2010年高考试题数学理(浙江卷)(精校版)

合集下载

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)(word版)

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)(word版)

绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。

2010年高考真题

2010年高考真题
优化方案教考资源网
2010年高考真题 2010年高考真题
2010年高考试题 年高考试题——理数(全国卷 )(解析版) 理数( )(解析版 年高考试题 理数 全国卷I)(解析版) 2010年高考试题 年高考试题——数学理(北京卷)解析版 数学理( 年高考试题 数学理 北京卷) 2010年高考试题 年高考试题——数学理(福建卷)解析版 数学理( 年高考试题 数学理 福建卷) 2010年高考试题 年高考试题——数学理(湖北卷)解析 数学理( 年高考试题 数学理 湖北卷) 2010年高考试题 年高考试题——数学理(湖北卷)精校版 数学理( 年高考试题 数学理 湖北卷) 2010年高考试题 年高考试题——数学理(辽宁卷)解析版 数学理( 年高考试题 数学理 辽宁卷) 2010年高考试题 年高考试题——数学理(四川卷)解析版 数学理( 年高考试题 数学理 四川卷) 2010年普通高等学校招生全国统一考试(全国卷II)(数学理) 年普通高等学校招生全国统一考试(全国卷 )(数学理) 年普通高等学校招

2010年普通高等学校招生全国统一考试数学理试题(浙江卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(浙江卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(某某卷,解析版)【名师简评】某某卷理整份试卷考查都是主干知识,没有一些偏题,比较怪的知识。

同时,试卷难度偏较大,区分度比较明显,有很大的梯度。

试题有新意,对知识的能解程度、知识与能力综合运用要求较高,创新性的问题如第10、17题。

试卷坚持“源于课本、高于课本、稳中求变、应用创新”的原则,以现行教材为依据某某、求变、求新、求活。

试题多以课本上的典型例(练习)题为原形经过精心设计和包装,恰当迁移,综合创新的新颖试题。

难题无法下手,特别是选择题第8、9、10,填空题第16、17,以及解答题的第22题,学生整体做下来困难也比较多。

试卷注重思维能力与应用意识的培养,把比较多的实际问题融合到试卷中,如第17题,第19题,有比较好的应用与趣味性。

总体来说某某理科卷是一份不错的试卷,能比较好考查出学生的真实水平。

本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔讲所有试题的答案涂、写在答题纸上。

选择题部分(共50分)主要事项:考生在答题前请认真阅读本注意事项及各题答题要求1.答题前,考生务必将自己的某某、某某号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+V Sh =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B = 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…球的表面积公式台体的体积公式 24S R π=()1213V h S S =球的体积公式其中12,S S 分别表示台体的上、下底面积, 343V R π=h 表示台体的高 其中R 表示球的半径一. 选择题:本大题共10小题,每小题5分,共50分。

2010年浙江高考数学理科卷带详解

2010年浙江高考数学理科卷带详解

2010年普通高等学校招生全国统一考试(浙江卷)理科数学一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四项中,只有一项是符合题目要求的.1.设{4}P x x =<,2{4}Q x x =<,则 ( ) A .P Q ⊆ B .Q P ⊆ C .p Q ⊆R ð D .Q P ⊆R ð 【测量目标】集合间的关系.【考查方式】给出两集合,求集合间的关系. 【难易程度】容易 【参考答案】B 【试题解析】P ={x 4x <},{}{}2422Q x x x x =<=-<<,Q P ∴⊆,故B 正确.2.某程序框图如图所示,若输出的S =57,则判断框内为 ( ) A . k >4? B .k >5? C . k >6? D .k >7?第2题图【测量目标】循环结构的程序框图.【考查方式】给出循环结构的程序框图,根据输出结果,求出所缺条件. 【难易程度】容易 【参考答案】A【试题解析】程序在运行过程中变量值变化如下表: k s 是否继续循环 循环前 1 1第一圈 2 4 是 第二圈 3 11 是 第三圈 4 26 是 第四圈 5 57 否故退出循环的条件应为k >4.故选答案A.3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = ( ) A .11 B .5 C .8- D .11- 【测量目标】等比数列的通项公式与等比数列前n 项和公式.【考查方式】给出等比数列两项之间的关系式,求出公比,根据等比数列前n 项和公式求解. 【难易程度】容易 【参考答案】D【试题解析】由2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,所以55221111S q S q-==--.故选A. 4.设π02x <<,则“2sin 1x x <”是“sin 1x x <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出两不等式,判断两者之间的关系. 【难易程度】容易 【参考答案】B【试题解析】因为0<x <2π,所以0<sin 1x <,故2sin sin x x x x <,结合x sin 2x 与x sin x 的取值范围相同,可知“2sin 1x x <”是“sin 1x x <”的必要而不充分条件.5.对任意复数()i ,z x y x y =+∈R ,i 为虚数单位,则下列结论正确的是 ( ) A .2z z y -= B .222z x y =+ C .2z z x -… D .z x y +…【测量目标】复数代数形式的四则运算,共轭复数. 【考查方式】根据复数代数形式的四则运算及共轭复数的概念判断. 【难易程度】容易 【参考答案】D【试题解析】可对选项逐个检查,A 项,2z z y -…,故A 错,B 项,2222i z x y xy =-+,故B 错,C 项,2z z y -…,故C 错,故选D .6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m ∥,则m α⊥ C .若l α∥,m α⊂,则l m ∥ D .若l α∥,m α∥,则l m ∥ 【测量目标】线面平行与垂直的判定.【考查方式】给出两条直线与平面,根据线面平行与垂直的定理判断位置关系. 【难易程度】容易 【参考答案】B【试题解析】A :根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确; C :lα,,m α⊂则lm 或两线异面,故不正确;D :平行于同一平面的两直线可能平行、异面、相交,故不正确;B :由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面,故正确.7.若实数x ,y 满足不等式组330,230,10x y x y x my +-⎧⎪--⎨⎪-+⎩………,且x y +的最大值为9,则实数m =( )A .2-B .1-C .1D .2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出不等式组,给出目标函数的最大值,逆向求出系数大小. 【难易程度】中等 【参考答案】C【试题解析】先根据约束条件画出可行域,设z x y =+,将最大值转化为y 轴上的截距,当直线z x y =+经过直线230x y --=的交点A (4,5)时,z 值最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入10x my -+=得1m =,故选C.第7题图8.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( ) A .340x y ±= B .350x y ±= C .430x y ±= D .540x y ±= 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线上一点与两焦点距离的关系,根据双曲线的性质求解其渐近线方程. 【难易程度】中等 【参考答案】C【试题解析】依题意212PF F F =,可知三角形21PF F 是一个等腰三角形,2F 在直线1PF 的投影是其中点,由勾股定理可知14PF b ==.(步骤1) 根据双曲线定义可知422b c a -=,整理得2c b a =-,代入222c a b =+整理得2340b ab -=,求得43b a =,∴双曲线渐近线方程为430x y ±=.故选C. (步骤2)9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 ( ) A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4 【测量目标】函数零点的求解与判断,三角函数图象的变换.【考查方式】给出函数解析式求零点,将其转化为一元一次函数与三角函数图象的交点问题求解.【难易程度】中等【参考答案】A【试题解析】在同一坐标系中画出()4sin(21)g x x =+与()h x x =的图象,由图可知()4sin(21)g x x =+与()h x x =的图象在区间[]4,2--上无交点,由图可知函数()4sin(21)f x x x =+-在区间[]4,2--上没有零点.故选A.第9题图10.设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 ( ) A .4 B .6 C .8 D .10 【测量目标】集合的基本运算,对数函数的图象与性质.【考查方式】给出一个函数集合与一个点集,判断两集合的交集个数. 【难易程度】较难 【参考答案】B【试题解析】将数据代入验证知:当a =0,b =0;a =0,b =1;a =21,b =0; a =21,b =1;a =1,b =-1;a =1,b =1时满足题意,故答案选B.二、填空题:本大题共7小题,每小题4分,共28分.11.函数2π()sin(2)4f x x x =--的最小正周期是__________________ . 【测量目标】两角和与差的正弦,三角函数的周期性.【考查方式】给出三角函数解析式,利用两角和与差的正弦将其化为同名三角函数再求周期. 【难易程度】中等 【参考答案】π【试题解析】 2π()sin(2)4f x x x =--=2πsin(2)2sin )4x x -+-(步骤1)=πsin(2)24x x -+πsin(2)4x +2) 2ω=,故最小正周期为πT =,故答案为:π.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .第12题图【测量目标】平面图形的直观图与三视图,柱、锥、台的体积.【考查方式】给出三视图,判断空间几何体的直观图,判断其构成,在根据体积公式求解. 【难易程度】容易【参考答案】144【试题解析】图为一四棱台和长方体的组合体的三视图,由公式计算得体积为13(166********⨯⨯++⨯=,故答案为:144. 14.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________. 【测量目标】抛物线的定义,抛物线的简单几何性质.【考查方式】利用抛物线的定义求出p ,根据抛物线的性质求出B 到准线的距离. 【难易程度】容易【参考答案】4【试题解析】依题意可知F 坐标为(,0)2p ,B ∴的坐标为(,1)4p代入抛物线方程得212p =,解得p =,∴抛物线准线方程为2x =-,所以点B 到抛物线准线的距离为14.设112,,(2)(3)23n nn n x x ∈+-+N …2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a kn 剟的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅其中n T =__________________ . 【测量目标】合情推理.【考查方式】给出前几项,归纳推理出第n 项,考查学生的推理能力. 【难易程度】中等【参考答案】011,23nn n n ⎧⎪⎨-⎪⎩,为偶数为奇数 【试题解析】根据n T 的定义,列出n T 的前几项:01233345556011162301123011230T T T T T T T ===-==-==-=由此规律,我们可以判断:011,23n n n n T n ⎧⎪=⎨-⎪⎩,为偶数为奇数 故答案:011,23n nn n ⎧⎪⎨-⎪⎩,为偶数为奇数. 15.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .【测量目标】等差数列前n 项和.【考查方式】给出关于等差数列前n 项和的等式,求出公差的范围. 【难易程度】中等【参考答案】(),22,⎡-∞-+∞⎣【试题解析】因为56150S S +=,所以11(510)(615)150a d a d +++=,整理得2211291010a a d d +++=,(步骤1) 此方程可看作关于1a 的一元二次方程,它一定有根,故有222(9)42(101)80,d d d ∆=-⨯⨯+=-…整理得28d …,解得d …或d -…,则d的取值范围是(),22,⎡-∞-+∞⎣,故答案为:(),22,⎡-∞-+∞⎣.(步骤2)16.已知平面向量,(,)≠≠0αβααβ满足1=β,且a 与-βα的夹角为120,则α的取值范围是__________________ .【测量目标】平面向量线性运算、平面向量在平面几何中的应用和正弦定理.【考查方式】根据平面向量的三角形法则判断两向量的夹角,再利用正弦定理求解. 【难易程度】中等 【参考答案】 【试题解析】如图,设,OA OB ==αβ,则AB =-βα,∵a 与-βα的夹角为120,即OA 与AB 的夹角为120,∴60OAB ∠=.由正弦定理可得:sin sin OA OB BA=,即sin sin BA=αβ,(步骤1)∴sin sin sin sin 60BB B A===βα,∵0120B <<,∴sin (0,1]B ∈,∴(0,3∈α. (步骤2)第16题图17.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共 有______________种(用数字作答). 【测量目标】排列组合及其应用.【考查方式】通过实际生活的实例,求出不同的安排方式. 【难易程度】较难 【参考答案】264【试题解析】先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、 “台阶”测试,共有44A 种不同安排方式;(步骤1) 接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A B C 、、同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D 同学选择“握力”测试,安排A B C 、、同学分别交叉测试,有2种;(步骤2) 若D 同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有13A 种方式,安排A B C 、、同学进行测试有3种;根据计数原理共有安排方式的种数为4143A (2A 3)264+⨯=.(步骤3)三、解答题:本大题共5小题.共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知1cos 24C =- (Ⅰ)求sin C 的值;(Ⅱ)当a =2,2sin sin A C =时,求b 及c 的长. 【测量目标】二倍角,正弦定理,余弦定理.【考查方式】给出二倍角化简求解;给出两角正弦值之间的关系及三角形一边,结合正弦定理求一条边长,再应用余弦定理求另一边.【难易程度】中等【试题解析】(Ⅰ)因为21cos 212sin 4C C =-=-,及0πC <<,所以sin C =.(步骤1)(Ⅱ)当2a =,2sin sin A C =时,由正弦定理sin sin a cA C=,得4c =,(步骤2)由21cos 22cos 14C C =-=-,及0<πC <得cos C =.由余弦定理2222cos c a b ab C =+-,得2120b -=.解得b =所以4b c ⎧=⎪⎨=⎪⎩4b c ⎧=⎪⎨=⎪⎩.(步骤3) 19.(本题满分l4分)如图,一个小球从M 处投入,通过管道自上而下落A 或B 或C .已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A ,B ,C ,则分别设为l ,2,3等奖. (I )已知获得l ,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k (k =1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望E ξ;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求(2)P η=.第19题图【测量目标】离散型随机变量的分布列与期望,二项分布.【考查方式】结合实际问题,列出随机变量求其分布列,由公式求期望;判断二项分布,求概率.【难易程度】中等【试题解析】(Ⅰ)由题意得ξ的分布列为则337350%70%90%168164E ξ=⨯+⨯+⨯=.(步骤1) (Ⅱ)由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916.由题意得9~(3,)16η.则223991701(2)C ()(1)16164096P η==-=.(步骤2)20.(本题满分15分)如图,在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.第20题图【测量目标】二面角,平面图形的折叠问题,空间向量的应用.【考查方式】根据条件建立空间直角坐标系设向量求解;由空间线面垂直判定找出二面角求解.【难易程度】较难【试题解析】(Ⅰ)取线段EF 的中点H ,连结A H ',因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF .如图建立空间直角坐标系A xyz -则(22A ',,(1080)C ,,,(400)F ,,,(1000)D ,,.故(22FA '=-,u u u r ,(6,0,0)FD =uu u r . (步骤1)设(,,)x y z =n 为平面A FD '的一个法向量,所以220,60x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,=-n .又平面BEF 的一个法向量(0,0,1)=m ,故3cos ,3〈〉==n m n m n m .所以二面角的余弦值为3. (步骤2)第20题图 (1)(Ⅱ)设,FM x =则(4,0,0)M x +,因为翻折后,C 与A '重合,所以CM A M '=,故 222222(6)80=22x x -++--++()(,得214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤3) 方法二:(Ⅰ)取线段EF 的中点H ,AF 的中点G ,连结,,A G A H GH ''. 因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥又因为平面A EF '⊥平面BEF ,所以A H '⊥平面BEF ,(步骤1) 又AF ⊂平面BEF ,故A H '⊥AF ,又因为G 、H 是AF 、EF 的中点,易知GH AB ∥,所以GH ⊥AF ,于是AF ⊥面A GH ', 所以A GH '∠为二面角A DF C '--的平面角, (步骤2)在Rt A GH '△中,A H '=,GH =2,A G '=所以cos 3A GH '∠=.故二面角A DF C '--的余弦值为3. (步骤3) (Ⅱ)设FM x =,因为翻折后,C 与A '重合,所以CM A M '=,而222228(6)CM DC DM x =+=+-,222222A M A H MH A H MG GH '''=+=++22(2)4x =+++,22CM A M '=,∴214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤4)第20题图(2)21.(本题满分15分)已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,12F F ,分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F △, 12BF F △的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.第21题图【测量目标】直线的方程,椭圆的简单几何性质,直线与椭圆的位置关系,圆锥曲线中的范围问题.【考查方式】给出直线与椭圆的含参方程,通过对两者之间的位置关系求解出参数;联立方程,根据点与圆的关系求解参数范围.【难易程度】较难【试题解析】(Ⅰ)因为直线:l 202m x my --=经过2F ,22m =,得22m =,又因为1m >,所以m =,故直线l 的方程为10x --=.(步骤1)(Ⅱ)设1122(,),(,)A x y B x y由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得,222104m y my ++-= 则由2228(1)804m m m ∆=--=-+>,知28m < 且有212121,282m m y y y y +=-=-.(步骤2)由于12(,0),(,0),F c F c -故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1122(,),(,),3333x y x y G H 2221212()()99x x y y GH --=+ 设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<,而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)(步骤3) 所以21082m -<,即24m <. 又因为1m >且0∆>,所以12m <<. 所以m 的取值范围是(1,2).(步骤4)22.(本题满分14分)已知a 是给定的实常数,设函数2()()()e xf x x a x b =-+,b ∈R ,x a =是()f x 的一个极大值点.(Ⅰ)求b 的取值范围;(Ⅱ)设123,,x x x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1234,,,x x x x 的某种排列1234,,,i i i i x x x x (其中{}1234,,,i i i i ={}1,2,3,4)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【测量目标】导数的运算,利用导数求函数的极值,等差数列的性质.【考查方式】给出函数解析式与极大值点,求参数的求参数的范围,间接考查了利用导数求 函数的极值;结合等差数列性质判断所求值. 【难易程度】较难【试题解析】(Ⅰ)2()e ()(3)2,x f x x a x a b x b ab a '⎡⎤=-+-++--⎣⎦令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80,a b b ab a a b ∆=-+---=+-+>(步骤1)于是,假设12,x x 是()0g x =的两个实根,且12x x <.(1) 当1x a =或2x a =时,则x a =不是()f x 的极值点,此时不合题意. (2) 当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<. 即()0g a <即2(3)20a a b a b ab a +-++--< 所以b a <-所以b 的取值范围是()a -∞-,.(步骤2) (Ⅱ)由(Ⅰ)可知,假设存在b 及4x 满足题意,则 ⑴当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--.即3b a =--.此时4223x x a a b =-=--+a a =+或4223x x a a b =-=--a a =-3)⑵当21x a a x -=-时,则212()x a a x -=-或122()a x x a -=-, ①若212()x a a x -=-,则242a x x +=,于是1232a x x =+=3(3)a b =-++,于是1a b +-=92--,此时242a x x +=2(3)3(3)4a ab a b +---++=3b =--a = (步骤4) ②若122()a x x a -=-,则242a x x +=于是2132a x x =+=3(3)a b =++,于是1a b +-=,此时42(3)3(3)13242a x a ab a b x b a ++---++===--=+(步骤5) 综上所述,存在b 满足题意,当3b a =--时,4x a =±当72b a +=--时,412x a +=+,当b a =-4x a =+.(步骤6)。

2010年浙江省高考数学试卷(理科)及答案

2010年浙江省高考数学试卷(理科)及答案

2010年浙江省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆C R Q D.Q⊆C R P2.(5分)某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?3.(5分)设S n为等比数列{a n}的前n项和,8a2+a5=0,则=()A.﹣11 B.﹣8 C.5 D.114.(5分)设0<x<,则“xsin2x<1”是“xsinx<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.B.z2=x2﹣y2C.D.|z|≤|x|+|y|6.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m7.(5分)若实数x,y满足不等式组且x+y的最大值为9,则实数m=()A.﹣2 B.﹣1 C.1 D.28.(5分)设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x±4y=09.(5分)设函数f(x)=4sin(2x+1)﹣x,则在下列区间中函数f(x)不存在零点的是()A.[﹣4,﹣2]B.[﹣2,0]C.[0,2]D.[2,4]10.(5分)设函数的集合P=,平面上点的集合Q=,则在同一直角坐标系中,P中函数f(x)的图象恰好经过Q中两个点的函数的个数是()A.4 B.6 C.8 D.10二、填空题(共7小题,每小题4分,满分28分)11.(4分)函数的最小正周期是.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3.13.(4分)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为.14.(4分)设n≥2,n∈N,(2x+)n﹣(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k≤n)的最小值记为T n,则T2=0,T3=﹣,T4=0,T5=﹣,…,T n…,其中T n=.15.(4分)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是.16.(4分)已知平面向量满足,且与的夹角为120°,则||的取值范围是.17.(4分)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有种(用数字作答).三、解答题(共5小题,满分72分)18.(14分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.19.(14分)如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).20.(15分)如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.(Ⅰ)求二面角A′﹣FD﹣C的余弦值;(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.21.(15分)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.22.(14分)已知a是给定的实常数,设函数f(x)=(x﹣a)2(x+b)e x,b∈R,x=a是f(x)的一个极大值点,(Ⅰ)求b的取值范围;(Ⅱ)设x1,x2,x3是f(x)的3个极值点,问是否存在实数b,可找到x4∈R,使得x1,x2,x3,x4的某种排列x i1,x i2,x i3,x i4(其中{i1,i2,i3,i4}={1,2,3,4})依次成等差数列?若存在,求所有的b及相应的x4;若不存在,说明理由.2010年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•浙江)设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆C R Q D.Q⊆C R P【分析】此题只要求出x2<4的解集{x|﹣2<x<2},画数轴即可求出【解答】解:P={x|x<4},Q={x|x2<4}={x|﹣2<x<2},如图所示,可知Q⊆P,故B正确.2.(5分)(2010•浙江)某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.3.(5分)(2010•浙江)设S n为等比数列{a n}的前n项和,8a2+a5=0,则=()A.﹣11 B.﹣8 C.5 D.11【分析】先由等比数列的通项公式求得公比q,再利用等比数列的前n项和公式求之即可.【解答】解:设公比为q,由8a2+a5=0,得8a2+a2q3=0,解得q=﹣2,所以==﹣11.故选A.4.(5分)(2010•浙江)设0<x<,则“xsin2x<1”是“xsinx<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由x的范围得到sinx的范围,则由xsinx<1能得到xsin2x<1,反之不成立.答案可求.【解答】解:∵0<x<,∴0<sinx<1,故xsin2x<xsinx,若“xsinx<1”,则“xsin2x<1”若“xsin2x<1”,则xsinx<,>1.此时xsinx<1可能不成立.例如x→,sinx→1,xsinx>1.由此可知,“xsin2x<1”是“xsinx<1”的必要而不充分条件.故选B.5.(5分)(2010•浙江)对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.B.z2=x2﹣y2C.D.|z|≤|x|+|y|【分析】求出复数的共轭复数,求它们和的模判断①的正误;求z2=x2﹣y2+2xyi,显然B错误;,不是2x,故C错;|z|=≤|x|+|y|,正确.【解答】解:可对选项逐个检查,A选项,,故A错,B选项,z2=x2﹣y2+2xyi,故B错,C选项,,故C错,故选D.6.(5分)(2010•浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B7.(5分)(2010•浙江)若实数x,y满足不等式组且x+y的最大值为9,则实数m=()A.﹣2 B.﹣1 C.1 D.2【分析】先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m值即可.【解答】解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2x﹣y﹣3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入x﹣my+1=0得m=1,故选C.8.(5分)(2010•浙江)设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x±4y=0【分析】利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,【解答】解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,由勾股定理知可知|PF1|=2=4b根据双曲定义可知4b﹣2c=2a,整理得c=2b﹣a,代入c2=a2+b2整理得3b2﹣4ab=0,求得=∴双曲线渐近线方程为y=±x,即4x±3y=0故选C9.(5分)(2010•浙江)设函数f(x)=4sin(2x+1)﹣x,则在下列区间中函数f (x)不存在零点的是()A.[﹣4,﹣2]B.[﹣2,0]C.[0,2]D.[2,4]【分析】将函数f(x)的零点转化为函数g(x)=4sin(2x+1)与h(x)=x的交点,在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象,数形结合对各个区间进行讨论,即可得到答案【解答】解:在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象如下图示:由图可知g(x)=4sin(2x+1)与h(x)=x的图象在区间[﹣4,﹣2]上无交点,由图可知函数f(x)=4sin(2x+1)﹣x在区间[﹣4,﹣2]上没有零点故选A.10.(5分)(2010•浙江)设函数的集合P=,平面上点的集合Q=,则在同一直角坐标系中,P中函数f(x)的图象恰好经过Q中两个点的函数的个数是()A.4 B.6 C.8 D.10【分析】把P中a和b的值代入f(x)=log2(x+a)+b中,所得函数f(x)的图象恰好经过Q中两个点的函数的个数,即可得到选项.【解答】解:将数据代入验证知当a=,b=0;a=,b=1;a=1,b=1a=0,b=0a=0,b=1a=1,b=﹣1时满足题意,故选B.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2010•浙江)函数的最小正周期是π.【分析】本题考查的知识点是正(余)弦型函数的最小正周期的求法,由函数化简函数的解析式后可得到:f(x)=,然后可利用T=求出函数的最小正周期.【解答】解:===∵ω=2故最小正周期为T=π,故答案为:π.12.(4分)(2010•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是144cm3.【分析】由三视图可知几何体是一个四棱台和一个长方体,求解其体积相加即可.【解答】解:图为一四棱台和长方体的组合体的三视图,由公式计算得体积为=144.故答案为:144.13.(4分)(2010•浙江)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为.【分析】根据抛物线方程可表示出焦点F的坐标,进而求得B点的坐标代入抛物线方程求得p,则B点坐标和抛物线准线方程可求,进而求得B到该抛物线准线的距离.【解答】解:依题意可知F坐标为(,0)∴B的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣所以点B到抛物线准线的距离为+=,故答案为14.(4分)(2010•浙江)设n≥2,n∈N,(2x+)n﹣(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k≤n)的最小值记为T n,则T2=0,T3=﹣,T4=0,T5=﹣,…,T n…,其中T n=.【分析】本题主要考查了合情推理,利用归纳和类比进行简单的推理,属容易题.根据已知中T2=0,T3=﹣,T4=0,T5=﹣,及,(2x+)n﹣(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k≤n)的最小值记为T n,我们易得,当n的取值为偶数时的规律,再进一步分析,n为奇数时,Tn的值与n的关系,综合便可给出Tn的表达式.【解答】解:根据Tn的定义,列出Tn的前几项:T0=0T1==T2=0T3=﹣T4=0T5=﹣T6=0…由此规律,我们可以推断:T n=故答案:15.(4分)(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是.【分析】由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.【解答】解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,整理得2a12+9a1d+10d2+1=0,此方程可看作关于a1的一元二次方程,它一定有根,故有△=(9d)2﹣4×2×(10d2+1)=d2﹣8≥0,整理得d2≥8,解得d≥2,或d≤﹣2则d的取值范围是.故答案案为:.16.(4分)(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,] .【分析】画出满足条件的图形,分别用、表示向量与,由与的夹角为120°,易得B=60°,再于,利用正弦定理,易得||的取值范围.【解答】解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]17.(4分)(2010•浙江)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有264种(用数字作答).【分析】法一:先安排上午的测试方法,有A44种,再安排下午的测试方式,由于上午的测试结果对下午有影响,故需要选定一位同学进行分类讨论,得出下午的测试种数,再利用分步原理计算出结果法二:假定没有限制条件,无论是上午或者下午5个项目都可以选.组合总数为:4×5×4×4=320.再考虑限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类有32种;同样下午为台阶的组合有32种.最后还要考虑那去掉的64种中重复去掉的,如A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要考虑B.C.D三位,所以要回加2×4=8.进而可得答案.【解答】解:解法一:先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、“台阶”测试,共有A44种不同安排方式;接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A、B、C同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D同学选择“握力”测试,安排A、B、C同学分别交叉测试,有2种;若D同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有A31种方式,安排A、B、C同学进行测试有3种;根据计数原理共有安排方式的种数为A44(2+A31×3)=264,故答案为264解法二:假定没有这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.无论是上午或者下午5个项目都可以选.上午每人有五种选法,下午每人仅有四种选法,上午的测试种数是4×5=20,下午的测试种数是4×4=16故我们可以很轻松的得出组合的总数:4×5×4×4=320.再考虑这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类是总数的,32种;同样下午为台阶的组合也是总数的,32种.所以320﹣32﹣32=256种.但是最后还要考虑那去掉的64种中重复去掉的,好像A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要B.C.D三位,所以要回加2×4=8.所以最后的计算结果是4×5×4×4﹣32﹣32+8=264.答案:264.三、解答题(共5小题,满分72分)18.(14分)(2010•浙江)在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.【分析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.【解答】解:(Ⅰ)解:因为cos2C=1﹣2sin2C=,及0<C<π所以sinC=.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理=,解得c=4.由cos2C=2cos2C﹣1=,及0<C<π 得cosC=±.由余弦定理c2=a2+b2﹣2abcosC,得b2±b﹣12=0,解得b=或b=2.所以b=或b=2,c=4.19.(14分)(2010•浙江)如图,一个小球从M处投入,通过管道自上而下落A 或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).【分析】(Ⅰ)解:由题意知随变量ξ为获得k等奖的折扣,则ξ的可能取值是50%,70%,90%,结合变量对应的事件和等可能事件的概率公式写出变量的分布列,做出期望.(2)根据第一问可以得到获得一等奖或二等奖的概率,根据小球从每个叉口落入左右两个管道的可能性是相等的.可以把获得一等奖或二等奖的人次看做符合二项分布,根据二项分布的概率公式得到结果.【解答】解:(Ⅰ)解:随变量量ξ为获得k(k=1,2,3)等奖的折扣,则ξ的可能取值是50%,70%,90%P(ξ=50%)=,P(ξ=70%)=,P(ξ=90%)=∴ξ的分布列为ξ50%70%90%P∴Εξ=×50%+×70%+90%=.(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为+=.由题意得η~(3,)则P(η=2)=C32()2(1﹣)=.20.(15分)(2010•浙江)如图,在矩形ABCD中,点E,F分别在线段AB,AD 上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.(Ⅰ)求二面角A′﹣FD﹣C的余弦值;(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.【分析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力.(1)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H ⊥EF,又因为平面A′EF⊥平面BEF.则我们可以以A的原点,以AE,AF,及平面ABCD的法向量为坐标轴,建立空间直角坐标系A﹣xyz,则锐二面角A′﹣FD ﹣C的余弦值等于平面A′FD的法向量,与平面BEF的一个法向量夹角余弦值的绝对值.(2)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,根据空间两点之间距离公式,构造关于x的方程,解方程即可得到FM的长.【解答】解:(Ⅰ)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.如图建立空间直角坐标系A﹣xyz则A′(2,2,),C(10,8,0),F(4,0,0),D(10,0,0).故=(﹣2,2,2),=(6,0,0).设=(x,y,z)为平面A′FD的一个法向量,﹣2x+2y+2z=0所以6x=0.取,则.又平面BEF的一个法向量,故.所以二面角的余弦值为(Ⅱ)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,故,,得,经检验,此时点N在线段BC上,所以.方法二:(Ⅰ)解:取线段EF的中点H,AF的中点G,连接A′G,A′H,GH.因为A′E=A′F及H是EF的中点,所以A′H⊥EF又因为平面A′EF⊥平面BEF,所以A′H⊥平面BEF,又AF⊂平面BEF,故A′H⊥AF,又因为G、H是AF、EF的中点,易知GH∥AB,所以GH⊥AF,于是AF⊥面A′GH,所以∠A′GH为二面角A′﹣DH﹣C的平面角,在Rt△A′GH中,A′H=,GH=2,A'G=所以.故二面角A′﹣DF﹣C的余弦值为.(Ⅱ)解:设FM=x,因为翻折后,C与A′重合,所以CM=A′M,而CM2=DC2+DM2=82+(6﹣x)2,A′M2=A′H2+MH2=A′H2+MG2+GH2=+(2+x)2+22,故得,经检验,此时点N在线段BC上,所以.21.(15分)(2010•浙江)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.【分析】(1)把F2代入直线方程求得m,则直线的方程可得.(2)设A(x1,y1),B(x2,y2).直线与椭圆方程联立消去x,根据判别式大于0求得m的范围,且根据韦达定理表示出y1+y2和y1y2,根据,=2,可知G(,),h(,),表示出|GH|2,设M是GH的中点,则可表示出M的坐标,进而根据2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表达式代入求得m的范围,最后综合可得答案.【解答】解:(Ⅰ)解:因为直线l:x﹣my﹣=0,经过F2(,0),所以=,得m2=2,又因为m>1,所以m=,故直线l的方程为x﹣y﹣1=0.(Ⅱ)解:设A(x1,y1),B(x2,y2).由,消去x得2y2+my+﹣1=0则由△=m2﹣8(﹣1)=﹣m2+8>0,知m2<8,且有y1+y2=﹣,y1y2=﹣.由于F1(﹣c,0),F2(c,0),故O为F1F2的中点,由,=2,可知G(,),H(,)|GH|2=+设M是GH的中点,则M(,),由题意可知2|MO|<|GH|即4[()2+()2]<+即x1x2+y1y2<0而x1x2+y1y2=(my1+)(my2+)+y1y2=(m2+1)()所以()<0,即m2<4又因为m>1且△>0所以1<m<2.所以m的取值范围是(1,2).22.(14分)(2010•浙江)已知a是给定的实常数,设函数f(x)=(x﹣a)2(x+b)e x,b∈R,x=a是f(x)的一个极大值点,(Ⅰ)求b的取值范围;(Ⅱ)设x1,x2,x3是f(x)的3个极值点,问是否存在实数b,可找到x4∈R,使得x1,x2,x3,x4的某种排列x i1,x i2,x i3,x i4(其中{i1,i2,i3,i4}={1,2,3,4})依次成等差数列?若存在,求所有的b及相应的x4;若不存在,说明理由.【分析】先求出函数f(x)的导函数f′(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,讨论g(x)=0的两个实根x1,x2是否为a,从而确定x=a是否是f(x)的一个极大值点,建立不等关系即可求出b的范围.【解答】解:(1)f′(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,则△=(3﹣a+b)2﹣4(2b﹣ab﹣a)=(a+b﹣1)2+8>0,于是,假设x1,x2是g(x)=0的两个实根,且x1<x2.①当x1=a或x2=a时,则x=a不是f(x)的极值点,此时不合题意.②当x1≠a且x2≠a时,由于x=a是f(x)的极大值点,故x1<a<x2.即g(a)<0,即a2+(3﹣a+b)a+2b﹣ab﹣a<0,所以b<﹣a,所以b的取值范围是:(﹣∞,﹣a).(2)由(1)可知,假设存在b及x4满足题意,则①当x2﹣a=a﹣x1时,则x4=2x2﹣a或x4=2x1﹣a,于是2a=x1+x2=a﹣b﹣3,即b=﹣a﹣3.此时x4=2x2﹣a=a﹣b﹣3+﹣a=a+2,或x4=2x1﹣a=a﹣b﹣3﹣﹣a=a﹣2,②当x2﹣a≠a﹣x1时,则x2﹣a=2(a﹣x1)或a﹣x1=2(x2﹣a),(ⅰ)若x2﹣a=2(a﹣x4),则x4=,于是3a=2x1+x2=,即=﹣3(a+b+3),于是a+b﹣1=,此时x4===﹣b﹣3=a+.(ⅱ)若a﹣x1=2(x2﹣a),则x4=,于是3a=2x2+x1=,即=3(a+b+3),于是a+b﹣1=.此时x2===﹣b﹣3=a+.综上所述,存在b满足题意.当b=﹣a﹣3时,x4=a±2;当b=﹣a﹣时,x4=a+;当b=﹣a﹣时,x4=a+.。

2010年高考数学浙江卷理科全解析-推荐下载

2010年高考数学浙江卷理科全解析-推荐下载

(A)充分而不必要条件
(C)充分必要条件
a5

0 ,则
(B)必要而不充分条件
(D)既不充分也不必要条件
π
解析:因为 0<x< ,所以 sinx<1,故 xsin2x<xsinx,结合 xsin2x 与 xsinx 的取值范围相
2
同,可知答案选 B,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思 想和处理不等关系的能力,属中档题
(D) Q P
CR
(B)k>5?
(D)k>7?
解析:解析:通过 8a2 a5 0 ,设公比为 q ,将该式转化为 8a2 a2q3 0 ,解得 q =-
2,带入所求式可知答案选 D,本题主要考察了本题主要考察了等比数列的通项公式与前 n 项和公式,属中档题
(4)设 0<x< ,则“ x sin2 x<1”是“ x sin x<1”的 2
1(a>0>,b
在点 P ,满足 PF2 F1F2 ,且 F2 到直线 PF1 的距离等于双曲线的实轴长,则该双曲线的
渐近线方程为
(A) 3x 4 y 0 (B) 3x 5y 0 (C) 4x 3y 0 (D) 5x 4 y 0
解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出 a 与 b 之间的等量关系, 可知答案选 C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用 知识能力的考察,属中档题
(9)设函数 f (x) 4 sin(2x 1) x ,则在下列区间中函数 f (x) 不存在零点的是
(A)4, 2
(B)2, 0 (C)0, 2 (D)2, 4
解析:将 f x的零点转化为函数 gx 4sin2x 1与hx x 的交点,数形结合可知答

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( )(A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。

2010年浙江高考理科数学答案

2010年浙江高考理科数学答案

仅提供了答案与解析,具体过程,还是要按照思路自己动手做的!数学(理科)一、选择题1-10 BCDBC ACDCC1、【解析】对于,因此.2、【解析】对于“ 且”可以推出“ 且”,反之也是成立的3、【解析】对于4、【解析】对于,对于,则的项的系数是5、【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.6、【解析】对于,而对于,则,后面是,不符合条件时输出的.7、【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8、【解析】对于振幅大于1时,三角函数的周期为,而D不符合要求,它的振幅大于1,但周期反而大于了.9、【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,则有,因.10、【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.二、填空题11、答案:15【解析】对于12、答案:18【解析】该几何体是由二个长方体组成,下面体积为,上面的长方体体积为,因此其几何体的体积为1813、答案:4【解析】通过画出其线性规划,可知直线过点时,14、答案:【解析】对于应付的电费应分二部分构成,高峰部分为;对于低峰部分为,二部分之和为15、答案:【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有,二项指数分别为,因此对于,16、答案:336【解析】对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种.w.w.w.k.s.5.u.c.o.m 17、答案:【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是三、解答题18、解析:(I)因为,,又由,得,w.w.w.k.s.5.u.c.o.m(II)对于,又,或,由余弦定理得,w.w.w.k.s.5.u.c.o.m19、解析:(I)记“这3个数恰有一个是偶数”为事件A,则;w.w.w.k.s.5.u.c.o.m (II)随机变量的取值为的分布列为0 1 2P所以的数学期望为w.w.w.k.s.5.u.c.o.m20、证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O ,w.w.w.k.s.5.u.c.o.m则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M 的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m21、解析:(I)由题意得所求的椭圆方程为,w.w.w.k.s.5.u.c.o.m(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则,w.w.w.k.s.5.u.c.o.m设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为1.22、解析:(I)因,,因在区间上不单调,所以在上有实数解,且无重根,由得w.w.w.k.s.5.u.c.o.m,令有,记则在上单调递减,在上单调递增,所以有,于是,得,而当时有在上有两个相等的实根,故舍去,所以;w.w.w.k.s.5.u.c.o.m(II)当时有;当时有,因为当时不合题意,因此,下面讨论的情形,记A ,B= (ⅰ)当时,在上单调递增,所以要使成立,只能且,因此有,(ⅱ)当时,在上单调递减,所以要使成立,只能且,因此,综合(ⅰ)(ⅱ);当时A=B,则,即使得成立,因为在上单调递增,所以的值是唯一的;同理,,即存在唯一的非零实数,要使成立,所以满足题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、留学Nowadays, going abroad for studies is enjoying a striking popularity among adolescents. Importance should be attached to studying abroad.There are a great many advantages of studying overseas. First and foremost, living and studying abroad offers students a different perspective of the world. On a university campus, international students are likely to encounter their counterparts from various countries and areas and are exposed to diverse ideas and values. What is more, overseas experience is the best opportunity for the real-life use of foreign languages. There is no better opportunity to improve second-language skills than living in the country in which it is spoken.Generally peaking, it is my view that although going abroad is expensive and perhaps painful, the payoff is worthwhile. In the first place, in addition to knowledge, overseas students can gain precious experiences that those who stay at home will never have. Furthermore, overseas experience, frustrating and painful as it may be, is conducive to the growth of adolescents.2、就业Job hunting has always been a headache for college students. Though many graduates are employed right after graduation, some are not. Most serious of all, some still have no idea where to go working even a long time after graduation.The reasons for this phenomenon are various. On the one hand, a few years ago colleges and universities enrolled so many students in popular majors, such as economy, finance and so on that the number of graduates was greater than the need in the market. On the other hand, most graduates would rather stay in large cities without suitable job to do than go to the country.I reckon this problem can be solved if both colleges and students take measures. First, they should research the market and develop special skills to suit its need. Second, students’ attitude towards employment should be changed. They should go to small cities and country. There they can also give full play to their professional knowledge. In a word, if we pay much attention, the situation can be improved.3、网络In recent years, people are developing an inseparable relationship with Internet. As is known to all, it is convenient for us to click the mouse when surfing on line, either to entertain ourselves or to meet the work’s needs.On the one hand, no one denies that Internet is currently one of the most useful media in our daily life. As a college student, I get on line every day to exchange information through e-mails with my net friends. But on the other hand, a good many people admit that they are too much addicted to Internet to maintain a regular and wholesome lifestyle.Thus, it is necessary for us to use Internet in a reasonable way and restrain from overindulgence. After all,Internet is invented to enrich our life, and to improve the efficiency of our work rather than shackle us with a chain.4、考试In most colleges and universities the examination is used as a chief means of deciding whether a student succeeds or fails in mastering a particular subject. Although it does the job quite efficiently, its side effects are also enormous.To begin with, examinations lower the standards of teaching. Since teachers are often judged byexamination results, they are reduced to training their students in exam techniques. No subjects can be taught successfully merely through being approached with intent to take examinations. In addition, the most undesirable effect is that examinations encourage bad study habits. As the examination score is the only criterion for his academic performance, a student is driven to memorize mechanically rather than to think creatively.In fact, few of us admit that examinations can contribute anything really important to the studen ts’ academic development. If that is the case, why cannot we make a change and devise something more efficient and reliable than examinations?2010年大学英语四级备考资料下载汇总2009年12月大学英语四级(CET-4)真题试卷WORD下载1993年1月-2008年6月大学英语四级听力原文+试题+答案+mp3(33套)[原创]大家版收藏级大学英语四级历年真题大全(89-07年39套)文本及听力大学英语四级备考词汇资料大汇总词汇背诵安排表:[四级]新东方10天背5500词汇经典讲座(还没背住单词者急入!!)已详细解释记忆表用法!精品四级词汇书籍:新华社-710大学英语星火式巧记精练词汇1-4级(文本及听力)下载中国海洋大学出版社-马德高-710大学英语星火式词汇1-4级巧记速记下载胡敏练口语记单词--大学英语四级词汇(mp3+文本)(解密版)大学英语4级考试词汇串记_赵丽PDF电子书下载(解密版)大学英语四级词汇21天速听速记_新航道曲冰PDF电子书及MP3下载词汇资料:最新CET4考试大纲词汇完整版(word下载版)新CET4大纲词汇思马得记忆法精粹《汤姆英语》cet4高频词汇(附历年真题及词频).新东方四级词汇讲义(真题例句版)新四级700核心词汇09年最新版四级高频词汇下载(word版、下载即可打印)新东方赵丽大学英语四级词汇讲座5500[完全版flash]新东方刘畅词汇flash全集新东方赵丽词汇8000教材word(含习题集)+mp3淘金式英语词汇CET4分册mp3和lrc《如鱼得水背单词4级词汇篇章记忆》(单词表)(文本、mp3、wav)[四级词汇]新东方CET4词汇精讲9.5课时[周洁Flash]最新15篇文章贯通四级词汇MP3+LRC+SNC等(字幕版)(连贯版)及WORD版迅雷下载闭着眼睛记单词-英语基础《英语1000高频词汇》刘毅词汇5000(mp3+文本)刘毅10000词汇学习笔记大学英语四级备考阅读资料大汇总阅读真题:历年四级真题阅读完全解析历年四级阅读真题全讲(含解答方法)部分英语四级阅读真题练习十六期汇总2009年12月19日四级阅读- 快速阅读真题来源全文2009.6.20四级阅读部分点评与答案精讲2009.12.19四级阅读部分答案及传统阅读部分精解与点评阅读技巧:大学英语CET4考试四级阅读冲刺视频课件下载[四级阅读]新东方CET4新题型阅读15.25课时[卜珊Flash]2008新东方英语四级阅读30天学习笔记(网络完全版)[四级阅读]新东方名师蔡卫星串讲四级阅读视频下载四级阅读基本功--长难句过关汇总篇2008大学英语四级阅读难点关键句140句大学英语四级备考阅读资料大汇总大学英语四级备考听力资料大汇总听力真题:2009年12月大学英语四级【真题】听力录音下载1993年1月-2008年6月大学英语四级听力原文+试题+答案+mp3(33套)[原创]大家版收藏级大学英语四级历年真题大全(89-07年39套)文本及听力cet4考试必备英语四级听力[原文mp3下载汇总听力资料:[CET4新题型]听力16.0课时[张杨Flash]大学英语四级考试巅峰听力2007版(MP3含字幕)[王长喜编]星火4级听力满分15天音频4级听力满分15天五套模拟题音频新东方语音教练笔记1-2CET4新题型听力张杨教案cet4考试必备英语四级考试语法试题练习笔记]汇总大学英语四级备考写作资料大汇总写作真题:2009年12月四级写作真题及高分范文(恩波版)2009年12月大学英语四级作文范文(文都)2009年12月大学英语四级作文范文(高分版)]2009年12月大学英语四级作文范文(及格版)(昂立)写作范文:[cet4考试必备]四级作文写作[模版][范文]汇总张磊四六级写作模版大全新东方四级写作班各类话题背诵范文CET4作文冲刺:写作强化及经典范文英语写作指导及范文共80篇下载写作教程:新东方老师总结的所有四级写作资料大全四、六级写作范文选(新东方内部资料)四级写作一本通【英文写作指南】0基础到满分之路备考:《大学英语四级考试写作专项突破》大学英语CET4考试四级写作冲刺视频课件下载[四级作文]新东方CET4新题型写作10.25课时[王江涛Flash]写作词汇:四六级写作中绝对用得到的关键词汇及短语汇总写作句型:四六级写作经典句型汇总2010年6月大学英语四级写作必备句型套路19篇汇总[下载]四级写作过关系列:英文写作佳句300例5、老师In my life I have met a great many teachers who are really worth recalling. But perhaps the most unforgettable one I ever know is my English teacher.What frequently brings back memories of my school teacher is his special qualities. First of all, he gave us the greatest gift a teacher can offer—an awakening of a passion for learning. He not only led us to an appreciation of the beauty and perfection of English language and literature, but also aroused our great interest in exploring something deeper in this field. Second, I was attracted by his lively wit. I remember that we students always anticipated his class with great eagerness because his lecture were humorously delivered, never failing to provoke chuckles or loud laughs. Although it is nearly two years since I attended his last class, he is the talk of our old classmates, and I know part of him has already stayed in my heart.6、求学信Dear Sir or Madam,I am a Chinese student who wishes to apply for admission into your prestigious university. My plan is to start my course next term, and I would be grateful if you would be kind enough to provide me with certain essential information.First, what qualifications do I need to follow a course of study at your university? I already have a bachelor’s degree from Beijing University, but I wonder if there are any further academic requirements. Second, how much are the tuition fees? Although I intend to be self-supporting, I would be interested to hear if there are any scholarships available for international students. Third, what is the situation regarding accommodation?I look forward to your reply, and to attending your esteemed institution.Yours sincerely,Li Ming7、邀请信Dear Snoopy,I am greatly honored to formally invite you to participate in Mr. Guo Jing’s wedding ceremony with Ms. Huang Rong to be held at Beijing Grand Hotel from 8 to 10 p.m. on April 1, 2007.As you are a close friend of us, we would very much like you to attend the celebration and share our joy. The occasion will start at seven o’clock in the evening, with the showing of their wedding ceremony. This will be followed by a dinner party. At around ten, we will hold a small musical soiree, at which a band will perform some works by Bach and Strauss.If you do not have any prior appointment on April 1, we look forward to the pleasure of your company.Yours sincerely,Li Ming8、投诉信Dear Sir or Madam,I am writing to inform you that I wish to move into a new room next semester. I would prefer asingle room, as I find the present sharing arrangement inconvenient.I must explain that the reason for my dissatisfaction is my roommate’s inconsiderate behavior. For one thing, his friends are constantly visiting him; for another, he regularly holds noisy parties. In these circumstances, I find it difficult to concentrate on my studies, and I am falling behind in my assignments.I am sure you will agree that the only solution is for me to move into a room of my own. Therefore, I would be grateful if you could find a single room for me, preferably not in the same building but as near to the college campus as possible.Yours sincerely,Li Ming9、致辞Good morning, ladies and gentlemen, welcome to Beijing! To begin with, I would like to make a brief introduction to myself. I am the president of Motorola (China) Electronics Ltd.The following is my introduction to the conference. First, it is my great honor to be here with all of you and declare open the Conference of International Trade Cooperation. Second, on behalf of our company, I would like to express my heartfelt welcome to all the guests and delegates. Last, I believe our cooperative efforts are sure to be productive.I wish all of you enjoy yourselves during this conference and hope the above information will help you. If you have any question for me, please feel free to ask at any time. Thank you for your attention.10、告示Chinese Speaking Contest February 3, 2008To improve students’ ability to speak Chinese and enrich after-class activities, the Students’ Union of Department of Chinese Language and Literature is organizing a school-wide Chinese speaking contest to be held on Saturday next week (10 February) at the Students’ Auditorium. Those who are interested in taking part in it may sign up with the monitor of their classes before Tuesday next week. Five professors will be invited to be judges. The first six winners will be given awards. Everybody is welcome to be present at the contest.The Students’ UnionDepartment of Chinese Language and Literature。

相关文档
最新文档