、B,求线段AB的长.[解](1)∵直线l过点M(2,π3)和极点,∴直线l的直角坐标方程是θ=π3(ρ∈R).ρ=22sin(θ+π4)即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),∴曲线C的直角坐标方程为x2+y2-2x-2y=0.(2)点M的直角坐标为(1,3),直线l过点M和原点,∴直线l的直角坐标方程为y=3x.曲线C的圆心坐标为(1,1),半径r=2,圆心到直线l的距离为d=3-1 2,∴|AB|=3+1.[对应学生用书P35](时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M的极坐标为(1,π),则它的直角坐标是()A.(1,0)B.(-1,0)C.(0,1) D.(0,-1)解析:x=1×cos π=-1,y=1×sin π=0,即直角坐标是(-1,0).答案:B2.已知曲线C 的极坐标方程ρ=2cos 2θ,给定两点P (0,π2),Q (2,π),则有( )A .P 在曲线C 上,Q 不在曲线C 上B .P 、Q 都不在曲线C 上C .P 不在曲线C 上,Q 在曲线C 上D .P 、Q 都在曲线C 上解析:当θ=π2时,ρ=2cos π=-2≠0,故点P 不在曲线上;当θ=π时,ρ=2cos 2π=2,故点Q 在曲线上.答案:C3.点P 的柱坐标为⎝ ⎛⎭⎪⎫16,π3,5,则其直角坐标为( )A.()5,8,83B.()8,83,5C.()83,8,5D.()4,83,5解析:∵ρ=16,θ=π3,z =5,∴x =ρcos θ=8,y =ρsin θ=83,z =5, ∴点P 的直角坐标是(8,83,5). 答案:B4.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是( ) A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎨⎧x =3x ′y =2y ′D.⎩⎨⎧x ′=3x y ′=2y解析:将⎩⎨⎧x ′=λxy ′=μy 代入y =sin x ,得μy =sin λx ,即y =1μsin λx ,与y =2sin 3x 比较,得μ=12,λ=3,即变换公式为⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .答案:B5.曲线ρ=5与θ=π4的交点的极坐标写法可以有( ) A .1个 B .2个 C .4个D .无数个解析:由极坐标的定义易知有无数个. 答案:D6.在极坐标系中,过点A (6,π)作圆ρ=-4cos θ的切线,则切线长为( ) A .2 B .6 C .2 3D .215解析:圆ρ=-4cos θ化为(x +2)2+y 2=4,点(6,π)化为(-6,0),所以切线长=42-22=12=2 3.答案:C7.极坐标方程ρ=cos θ与ρcos θ=12的图形是( )解析:把ρcos θ=12化为直角坐标方程,得x =12,把ρ=cos θ代为直角坐标方程,得x 2+y 2-x =0,即其圆心为⎝ ⎛⎭⎪⎫12,0,半径为12,故选项B 正确.答案:B8.极坐标方程θ=π3,θ=23π(ρ>0)和ρ=4所表示的曲线围成的图形面积是()A.163π B.83πC.43π D.23π解析:三条曲线围成一个扇形,半径为4,圆心角为2π3-π3=π3.∴扇形面积为:12×4×π3×4=8π3.答案:B9.在极坐标系中,曲线ρ=4sin(θ-π3)关于()A.线θ=π3轴对称B.线θ=5π6轴对称C.(2,π3)中心对称D.极点中心对称解析:ρ=4sin(θ-π3)可化为ρ=4cos(θ-5π6),可知此曲线是以(2,5π6)为圆心的圆,故圆关于θ=5π6对称.答案:B10.在极坐标系中有如下三个结论:①点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是()A.①③B.①C.②③D.③解析:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上所有点的坐标不一定适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(天津高考)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP |=________. 解析:由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 312.点A 的直角坐标为⎝ ⎛⎭⎪⎫332,92,3,则它的球坐标为________.解析:r =⎝ ⎛⎭⎪⎫3322+⎝ ⎛⎭⎪⎫922+32=6. cos φ=36=12,∴φ=π3.tan θ=92332=3,∴θ=π3.∴它的球坐标为⎝ ⎛⎭⎪⎫6,π3,π3.答案:⎝ ⎛⎭⎪⎫6,π3,π313.在极坐标系中,点A ⎝ ⎛⎭⎪⎫2,π2关于直线l :ρcos θ=1的对称点的一个极坐标为________.解析:由直线l 的方程可知直线l 过点(1,0)且与极轴垂直,设A ′是点A 关于l 的对称点,则四边OBA ′A 是正方形,∠BOA ′=π4,且OA ′=22,故A ′的极坐标可以是⎝ ⎛⎭⎪⎫22,π4.答案:⎝ ⎛⎭⎪⎫22,π414.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为________. 解析:数形结合,易知所求轨迹是以⎝ ⎛⎭⎪⎫a 2,0为圆心,a 2为半径的圆,求得方程是ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2.答案:ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)(辽宁高考改编)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎨⎧x =x 1,y =2y 1. 由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎨⎧ x =1,y =0或⎩⎨⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.16.(本小题满分12分)极坐标方程ρ=-2cos θ与ρcos(θ+π3)=1表示的两个图形的位置关系是什么?解:ρ=-2cos θ可变为ρ2=-2ρcos θ, 化为普通方程为x 2+y 2=-2x 即(x +1)2+y 2=1它表示圆,圆心为(-1,0),半径为1.将ρcos(θ+π3)=1化为普通方程为x -3y -2=0.∵圆心(-1,0)到直线的距离为|-1-2|1+3=32>1 ∴直线与圆相离.17.(本小题满分12分)把下列极坐标方程化为直角坐标方程并说明表示什么曲线.(1)ρ=2a cos θ(a >0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.解:(1)ρ=2a cos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x 2+y 2=2ax .整理得x 2+y 2-2ax =0,即(x -a )2+y 2=a 2.是以(a,0)为圆心,a 为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x 2+y 2=9x +9y ,又可化为(x -92)2+(y -92)2=812,是以(92,92)为圆心,922为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x 2+y 2=16.是以原点为圆心,4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x -3y =5,是一条直线.18.(本小题满分14分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0);当θ=π2时,ρ=233,得N ⎝ ⎛⎭⎪⎫233,π2. (2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6,ρ∈R .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[对应学生用书P35]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等.1.(湖南高考)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设AO ,BC 的交点为D ,由已知可得D 为BC 的中点,则在直角三角形ABD 中,AD =AB 2-BD 2=1,设圆的半径为r ,延长AO 交圆O 于点E ,由圆的相交弦定理可知BD ·CD =AD ·DE ,即(2)2=2r -1,解得r =32.答案:322.(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知P A =PD ,故∠P AD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB ,所以∠DAC =∠BAD ,从而 BE = EC .因此BE =EC .(2)由切割线定理得P A 2=PB ·PC .因为P A =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.3.(新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA ,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°.所以∠CBA = 90°,因此CA 是△ABC 外接圆的直径. (2)连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE . 由BD =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.[对应学生用书P35]接四边形的判定和性质.[例1] 已知四边形ABCD 为平行四边形,过点A 和点B 的圆与AD 、BC 分别交于E 、F.求证:C、D、E、F四点共圆.[证明]连接EF,因为四边形ABCD为平行四边形,所以∠B+∠C=180°.因为四边形ABFE内接于圆,所以∠B+∠AEF=180°.所以∠AEF=∠C.所以C、D、E、F四点共圆.[例2]如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于()A.120°B.136°C.144°D.150°[解析]由圆内接四边形性质知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,且∠BCD+∠ECD=180°,∠ECD=72°.又由圆周角定理知∠BOD=2∠A=144°.[答案] C要,结合此知识点所设计的有关切线的判定与性质、弦切角的性质等问题是高考选做题热点之一,解题时要特别注意.[例3]如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,P A切⊙O于点A,且P A=PB.(1)求证:PB是⊙O的切线;(2)已知P A=3,BC=1,求⊙O的半径.[解](1)证明:如图,连接OB.∵OA=OB,∴∠OAB=∠OBA.∵P A=PB,∴∠P AB=∠PBA.∴∠OAB+∠P AB=∠OBA+∠PBA,即∠P AO=∠PBO.又∵P A是⊙O的切线,∴∠P AO=90°.∴∠PBO=90°.∴OB⊥PB.又OB 是⊙O 半径,∴PB 是⊙O 的切线. (2)连接OP ,交AB 于点D .如图.∵P A =PB ,∴点P 在线段AB 的垂直平分线上. ∵OA =OB ,∴点O 在线段AB 的垂直平分线上. ∴OP 垂直平分线段AB . ∴∠P AO =∠PDA =90°.又∵∠APO =∠OP A ,∴△APO ∽△DP A . ∴AP DP =POP A.∴AP 2=PO ·DP . 又∵OD =12BC =12,∴PO (PO -OD )=AP 2.即PO 2-12PO =(3)2,解得PO =2.在Rt △APO 中,OA =PO 2-P A 2=1, 即⊙O 的半径为1.圆的切线、到一些比例式、乘积式,在解题中,多联系这些知识,能够计算或证明角、线段的有关结论.[例4] 如图,A ,B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,求DE 的长.[解] 设CB =AD =x ,则由割线定理得:CA ·CD =CB ·CE ,即4(4+x )=x (x +10), 化简得x 2+6x -16=0, 解得x =2或x =-8(舍去), 即CD =6,CE =12.连接AB ,因为CA 为小圆的直径, 所以∠CBA =90°,即∠ABE =90°,则由圆的内接四边形对角互补,得∠D =90°, 则CD 2+DE 2=CE 2, 所以62+DE 2=122, 所以DE =6 3.[例5] △ABC 中,AB =AC ,以AB 为直径作圆,交BC 于D ,O 是圆心,DM 是⊙O 的切线交AC 于M (如图).求证:DC 2=AC ·CM .[证明] 连接AD 、OD . ∵AB 是直径,∴AD ⊥BC .∵OA =OD , ∴∠BAD =∠ODA . 又AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .则∠CAD =∠ODA ,OD ∥AC . ∵DM 是⊙O 切线,∴OD ⊥DM . 则DM ⊥AC ,DC 2=AC ·CM .[对应学生用书P43] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆内接四边形的4个角中,如果没有直角,那么一定有( ) A .2个锐角和2个钝角 B .1个锐角和3个钝角 C .1个钝角和3个锐角D .都是锐角或都是钝角解析:由于圆内接四边形的对角互补,圆内接四边形的4个角中若没有直角,则必有2个锐角和2个钝角.答案:A2.如图,在⊙O 中,弦AB 长等于半径,E 为BA 延长线上一点,∠DAE =80°,则∠ACD 的度数是( )A .60°B .50°C .45°D .30°解析:∠BCD =∠DAE =80°, 在Rt △ABC 中,∠B =90°,AB =12AC ,∴∠ACB =30°.∴∠ACD =80°-30°=50°. 答案:B3.如图所示,在半径为2 cm 的⊙O 内有长为2 3 cm 的弦AB .则此弦所对的圆心角∠AOB 为( )A .60°B .90°C .120°D .150°解析:作OC ⊥AB 于C ,则BC =3,在Rt △BOC 中cos ∠B =BO OB =32.∴∠B =30°.∴∠BOC =60°.∴∠AOB =120°. 答案:C4.如图,已知⊙O 的半径为5,两弦AB 、CD 相交于AB 的中点E ,且AB =8,CE ∶ED =4∶9,则圆心到弦CD 的距离为( )A.2143B.289 C.273D.809解析:过O 作OH ⊥CD ,连接OD ,则DH =12CD ,由相交弦定理知, AE ·BE =CE ·DE .设CE =4x ,则DE =9x , ∴4×4=4x ×9x ,解得x =23,∴OH =OD 2-DH 2= 52-(133)2=2143.答案:A5.如图,P A 切⊙O 于A ,PBC 是⊙O 的割线,且PB =BC ,P A =32,那么BC 的长为( )A. 3 B .2 3 C .3D .3 3解析:根据切割线定理P A 2=PB ·PC , 所以(32)2=2PB 2.所以PB =3=BC . 答案:C6.两个同心圆的半径分别为3 cm 和6 cm ,作大圆的弦MN =6 3 cm ,则MN 与小圆的位置关系是( )A .相切B .相交C .相离D .不确定 解析:作OA ⊥MN 于A .连接OM .则MA =12MN =3 3.在Rt △OMA 中,OA =OM 2-AM 2=3(cm). ∴MN 与小圆相切. 答案:A7.如图,P AB ,PDC 是⊙O 的割线,连接AD ,BC ,若PD ∶PB =1∶4,AD =2,则BC 的长是( )A .4B .5C .6D .8解析:由四边形ABCD 为⊙O 的内接四边形可得∠P AD =∠C ,∠PDA =∠B . ∴△P AD ∽△PCB .∴PD PB =AD CB =14.又AD =2,∴BC =8. 答案:D8.已知⊙O 的两条弦AB ,CD 交于点P ,若P A =8 cm ,PB =18 cm ,则CD 的长的最小值为( )A .25 cmB .24 cmC .20 cmD .12 cm解析:设CD =a cm ,CD 被P 分成的两段中一段长x cm ,另一段长为(a -x ) cm.则x (a -x )=8×18,即8×18≤(x +a -x 2)2=14a 2.所以a 2≥576=242,即a ≥24.当且仅当x =a -x ,即x =12a =12时等号成立.所以CD 的长的最小值为24 cm. 答案:B9.如图,点C 在以AB 为直径的半圆上,连接AC 、BC ,AB =10,tan ∠BAC =34,则阴影部分的面积为( )A.252πB.252π-24 C .24D.252π+24 解析:∵AB 为直径,∴∠ACB =90°,∵tan ∠BAC =34,∴sin ∠BAC =35.又∵sin ∠BAC =BCAB ,AB =10,∴BC =35×10=6.AC =43×BC =43×6=8,∴S 阴影=S 半圆-S △ABC =12×π×52-12×8×6=252π-24. 答案:B10.在Rt △ABC 中,∠ACB =90°,以A 为圆心、AC 为半径的圆交AB 于F ,交BA 的延长线于E ,CD ⊥AB 于D ,给出四个等式:①BC 2=BF ·BA ;②CD 2=AD ·AB ; ③CD 2=DF ·DE ;④BF ·BE =BD ·BA . 其中能够成立的有( ) A .0个 B .2个 C .3个D .4个解析:①②不正确,由相交弦定理知③正确, 又由BC 2=BE ·BF ,BC 2=BD ·BA , 得BE ·BF =BD ·BA ,故④正确. 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填写在题中的横线上)11.四边形ABCD 内接于⊙O ,若∠BOD =120°,OB =1,则∠BAD =________,∠BCD=________, BCD的长=________. 解析:∠BAD =∠12BOD =60°,∠BCD =180°-∠BAD =120°, 由圆的半径OB =1,∠BOD =2π3,∴ BCD 的长为2π3. 答案:60° 120°2π312.(陕西高考)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB=________.解析:由相交弦定理可知ED2=AE·EB=1×5=5,又易知△EBD与△FED相似,得DF·DB=ED2=5.答案:513.如图,⊙O为△ABC的内切圆,AC,BC,AB分别与⊙O切于点D,E,F,∠C=90°,AD=3,⊙O的半径为2,则BC=________.解析:如图所示,分别连接OD,OE,OF.∵OE=OD,CD=CE,OE⊥BC,OD⊥AC,∴四边形OECD是正方形.设BF=x,则BE=x.∵AD=AF=3,CD=CE=2,∴(2+x)2+25=(x+3)2,解得x=10,∴BC=12.答案:1214.如图,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交AB的延长线于E,若EA=1,ED=2,则BC=________.解析:∵CE为⊙O的切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,得EB=4,又∵CB、CD均为⊙O的切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理得EB2+BC2=EC2.∴42+x2=(x+2)2,得x=3,∴BC=3.答案:3三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:(1)l是⊙O的切线;(2)PB平分∠ABD.证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA =OB ,PC =PD , 所以OP ∥BD ,从而OP ⊥l .因为P 在⊙O 上,所以l 是⊙O 的切线. (2)连接AP ,因为l 是⊙O 的切线, 所以∠BPD =∠BAP . 又∠BPD +∠PBD =90°, ∠BAP +∠PBA =90°, 所以∠PBA =∠PBD , 即PB 平分∠ABD .16.(本小题满分12分)(2012·辽宁高考)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB , 同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD ,即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD , 又∠ADE =∠BDA ,得 △EAD ∽△ABD .从而AE AB =AD BD ,即AE ·BD =AD ·AB . 结合(1)的结论,AC =AE .17.(本小题满分12分)如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A ,E ,F ,M 四点共圆; (2)证明:AC 2+BF ·BM =AB 2. 证明:(1)连接AM ,则∠AMB =90°.∵AB ⊥CD ,∴∠AEF =90°. ∴∠AMB +∠AEF =180°,即A,E,F,M四点共圆.(2)连接CB,由A,E,F,M四点共圆,得BF·BM=BE·BA.在Rt△ACB中,BC2=BE·BA,AC2+CB2=AB2,∴AC2+BF·BM=AB2.18.(辽宁高考)(本小题满分14分)如图,EP交圆于E,C两点,PD 切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.由于AF⊥EP,所以∠PF A=90°,于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.。