必修二第三、四章 直线和圆.直线和圆知识点
人教A版高中数学必修二第四章 4.2.1 直线和圆的位置关系

练习: (1)若 直 线 y kx-2k与 圆( x-3)2 y 2 1 恒 有 两 个 交 点,则 实 数 k的 范 围 是 ____; (2)直 线 y kx被 圆 x 2 y2 2所 截 得 的 弦 AB的 长 为 _____; (3 )由 点 M (-1,4 )向 圆 ( x -2 )2 ( y -3)2 1所 引的切线的长是 ______ .
系;如果相,求 交出它们的交.点坐标
法一: 法
y l
B
法二 :比较 d与r的大小C .
A
O
x
弦长问题: 例 2过 .M (3,3)的直 l被x 线 2 圆 y24y2 10 所截得 45 的 ,求弦 直 l的 长 线 方 . 为 程
y
.O
x
M.
切线问题:
例 3从 . P 点 (4,5)向(圆 x2)2y24引切 , 线 求切线 ,并求方 其切程 线长。
1.成为世界上经济增长速度最快的国 家,创 造了世 界经济 增长史 上的新 奇迹。 1.否定商 品经济 的存在 ,否定 市场及 价值规 律对经 济的调 节作用 。 35、生命是以时间为单位的,浪费别 人的时 间等于 谋财害 命;浪费 自己的 时间, 等于慢 性自杀 。—— 鲁迅 36、社会上崇敬名人,于是以为名人的 话就是 名言, 却忘记 了他之 所以得 名是那 一种学 问或事 业--鲁迅 38、推销员接近顾客的方式,往往决 定自己 在他们 心目中 的地位 是“接 单者” 还是“ 建议者 ”。 39、事先写出自己所要提出的每点意 见,以 合乎逻 辑的顺 序表达 出来: 言简意 骇,抓 住重点 。 2、人生的成功,不在于拿到一幅好 牌,而 是怎样 将坏牌 打好。 3、人生的路每一个人都要走一趟, 同样是 一条路 每一个 人走起 来却有 着不同 的感受 ,是好 是坏那 就要靠 几分的 机缘与 自己的 抉择。 38、推销员接近顾客的方式,往往决 定自己 在他们 心目中 的地位 是“接 单者” 还是“ 建议者 ”。
必修二直线与圆的方程知识点

第三章:直线与方程 1、倾斜角与斜率:1212tan x x y y --==α 2、直线方程:⑴点斜式:()00x x k y -=⑵斜截式:b kx y += ⑶两点式:121121y y y y x x x x --=-- ⑷截距式:1x y a b+= ⑸一般式:0=++C By Ax3、对于直线:222111:,b x k y l +=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠; ⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l .4、对于直线::,022221111=++=C y B x A l C 有: ⑴⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ; ⑵1l 和2l 相交1221B A B A ≠⇔;⑶1l 和2l 重合⎩⎨⎧==⇔12211221C B C B B A B A ; ⑷0212121=+⇔⊥B B A A l l .5、两点间距离公式:()()21221221y yx x P P -+-=7、两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221B A C C d +-=第四章:圆与方程 1、圆的方程:⑴标准方程:)()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x .其中圆心为(,)22DE --,半径为r =2、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长公式:222d r l -==3、两圆位置关系:21O O =⑴外离:r R d +>;⑵外切:r R d +=;⑶相交:r R d r R +<<-;⑷内切:r R d -=; ⑸内含:r R d -<.3、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-=。
高考数学考点解析及分值分布

高考数学考点解析及分值分布Prepared on 22 November 2020高考数学考点解析1.集合与简易逻辑: 10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。
简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数: 30分+主要章节:必修1第二章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。
以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。
3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐蔽”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。
选择题和填空题主要考查不等式性质、解法及均值不等式。
解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:20-28分主要章节:必修5第二章《数列》数列是高中数学的重要内容,是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它知识的综合题。
人教版高中数学必修2第四章《4.2直线、圆的位置关系:4.2.1 直线与圆的位置关系》教学PPT

1)若AB和⊙O相离, 则 d > 5cm ; 2)若AB和⊙O相切, 则 d = 5cm ; 3)若AB和⊙O相交,则 0cm≤ d < 5cm.
例1、如图,已知直线l:3x+y-6=0和圆心为C 的圆x2+y2-2y-4=0,判断直线l与圆的位置关 系;如果相交,求它们的交点坐标。
相交
△>0
r >d
O
x
当-2 2<b<2 2 时,⊿>0, 直线与圆相交;
当b=2 2或 b=-2 2 时, ⊿=0, 直线与圆相切;
当b>2 2或b<-2 2 时,⊿<0,直线与圆相离。
㈠方法探索
y 解法二(利用d与r的关系):圆x2+y2=4的圆心为(0,0),半径为r=2
00b b
圆心到直线的距离为 d
(3)△<0 直线与圆径相r离的. 大小关系 直线与圆没有交点
方法3:代数性质
2、相切 (d=r)
直线与圆有一个交点
3、相交 (d<r)
直线与圆有两个交点
设圆 C∶(x-a)2+(y-b)2=r2, 直线L的方程为 Ax+By+C=0,
(x-a)2+(y-b)2=r2
Ax+By+C=0
练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交, 直线与圆有___2_个公共点. 2)若d=6.5cm ,则直线与圆__相__切__, 直线与圆有___1_个公共点. 3)若d= 8 cm ,则直线与圆__相__离__, 直线与圆有___0_个公共点.
最新人教版高中数学必修2第四章《直线与圆的位置关系》

4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。
数学必修二知识点总结框架

数学必修二知识点总结框架第一章函数与导数1.1 函数的概念与性质1.1.1 函数的定义1.1.2 函数的性质1.1.3 函数的图像与性态1.2 基本初等函数1.2.1 幂函数1.2.2 指数函数1.2.3 对数函数1.2.4 三角函数1.2.5 反三角函数1.2.6 三角函数的诱导函数1.3 函数的运算1.3.1 函数的和、差、积、商的运算1.3.2 复合函数1.3.3 反函数1.4 函数的图像与性态1.4.1 函数的单调性1.4.2 函数的奇偶性1.4.3 函数的周期性1.4.4 函数的对称性1.4.5 函数的图像与性态1.5 导数的概念1.5.1 导数的定义1.5.2 导数的几何意义1.5.3 导数的计算1.6 函数的导数1.6.1 函数的导数1.6.2 基本初等函数的导数1.6.3 函数的运算与导数的运算法则1.6.4 反函数的导数1.7 函数的单调性和曲线的凹凸性1.7.1 函数的单调性1.7.2 曲线的凹凸性1.7.3 曲线与切线1.8 函数的应用1.8.1 极值与最值1.8.2 函数的单调性与曲线的凹凸性1.8.3 函数的图像与导数1.8.4 函数的应用实例第二章三角函数2.1 角度与三角函数2.1.1 角的概念2.1.2 弧度制2.1.3 三角函数概念及其性质2.2 三角函数的图像与性态2.2.1 正弦函数、余弦函数、正切函数、余切函数的图像 2.2.2 三角函数图像的平移与变换2.2.3 三角函数性质2.3 三角函数的基本关系2.3.1 同角三角函数的基本关系 2.3.2 和差化积2.3.3 倍角公式2.3.4 万能角2.4 三角函数的应用2.4.1 角的正弦定理与余弦定理 2.4.2 应用题解析第三章数列与数学归纳法3.1 数列的概念与表示3.1.1 数列的定义3.1.2 数列的通项公式3.1.3 数列的图像3.2 等差数列3.2.1 等差数列的性质3.2.2 等差数列的通项公式3.2.3 等差数列的前n项和3.3 等比数列3.3.1 等比数列的性质3.3.2 等比数列的通项公式3.3.3 等比数列的前n项和3.4 递推数列3.4.1 递推数列的概念3.4.2 递推数列的性质3.4.3 递推数列的通项公式3.5 数学归纳法3.5.1 数学归纳法的概念3.5.2 数学归纳法的证明方法 3.5.3 数学归纳法的应用第四章平面向量4.1 向量的概念及表示4.1.1 向量的定义4.1.2 向量的性质4.1.3 向量的表示4.2 向量的运算4.2.1 向量的加减法4.2.2 向量的数量积4.2.3 向量的数量积几何意义 4.2.4 向量的数量积的性质 4.2.5 向量的数量积的运算 4.2.6 向量的线性运算4.3 平面向量的应用4.3.1 向量的基本运算4.3.2 平面向量的应用4.3.3 平面向量的坐标表示 4.3.4 平面向量的数量积应用第五章解析几何5.1 平面直角坐标系5.1.1 平面直角坐标系的概念 5.1.2 平面直角坐标系的性质5.1.3 平面直角坐标系的相关概念5.2 参数方程与一般方程5.2.1 参数方程的概念5.2.2 参数方程与一般方程的相互转化 5.2.3 参数方程的规律5.3 直线和圆的方程5.3.1 直线的一般方程5.3.2 直线的参数方程5.3.3 圆的一般方程5.3.4 圆的参数方程5.4 圆锥曲线的一般方程5.4.1 椭圆的一般方程5.4.2 双曲线的一般方程5.4.3 抛物线的一般方程5.5 空间直角坐标系5.5.1 空间直角坐标系的概念5.5.2 空间直角坐标系的性质5.5.3 空间直角坐标系的应用第六章空间解析几何初步6.1 空间直线和空间平面6.1.1 空间直线的方程6.1.2 空间平面的方程6.1.3 空间直线与空间平面的位置关系6.2 空间几何体的性质6.2.1 点、直线、平面6.2.2 圆锥曲线及其特性6.2.3 空间几何体的视图6.3 空间向量的运算6.3.1 空间向量的数量积6.3.2 空间向量的叉积6.3.3 空间向量的三线共面第七章立体几何初步7.1 空间图形的投影7.1.1 三视图与剖视图7.1.2 图形的投影7.1.3 空间图形的展开图7.2 空间图形的计算7.2.1 空间图形的体积7.2.2 空间图形的表面积7.2.3 空间图形的计算7.3 空间几何体的位置关系7.3.1 空间几何体的位置关系 7.3.2 空间几何体的三视图 7.3.3 空间几何体的投影第八章概率初步8.1 随机事件与概率8.1.1 随机事件的概念8.1.2 随机事件的性质8.1.3 概率的概念8.1.4 概率的性质8.2 条件概率8.2.1 条件概率的概念8.2.2 互斥事件与对立事件的概率计算8.2.3 定理的概率计算8.3 事件间的关系8.3.1 独立事件8.3.2 事件间的关系8.3.3 事件运算法则8.4 随机变量8.4.1 随机变量的定义8.4.2 随机变量的分布8.4.3 随机变量的分布列8.5 随机事件与概率的应用8.5.1 样本空间8.5.2 概率模型的应用8.5.3 概率的应用实例以上是数学必修二的知识点总结,希望对您复习整理有所帮助。
苏教版高中数学必修二知识讲解_直线与圆的位置关系_基础

直线与圆的位置关系::【学习目标】1.依据直线和圆的方程,能熟练求出他们的交点坐标.2.能通过比较圆心到直线的距离和半径之间的大小关系判断直线和圆的位置关系.3.理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组的解(无解、有唯一解、有两组解)的对应关系.4.能利用直线和圆的方程研究与圆有关的问题,提高学生的思维能力.【要点梳理】要点一:直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.直线与圆的位置关系的判定:(1)代数法:判断直线l与圆C的方程组成的方程组是否有解.如果有解,直线l与圆C有公共点.有两组实数解时,直线l与圆C相交;有一组实数解时,直线l与圆C相切;无实数解时,直线l与圆C相离.(2)几何法:由圆C的圆心到直线l的距离d与圆的半径r的关系判断:<时,直线l与圆C相交;当d r=时,直线l与圆C相切;当d r>时,直线l与圆C相离.当d r要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决. 要点二:圆的切线方程的求法 1.点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1O M l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .2.点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .要点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.要点三:求直线被圆截得的弦长的方法1.应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.2.利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.3.利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12|l x x =-.【典型例题】类型一:直线与圆的位置关系例1.已知直线y=2x+1和圆x 2+y 2=4,试判断直线和圆的位置关系.【思路点拨】解决本题的方法主要有两个,其一是利用圆心到直线的距离与半径的大小关系;其二是引入一元二次方程,利用方程根来解决. 【答案】相交 【解析】解法一:∵x 2+y 2=4, ∴圆心为(0,0),半径r=2.又∵y=2x+1,∴圆心到直线的距离为2d r ==<=.∴直线与圆相交. 解法二:∵⎩⎨⎧=++=,4,1222y x x y ∴(2x+1)2+x 2=4, 即5x 2+4x-3=0.判别式Δ=42-4×5×(-3)=76>0. ∴直线与圆相交.【总结升华】判断直线与圆的位置关系可以从代数方法和几何意义两个方面加以考虑.例2.已知直线方程mx ―y ―m ―1=0,圆的方程x 2+y 2―4x ―2y+1=0.当m 为何值时,圆与直线 (1)有两个公共点;(2)只有一个公共点; (3)没有公共点. 【答案】(1)m >0或43m <-(2)m=0或43m =-(3)403m -<< 【解析】 解法一:将直线mx ―y ―m ―1=0代入圆的方程化简整理得, (1+m 2)x 2―2(m 2+2m+2)x+m 2+4m+4=0. ∵Δ=4m(3m+4),∴当Δ>0时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当Δ=0时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当Δ<时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 解法二:已知圆的方程可化为(x ―2)2+(y ―1)2=4, 即圆心为C (2,1),半径r=2.圆心C (2,1)到直线mx ―y ―m ―1=0的距离d ==.当d <2时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当d=2时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当d >2时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 【总结升华】解决此类问题是搞清直线与圆的位置和直线与圆的公共点的个数间的等价关系.在处理直线与圆的位置关系时,常用几何法,即比较圆心到直线的距离和半径的大小,而不用联立方程.举一反三:【变式】求实数m 的范围,使直线30x my -+=与圆22650x y x +-+=分别满足: (1)相交;(2)相切;(3)相离.【答案】(1)m <-m >2)m =±3)m -<<【解析】圆的方程化为标准为22(3)4x y -+=,故圆心(3,0)到直线30x my -+=的距离d =,圆的半径2r =.(1)若相交,则d r <2<,所以m <-m >(2)若相切,则d r =2=,所以m =±(3)若相离,则d r >2>,所以m -<<【总结升华】一般来讲,选择此方法要比选择计算判别式的方法在运算上简单. 类型二:圆的切线问题【与圆有关的位置关系370892 典型例题1】例3.过点(7,1)P 作圆2225x y +=的切线,求切线的方程.【思路点拨】先判断点在圆上或圆外,如果点在圆上则有一条切线.如果点在圆外,则有两条切线.本例中很明显点在圆外.【答案】43250x y --=或34250x y +-= 【解析】因为22715025+=>,所以点在圆外。
高一数学人教版A版必修二课件:4.2.1 直线与圆的位置关系

解析答案
(3)直线l经过点P(5,5),且和圆C:x2+y2=25相交于A、B两点,截得的 弦长为4 5 ,求l的方程.
什么是学习力
什么是学习力-你遇到这些问题了 吗
总是
比别人
学得慢
一看就懂 一做就错 看得懂,但不会做
总是 比别人学得差 不会举一反三
什么是学习力-含义
管理知识的能力 (利用现有知识
解决问题)
学习知识的能力 (学习新知识
速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学习方 式
案例式
位置关系 公共点个数
相交 相切 相离 2个 1个 0个
判 几何法:设圆心到直线的距离d=|Aa+Bb+C|
A2+B2 定
方 法
代数法: Ax+By+C=0, 由 x-a2+y-b2=r2
消元得到一元二次方程的判别式Δ
_d_<_r_ _d_=__r _Δ_>_0_ Δ_=__0_
_d_>_r_ Δ__<_0_
|k+1| 即 k2+1≤1, 解得k≤0.
解析答案
规律与方法
1.直线与圆位置关系的两种判断方法比较 (1)若直线和圆的方程已知或圆心到直线的距离易表达,则用几何法 较为简单. (2)若直线或圆的方程中含有参数,且圆心到直线的距离较复杂,则 用代数法较简单. 2.过一点的圆的切线方程的求法 (1)当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的 斜率,用直线的点斜式方程可求得圆的切线方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆
知识清单:
一、直线的斜率
1. 直线的倾斜角:与x 正半轴的夹角,倾斜角的范围是),0[π。
2. 斜率k 的计算方法:
(1)若直线的倾斜角α不是 90,则斜率αtan =k (α为直线的倾斜角);
(2)2
121x x y y k --=,其中),(11y x 、),(22y x 分别是直线上的两个不同的点。
(3)若直线的倾斜角为 90,则直线的倾斜角不存在。
二、直线的方程
1. 点斜式:已知斜率k 和直线上一点),(11y x ,则直线方程为_________________
2. 斜截式:已知斜率k 和直线在y 轴上的截距b ,则直线方程为______________
3. 两点式:已知直线上的两点),(),,(2211y x y x ,则直线方程为_______________
4. 截距式:已知直线在x 轴和y 轴上的截距分别为b a ,,则直线方程为_________
5. 一般式:直线方程的一般式为___________________。
其中,直线的斜率为_________________,在y 轴上的截距为______________. 三、两条直线的位置关系
已知直线222111:;
:b x k y l b x k y l +=+=
1. 平行关系
________
//21⇔l l 注:当直线21l l 和的斜率都不存在时,21l l 与平行。
2. 垂直关系
如果两条直线的斜率存在,则 ________21⇔⊥l l .
注:当一条直线的斜率为零,另一条直线斜率不存在时,两直线垂直。
四、距离公式
1. 点到直线的距离公式
已知点),( y x D ,直线0=++C By Ax ,则点D 到直线的距离公式为:
________________________________________________
2. 两点间距离公式
已知点),(),(2211y x B y x A 和,则两点间的距离公式为:___________________
3. 两平行线之间的距离共公式为:____________________________
五、圆的标准方程
)0()()(222>=-+-r r b y a x
圆心坐标:_________ 圆的半径为:r
六、圆的一般方程
44)2()2(022222
2F E D E y D x F Ey Dx y x -+=+++⇒=++++ 圆心坐标:__________ 圆的半径:___________
(1)当0422>-+F E D 时,表示圆;
(2)当0422=-+F E D 时,表示一个点;
(3)当0422<-+F E D 时,不表示任何图形。
七、直线与圆的关系
1. 位置关系有三种:相离、相切、相交;
2. 判定方法:(1)(2)
八、圆与圆的位置关系
1. 位置关系有五中:相离、外切、相交、内切、内含
2. 判定方法:设两个圆的圆心分别为21C C 和
相交
内切
相交)(外切
相离
)(⇔-<⇔-=⇔+<<-⇔+=⇔+>||||)5(||||)4(||||3||)2(||12121212121212121212121r r C C r r C C r r C C r r r r C C r r C C。