七年级数学分式

合集下载

七年级下册数学知识点分式

七年级下册数学知识点分式

七年级下册数学知识点分式七年级下册数学知识点:分式分式在初中数学中起着重要的作用。

分式不仅仅是一个简单的数学概念,还是应用到许多实际问题,尤其是在代数学中常常被使用。

在本文中,将介绍有关分式的定义、简化、运算等基本知识点。

一、分式的定义分式是指一种表达形式,其中包含两个或两个以上的数,并且它们之间以斜线表示分子与分母的关系。

例如:2/3,3/8,x/y 等等。

其中,2/3 表示分子为2,分母为3的分式,3/8 表示分子为3,分母为8的分式,x/y 表示分子为x,分母为y的分式。

二、分式的简化简化分式是指将其分子和分母的公共因数约分至最简形式,例如:4/6 = 2/3,20/100 = 1/5x^2y/xy^2 = x/y三、分式的运算1. 加减法对于分数的加减法,需要将分母化为相同的通分式。

例如:3/4 + 1/6 = 9/12 + 2/12 = 11/122/5 - 3/8 = 16/40 - 15/40 = 1/402. 乘除法对于分数的乘除法,需要分别将分子和分母进行相应的乘除运算。

例如:2/3 * 3/5 = 6/15 = 2/55/6 ÷ 3/10 = 50/18 = 25/9四、分式的应用分式在代数学中有着广泛的应用,例如:1. 比例问题比例问题常常使用分式来解决,例如:如果小明家有8个苹果,他想将这些苹果分给5个朋友,每个人分到的苹果个数相等,那么每个人分到几个苹果?答案为: 8/5 = 1.6每个人可以分到1.6个苹果。

2. 百分数和小数问题百分数和小数问题同样使用分式来解决,例如:将0.6转化为分数表示。

答案为: 0.6 = 6/10 = 3/5因此,0.6可以表示为3/5的分数形式。

总结本文中介绍了分式的定义、简化、运算以及应用。

分式是初中数学中不可或缺的一部分,熟练掌握分式的基本知识点有助于学生更好地掌握代数学知识,解决实际问题。

初中七年级数学分式的定义

初中七年级数学分式的定义

分式的定义
•分式的定义:
一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字
母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:
(1)分式的分母中必须含有字母;
(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

•分式的概念包括3个方面:
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的
作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区
别整式的重要依据;
③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是
指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

分式有意义的条件:
(1)分式有意义条件:分母不为0;
(2)分式无意义条件:分母为0;
(3)分式值为0条件:分子为0且分母不为0;
(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。

•分式的区别概念:
分式与分数的区别与联系:
a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分
子和分母,都可以表示成(B≠0)的形式;
b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;
分数是分式中字母取特定值后的特殊情况。

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无限不循环小数也是无理式
无理式和有理式统称代数式。

七年级数学总结知识点(集锦10篇)

七年级数学总结知识点(集锦10篇)

七年级数学总结知识点(集锦10篇)七年级数学总结知识点第1篇1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3、分式的通分和约分:关键先是分解因式4、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5、任何一个不等于零的数的零次幂等于1,即;当n为正整数时6、正整数指数幂运算性质也可以推广到整数指数幂、(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方:;(3)积的乘方:;(4)同底数的幂的除法:(a≠0);(5)商的乘方:();(b≠0)7、分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根、增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答、应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题、(2)数字问题在数字问题中要掌握十进制数的表示法、(3)工程问题基本公式:工作量=工时×工效、(4)顺水逆水问题v 顺水=v静水+v水、 v逆水=v静水—v水、8、科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法、用科学记数法表示绝对值大于10的n位整数时,其中10的指数是用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)七年级数学总结知识点第2篇⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。

七年级数学下册 9.2 分式的运算《分式的加减—通分》导学案(无答案)(新版)沪科版

七年级数学下册 9.2 分式的运算《分式的加减—通分》导学案(无答案)(新版)沪科版

9.2 分式的运算《分式的加减—通分》学习目标:1、掌握分式的同分母加减法则,会进行简单的同分母分式运算2、利用分数的通分类比学习分式的通分,能对异分母分式进行通分学习重点:确立几个分式的公分母学习难点:利用分式的基本性质对分式进行通分学习过程一、学习准备1、回忆分数的加减法法则2、如何对异分母分数进行通分二、合作探究1、完成下列分数的计算(1)23+21(2)(-43)-41(3)(-52)+(-31) (4)(-21 )-(+31)你是怎么计算的?计算(3)、(4)中,分母怎么处理的?你是怎样进行通分的?(寻找最简公分母、通分)2、结合P99分式通分的定义,结合实例,理解分式通分的概念。

思考:如何寻找公分母?3、你能找出下列各项的公分母吗?(1)23,2x x(2)ab ab b a 12,4,322(3)xy x y xy x y x +++-22222,2,你发现怎样确定最简公分母?4、教学例题例3、通分(提示:确立各个分式的最简公分母)(1)b a 231 ,241ab ,ab 121 (2) 221 y x -,222 1y xy x ++,xy x +2 1通分体会:先确定最简公分母,再利用分式的基本性质,对每个分式进行扩大或缩小,实现各个分式的分母的相同。

5、练习 通分(1)b 2a ,a 3b ,ab 4c (2)y x 223 ,23 5xy ,23 5xy6、练习 通分(1)11 +x ,121- x 2++x x ,11-x (2)11 -x ,11 2-x ,xx +21三、学习体会 对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?四、自我测试1、 下列说法中,正确的是( )A.5a 2是 a b2与231a 的公分母 B.3ab 是b a 231与231ab 的公分母C.两个分式的和还是分式D. 两个分式的差还是分式2、分式21 -x ,43- x2-x 的最简公分母是3、通分(1)13- x 2-x ,x +12(2)121a 22++-a a ,221-a。

七年级上册数学分式知识点

七年级上册数学分式知识点

七年级上册数学分式知识点分式是数学中的一个重要概念,也是初中数学里的一大难点。

在七年级上册的数学课程中,学生需要掌握分式的基本知识点,为以后的学习打好基础。

本文将围绕七年级上册数学分式的知识点展开阐述。

一、基本概念分式是指一个整体被分成若干份,其中每一份都是整体中的一部分,它由分子和分母两个部分组成,用“分子/分母”的形式表示。

例如,1/2是一个分式,其中1为分子,2为分母。

二、分式的化简1.相除化简如果分子和分母都可以被同一个数整除,那么我们可以利用这个数来将分式进行相除化简。

例如,12/18可以化简为2/3,因为12和18都可以被2整除。

2.分子分母约分分子和分母中存在公因数时,可以将分子和分母同时除以它们的公因数,并保持等式的真实性。

例如,16/24可以化简为2/3,因为16和24都可以被8整除。

三、分式的乘法与除法1.乘法两个分式的乘积可以通过将它们的分子相乘得到新分子,将它们的分母相乘得到新分母。

例如,(2/3)×(4/5)=8/15。

2.除法两个分式的商可以通过取一个分式的倒数,再将另一个分式乘上这个分式的倒数得到。

例如,(2/3)÷(4/5)=(2/3)×(5/4) =10/12 =5/6。

四、分式的加法与减法1.通分对于两个分式,如果它们的分母不同,我们需要将它们通分,即将它们的分母化为相同的数。

例如,1/2+1/3可以化简为3/6+2/6。

在这里,我们需要将两个分式的分母化为6,然后将它们的分子相加。

2.加减通分之后,我们可以将它们的分子相加或相减,并保持相同的分母。

例如,1/2+1/3=5/6,1/2-1/3=1/6。

五、练习题1.将1/3和2/5通分并求和。

2.将2/3和5/6通分并求差。

3.将3/4和4/5相乘并化简。

解答:1. 将1/3和2/5分别乘上5/5和3/3,通分后得到:5/15+6/15=11/15。

2. 将2/3和5/6分别乘上2/2和1/1,通分后得到:4/6-5/6=-1/6。

七年级数学下册《分式的运算-分式的乘除》课件

七年级数学下册《分式的运算-分式的乘除》课件

三、例题讲授与练习
例3计算: (1)
( 5 )2 (2) 3y
(
2a 2b - c3
)3
.
解:(1)
( 5 )2 3y
52 (3y)
2
25 9y 2
.
(2)
(
2a 2b - c3
)3
(2a 2b)3 (-c3 )3
8a 6b3 - c9
-
8a 6b3 c9
.
三、例题讲授与练习
练习:(1)判断下列各式正确与否:
三、例题讲授与练习
(2)计算下列各题:
计算:
(1)
a a
2 2
a2
1
2a
;
(2)
2a a2
a2
1
2a
;
(3)

(4)
x x2 1
x2 x2
x
;
(5)x2 4 y2 xy ; 3xy2 x 2 y
(6)
x x
2 3
x2 x2
9 4

(7)a
2 ab a2b
ba ab
;
(8) x 2 1 x 1;
一 、复习提问
1、什么叫做分式的约分?约分的根据是 什么? 2、下列各式是否正确?为什么?
想一想
探索分式的乘除法的法则
1.回忆: 计算:3 4 1 1 2 (9)
5 63
2、例1计算(1:)bay2 x2
ay2 b2x
a2 ;(2)b2
xy z2
a2 yz b2x2
.
3.概括:分式的乘除法用式子表示即是:
④怎样应用分式乘法法则 得到积的分式?
做一做
计算:

七年级数学上册第十五章《分式》知识点素材

七年级数学上册第十五章《分式》知识点素材

第十五章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).1。

七年级数学分式知识点

七年级数学分式知识点

七年级数学分式知识点数学中的分式是一种非常重要的概念,分式也叫作有理数,指的是两个整数之间的比值。

在数学课上,老师经常会涉及到分式的相关知识点,下面,我们就来介绍一下七年级数学中的分式知识点。

一、分式的定义分式是常见的有理数的一种表示方式,分式的表达式是“分子/分母” 的形式,其中分子和分母都是整数。

当分母不为零时,才可以构成一个分式。

二、分式的基本性质1. 分式的值是有理数。

2. 分式的值可以是正数、负数、零。

3. 两个分式的乘积就是分子的积除以分母的积。

4. 两个分式的商就是分子的乘积除以分母的乘积。

三、分式的运算1. 分式的加减法如果两个分式的分母相同,那么它们的加减就很简单了,直接加上(或减去)分子即可;如果两个分式的分母不相同,那么就需要通分,把它们化成有相同分母的分式,然后分别将两个分子相加(或者相减),最后化简即可。

2. 分式的乘法两个分式相乘时,我们只需要将分子分母分别相乘即可。

3. 分式的除法两个分式进行除法时,要记得将除法转换为乘法,具体做法就是将除号(/)左边的分式不变,右边的分式取倒数,即分子和分母位置互换,然后再按照分式相乘的方法进行计算即可。

四、分式的约分和通分1. 约分如果一个分式的分子和分母有公因数,就可以进行约分,简单来说就是将分子和分母同时除以一个公因数。

注意:分子和分母的公因数,必须不能是0和1。

2. 通分当两个分式的分母不同,需要通过通分将分母变成相同的数。

具体做法是:找到两个数的最小公倍数,让分子、分母同时乘以一个适当的数,使得分母变成最小公倍数即可。

五、分式的应用分式的运用很广泛,其中常见的应用场景如下:1. 人均分配问题2. 比例问题3. 费用分摊问题4. 税率问题六、分式练习1. 化简以下分式:8/162. 按公因数分解,将以下分式化简:12/163. 计算以下分式:4/5+3/104. 计算以下分式:3/4-1/65. 求以下分式的乘积:2/3*3/46. 计算以下分式:4/5÷1/2七、小结以上是七年级数学中分式的相关知识点,要想掌握好这一知识点,我们需要多做练习,熟练掌握分式的各种操作方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章分式背景介绍及教学资料:《分式》是浙教版《义务教育课程标准实验教科书》·数学·七年级(下)第七章。

本章内容包括了传统教材中的《分式》和《分式方程》两个内容,从知识衔接的角度来看,比较符合教学实际。

有关教学资料可以查阅§7.1 分式一、背景介绍及教学资料:分式是代数式中的重要组成部分。

学生在学习了整式及运算、一元一次方程及解法之后编排了本节内容,符合学生的认知规律。

课前的实际情景既可让学生体验到学习分式的有关知识是实际生活的需要,又可激发学生的学习兴趣。

有关教学资料可以查阅“中国基础教育网”网址:§7.1分式(1)二、教学设计【教材内容分析】本节的主要内容是分式的概念和分式的意义。

分式是与整式完全不同的两种代数式,为了突显分式与整式的区别,教材中给出了一些代数式让学生观察找特征,得出分式的概念;又根据分数的意义得出分式的意义;最后例题中的实际问题可让学生深刻的体会出分式的意义。

【教学目标】1、能根据分式的概念,辨别出分式,理解当分母为零时,分式无意义。

2、能确定分式中字母的取值范围,使分式有意义,或使分式的值为零。

3、会用分式表示实际问题中的数量关系,并会求分式的值,体验分式在实际中的价值。

【教学重点】分式的有关概念【教学难点】理解并能确定分式何时有意义,何时无意义。

【教学过程】(一)创设情景,引出课题。

情景:让学生观察章书图中的灰熊:提问:为了调整珍稀动物资源,动物专家在p平方千米的保护区内找到7只灰熊,你能用代数式表示平均每平方千米保护区内有多少只灰熊吗?______答案为:7÷P=7 p设计说明:通过创设情景,让学生感受到分式来源于实际,激发学生学习兴趣。

教师再出示一些如:ba,232xx-+,a bc-让学生比较说出这些代数式与过去学过的整式有什么不同?(可能学生只讲出有分母,教师应适当的引导。

)设计说明:让学生自己感悟分式与整式的不同,培养学生归纳和表达能力。

(板书)分式:把这些分子、分母都是整式且分母中含有字母的代数式叫做分式。

(二)合作讨论,探求新知做一做:1、下列代数式中,哪些是整式?哪些是分式?3 2,1x,ba+1,3x+2y5,a+bab2、议一议:分式ab的分母中的字母能取任何实数吗?为什么?分式2x-3x+2中的字母x呢?总结得出分式的意义:分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义。

设计说明:通过与整式比较突出对分式概念的理解。

通过讨论,加深学生对分式意义的认识。

(三)应用巩固,掌握新知例1:对分式2x+1 3x-5(1)当x取什么数时,分式有意义?(2)当x取什么值时,分式的值为零?(3)当x=1时,分式的值是多少?解:略。

解后反思:(最好由学生主讲)(1)因为当分母等于零时,分式无意义,所以只有当分母不等于零时,分式有意义。

(2)强调当分子等于零且分母不等于0时分式的值为零。

(3)求分式的值的格式。

设计说明:这是课本中的例题,一则是应用新知,二则是经历解题过程,三则让学生体会解本题的关键。

练一练:(课内练习1)填空:(1)当______时,分式1x无意义。

(2)当______时,分式1-x4x-8有意义。

(3)当______时,分式3x-9x-2值是零。

设计说明:给学生展现身手的机会,加强学生对什么情况下分式有意义,无意义,值为零的理解。

做一做:例2:甲、乙两人从一条公路上某处出发,同向而行,已知甲每时行a 千米,乙每时行b 千米,a >b ,如果乙提前1时出发,那么甲追上乙需要多少时间?当a =b ,b =5时,求甲追上乙所需的时间。

分析:此题是行程问题中的追及问题,小学里学过追及时间=路程差(追及路程)速度差,本题中把字母代入即可。

第二问题是求分式的值,注意解题格式。

想一想:若取a =5,b =5,分式b a-b有意义吗?它们表示的实际意义是什么? (当a =5,b =5时,分式b a-b无意义,它表示甲永远也追不上乙)。

解后反思:在用分式表示实际问题时,字母的取值一定要符合实际。

练一练:(课内练习2)甲、乙两人分别从A 、B 两地出发,相向而行,已知甲的速度为V 1千米/时,乙的速度为V 2千米/时,A 、B 两地相距20千米,若甲先出发1时,问乙出发后几时与甲相遇?(四)合作探究,延伸提高探究题:(课内练习)口袋里装有若干个白球和黑球,这些球除颜色外均相同,设黑球的个数为n ,白球的个数为(18-m )个,p 表示从口袋中摸出一个球,是白球的概率。

(1)你能用关于m 、n 的代数式来表示p 吗?它是哪一类的代数式。

(2)这个代数式在在什么条件下有意义?(3)p 有可能为0吗?有可能为1吗?如果有可能,请解释它的实际意义。

设计说明:通过合作探究,让学生体会到(1)分式的应用很广,(2)在用分式表示实际问题时,字母的取值一定要符合实际。

(五)、清点收获由教师开出清单,学生进行清点1、分式的概念;2、什么情况下分式有意义、无意义,分式的值为零。

3、在实际问题中应注意什么?设计说明:为了避免学生毫无目的、流于形式的随意讲,由教师根据本节课的教学目标开出清单,可使学生有的放矢。

(六)作业:课后作业题。

备选练习或作业:目标与评定中的 1、2两题。

设计思路:以实际问题情境引出,再通过学生观察比较分式与整式的区别,从而得到分式的概念,让学生体会到分式来源于实际,并通过合作讨论得出分式何时有意义、没意义、何时值为零,符合学生的认知规律,同时把分式中字母的取值与实际联系起来,体现数学既来源于实际又服务于实际。

整个教学过程力求以学生为主体。

§7.1分式(2)【教材内容分析】本节的主要内容是:分式的基本性质。

分式的基本性质是分式的约分、通分、运算等恒等变形的依据。

课本通过具体的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。

与传统教材不同的是课本中没有明确给出分式的符号法则,而是在想一想中渗透的,所以在教学中应注意让学生体会。

【教学目标】1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。

2、理解并掌握分式的基本性质和符号法则。

3、能运用分式的基本性质和符号法则对分式进行变性和约分。

【教学重点】分式的基本性制及利用基本性质进行约分【教学难点】对符号法则的理解和应用及当分子、分母是多项式时的约分。

【教学过程】(一)类比引入,探求新知下面这些式子成立吗?依据是什么?23 =2×53×5 =1015 1642 =16÷242÷2 =821待学生讲出分数的基本性质后,再让学生讲出分数的基本性质的内容。

类似地,分式也有以下基本性质:(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。

(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历分式的基本性质的得来过程;对几个关键词的理解,目的是让学生更好的掌握和应用性质。

用式子表示为A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M 是不等于零的整式) (二)应用新知,巩固新知想一想:下列等式成立吗?为什么?-a -b =a b -a b =a -b =-a b先让学生讨论,待学生回答后,教师引导学生得出结论:(板书)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

做一做:(课内练习)1、不改变分式的值,把下列各式的分子与分母中的各项子数都化为整数。

(1)x+13 y 12 x-y (2)0.2a +0.5b 0.7a-b2、不改变分式的值,把下列分式的分子与分母的最高次项的系数都化为正数。

(1)-2x-1x-1(2)232xx--+练一练:课内练习:P1721、2设计说明:目的是应用和巩固分式的基本性质及符号法则。

做一做:例3:化简下列各式:(1)-8ab2c-12a2b(2)a2+4a+4-a2+4教学建议:教师可以先写出一个能约分的分数,让学生化简,并指出化简的实质:是约分(学生应该能讲出的)。

对比分数的化简让学生试着完成例3。

(教师巡视过程中应对基础弱的学生加以引导)教师引导学生反思:1、例题化简过程的依据是什么?(分式的基本性质)2、具体是怎样操作的?(先找出分子和分母中的公因式,再分子分母同时除以公因式)由此得出:(板书)分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。

设计说明:因为前一章刚刚学过因式分解,学生对公因式应该比较熟悉,所以直接让学生完成,给学生探索和尝试的机会。

练一练:(课内练习)3、用分式表示下列各式的商,并约分(1)4a2b÷(6ab2)(2)-4m3n2÷2(m3n4)(3)(3x2+x)÷(x2-x)(4)(x2-9)÷(-2x2+6x)教学建议:板演或投影展示学生的解题过程,评价方式应以学生为主,尤其做错的,应该让学生知道错在哪里,及时改正。

(三)、清点收获由教师开出清单,学生进行清点1、分式的基本性质2、符号法则3、约分4、以上知识在应用时应注意什么?设计说明:为了避免学生毫无目的、流于形式的随意讲,由教师根据本节课的教学目标开出清单,让学生有的放矢。

(四)作业:课后作业题备选作业或练习:目标与评定中的 3、4、5、6题。

设计说明:本套教材中目标与评定中的题目设计是与章节内容相对应的,作为备选作业或练习布置,可使基础较好的学生吃得好、吃得饱。

设计思路:由于分式的基本性质与分数的基本性质类似,所以本课时采用类比的方法得出分式的在基本性质,易于学生理解、接受,符合学生的认识规律,符号法则在解题中有很大的作用,让学生合作讨论得出,目的是让学生在讨论和交流的过程中真正理解和掌握基本的数学知识和技能并能体验成功的喜悦。

整个教学过程力求以学生为主体。

§7.2分式的乘除一、背景介绍及教学资料:分式的乘除是分式的基本运算之一。

学生在学习了分式的基本性质和分式的约分后安排了本节教学内容,是上节的延续,顺应了知识的连贯性也迎合了学生的认知心理。

有关教学资料可以查阅“中国基础教育网”网址:和浙江教育网/(教育资源)。

二、教学设计【教学内容分析】本节课的教学内容是分式的乘除,本节课是在学生学习了分式约分的基础上学习的,因为分式的乘除实质最终可归结为分式的约分,所以本节的教学内容是上一节知识的延续,可充分让学生体会分式基本性质的用处之广,因式分解的作用之大。

【教学目标】1.能根据分数的乘除法则叙述分式的乘除法则,并会用字母表示。

2、能进行分式的乘法、除法运算或简单的乘除混合运算。

相关文档
最新文档