高中数学必修2直线和圆
人教版高中数学必修二4.2.1直线与圆的位置关系2

为30km的圆形区域. 已知港口位于台风中
心正北40km处, 如果这艘轮船不
y 港口
改变航线,那么
它是否会受到台
风的影响?
O
轮船 x
小 结:
设直线l:Ax+By+C=0, 圆C:(x-a)2+(y-b)2=r2,
圆心C到直线l的距离为
小 结:
设直线l:Ax+By+C=0, 圆C:(x-a)2+(y-b)2=r2,
2. 看直线与圆组成的方程组有无实数解:
有解,则直线与圆有公共点: 有一组解,则直线与圆相切; 有两组解,则直线与圆相交;
小 结:
1. 利用直线与圆的位置直观特征导出几 何判定: 比较圆心到直线的距离d与圆的半径r.
2. 看直线与圆组成的方程组有无实数解:
有解,则直线与圆有公共点: 有一组解,则直线与圆相切; 有两组解,则直线与圆相交;
课后作业
1. 阅读教材P.126到P.128; 2. 《课后限时检测》二十五 .
小 结:
1. 利用直线与圆的位置直观特征导出几 何判定: 比较圆心到直线的距离d与圆的半径r.
小 结:
1. 利用直线与圆的位置直观特征导出几 何判定: 比较圆心到直线的距离d与圆的半径r.
2. 看直线与圆组成的方程组有无实数解:
小 结:
1. 利用直线与圆的位置直观特征导出几 何判定: 比较圆心到直线的距离d与圆的半径r.
无解,则直线与圆相离.
例2.直线y=x与圆x2+(y-1)2=r2相切, 求r的值.
例3. 已知过点M(-3, -3)的直线l被圆x2+y2
+4y-21=0所截得的弦长为
求直线l的
方程.
练习.
例4. 一艘轮船在沿直线返回港口的途中,
高中数学必修二-直线与圆的位置关系

直线与圆的位置关系知识集结知识元不含有参数的直线与圆位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲不含有参数的直线与圆位置关系例1.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d 2,则d1+d2的最小值是.例2.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.例3.经过圆x2+y2﹣2x+2y=0的圆心且与直线2x﹣y=0平行的直线方程是()A.2x﹣y﹣3=0B.2x﹣y﹣1=0C.2x﹣y+3=0D.x+2y+1=0含有参数类型直线与圆的位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲含有参数类型直线与圆的位置关系例1.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上情况都有可能例2.直线ax﹣y+a=0(a≥0)与圆x2+y2=9的位置关系是()A.相交B.相切C.相离D.相切或相离例3.圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18简单切线类型知识讲解1.圆的切线方程圆的切线方程一般是指与圆相切的直线方程,特点是与圆只有一个交点,且过圆心与切点的直线垂直切线.圆的切线方程的类型:(1)过圆上一点的切线方程:对于这种情况我们可以通过圆心与切点的连线垂直切线求出切线的斜率,继而求出直线方程(2)过圆外一点的切线方程.这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.例题精讲简单切线类型例1.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2例2.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是()A.x=1B.y=1C.x+y=1D.x﹣y=1例3.'已知圆C的方程为x2+y2﹣2x+4y﹣3=0,直线l:x﹣y+t=0.若直线l与圆C相切,求实数t的值.'简单弦长问题知识讲解弦长问题一、求直线与圆相交时的弦长有三种方法(1)交点法:将直线方程与圆的方程联立,求出交点A,B的坐标,根据两点间的距离公式|AB|=求解.(2)弦长公式:如图所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|==|x1-x2|=|y1-y2|(直线l的斜率k存在).(3)几何法:如图,直线与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2.通常采用几何法较为简便。
高一数学直线与圆的位置关系1

讨论:能否根据两个圆的公共点的个数 判断两圆的位置关系? 方法:联立两圆的方程构成方程组;再 根据方程组的解的个数判断两圆的位置 关系。
典例讲解
例1、 已知:
圆C1:x2+y2+2x+8y-8=0,
圆C2:x2+y2-4x-4y-2=0, 判断圆C1与圆C2的位置关系.
知识探究(三)
若两圆C1:x2+y2+D1x+E1y+F1=0
和圆C2:x2+y2+D2x+E2y+F2=0相
交,则其公共弦所在直线的方程 (D1-D2)x+(E1-E2)y+F1-F2=0 是 :
知识探究(四)
若圆O:x2+y2+Dx+Ey+F=0和直线
Ax+By+C=0有公共点,则经过它
们的交点的圆系方程是:
x y Dx Ey F ( Ax By c ) 0
与圆
x y 6 y 28 0
2 2
的交点的圆的方程。
作业: 教材:P130 练习
P133习题9、10、11
《学海》第四章第4课时
;
/macd/ macd指标详解 ; 2019.1
就照我说的办.娜塔莎,听从你政委姐姐的话,注意,要好好瞄准敌人的观察口!" 李小克还记得自己给妻子的承诺,作为副师长要给全师负责,不会愚蠢的像个下级连长帅兵猛攻.但是杀红了眼睛谁在乎,再者时间非常宝贵!它些承诺暂且放在一边战机稍纵即逝. 因为胳膊的伤刚好,还不能 疯狂的抱着冲锋枪一通扫射,卖力气的活儿由属下负责,此刻的他就是监军的存在. 此刻,一部分德军被叶甫根尼的营狠狠拖住,一部分依靠着装甲列车战斗.李小克率领二百多人从街道迂回,他们遭遇了轻微的抵
高中数学直线和圆的位置关系 新课标 人教版 必修2(A)

高中数学直线和圆的位置关系新课标人教版必修2(A) 教学目标(一)使学生掌握直线和圆的三种位置关系的定义及其判定方法和性质;(二)通过直线和圆的位置关系的探究,向学生渗透类比、分类、数形结合的思想,培养学生观察、分析和发现问题的能力;(三)使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.教学重点和难点直线与圆的三种位置关系是重点;直线和圆的三种位置关系的性质和判定的正确运用是难点.教学过程设计一、类比联想,提出问题1.前面已经研究了点和圆的位置关系,请学生回忆,点和圆有几种位置关系?它们的数量特征分别是什么?在学生回答的基础上,教师投影打出点和圆的三种位置关系:点在圆内、在圆上、在圆外.d<r d=r;点在圆外 d>r.2.如果把点换成一条直线,直线和圆又有哪几种位置关系呢?(板书课题)二、根据图形运动变化,发现规律、传授新知1.尝试活动让学生在纸上画一个圆,把直尺边缘看成一条直线,任意移动直尺,观察有几种位置关系.2.电脑演示在学生尝试活动的基础上,教师电脑演示图7-98:一个已知圆O与一条直线l发生相对运动的情况.将圆向上逐步运动,让学生观察,把观察到的情况说出来.教师引导学生答出:在图7-98中,直线和圆由有两个交点逐渐缩至一个点最后完全消失.在学生回答的基础上,教师指出:由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.给出以上定义后,教师强调:(1)直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.(2)直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?对于问题(2)可让学生展开讨论,后教师指出:由于同一直线上的三点不可能作圆,因而直线不可能与圆有三个交点,故直线与圆不可能有第四种位置关系.3.直线与圆的位置关系的数量特征.直线与圆的位置关系能否像点与圆的位置关系一样进行数量分析呢?提出问题,让学生思考,教师引导学生观察图7-98,发现:由于圆心确定圆的位置,半径确定圆的大小.因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.学生回答后,教师总结并板书:如果⊙O的半径为r,圆心O到直线l的距离为d,那么(1)直线l和⊙O相交 d<r;(2)直线l和⊙O相切 d=r;(3)直线l和⊙O相离 d>r.在讲点与圆的位置关系时若引用了符号“”,可再巩固一下;若没有引用,这里应解释符号“”的意义.这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.以上三个命题的正确性是通过观察得到的,可鼓励程度好的学生课后对它们加以证明.现以(3)为例证明如下.证明:判定定理.过O作OA⊥l于A,则OA=d.在直线l上任取另一点B,并连结OB.则在Rt△OAB中,OB>OA>r.所以l上任意一点均在⊙O的外部.即直线l与⊙O没有公共点,l与⊙O相离.证明:性质定理.假设d不大于r,则d=r或d<r.由判定定理可知,当d=r时,l与⊙O相切;当d<r时,l与⊙O相交,都与已知直线l与⊙O相离矛盾,因此d>r.三、例题分析,课堂练习例在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米;(2)r=2.4厘米;(3)r=3厘米.分析:因为题目给出了⊙O的半径,所以解题关键是求圆心C到直线AB的距离,也就是要求出Rt△ABC斜边AB上的高.为此,可过C点向AB作垂线段CD,然后可根据CD的长度与r进行比较,确定⊙C与AB的关系.让学生自己作出回答,教师板书解题过程,并画出相应的图形.(图7-100)练习1 填空(投影打出)在Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径和圆,那么:(1)当直线AB与⊙C相离时,r的取值范围是;(2)当直线AB与⊙C相切时,r的取值范围是;(3)当直线AB与⊙C相交时,r的取值范围是;练习2 如图7-101,已知∠AOB=30°,M为OB上一点,且OM=5厘米,以M为圆心、以r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2厘米;(2)r=4厘米;(3)r=2.51厘米;四、课堂小结问:这节课学习了哪些具体内容?用到了哪些数学思想方法?应注意什么问题?在学生回答的基础上教师归纳;1.投影打出直线与圆的位置关系表.直线和圆的位置关系相交相切相离公共点个数 2 1 0圆心到直线距离d与半径r的关系 d<r d=r d>r公共点名称交点切点无直线名称割线切线无2.本节课类比点和圆的位置关系,从运动变化的观点来研究直线和圆的位置关系;利用了分类的思想把直线和圆的位置关系分为三类来讨论;用了数形结合的思想,通过d的r这两个数量之间的关系来研究直线和圆的位置关系.3.学习时应注意弄清直线与圆的位置关系的性质与判定使用的区别与联系.五、布置作业课本p.115.习题7.3.A组.1(1),2,3.板书设计课堂教学设计说明这份教案为1课时,对于定理的证明不必向学生讲,可作为程度好的学生的课外作业.。
人教版高中数学必修2《直线与圆的位置关系》教案

四、教学过程设计
解析几何就是用代数方法研究几何图形,当然也要研究几何图形的位置关系,直线与直线的位置关系已经研究清楚,这节课我们研究直线与圆的位置关系。
1.问题情境
问题1.直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?
师生活动:学生解答,解释出错原因。
6.课堂小结
问题9判断直线与圆的位置关系有哪些方法?
问题10当直线与圆相交时,如何求弦长?
设计意图:巩固所学知识,培养学生归纳概括能力.
师生活动:学生思考,教师引导时应涉及到“如何求弦长”以及判断直线与圆的位置关系有几种方法?它们的步骤是什么?
人教版高中数学必修2《直线与圆的位置关系》教案这篇文章共11261字。
(2)通过消元,得到一个一元二次方程;
(3)求出其判别式△的值;
(4)判断△的符号:
若△>0,则直线与圆相交;
若△=0,则直线与圆相切;
若△<0,则直线与圆相离.
4.例题示范
例1如图,已知直线:和圆心为的圆,
(1)判断直线与圆的位置关系;
(2)如果相交,求它们交点的坐标.
设计意图:通过例题巩固判断直线与圆的位置关系方法,关注量与量之间的关系.使学生体验用坐标法研究直线与圆的位置关系的想法与结论.
4.当直线与圆有公共点时,能通过联解方程组得出直线与圆的公共点的坐标.
5.当直线与圆相交时,会求圆的弦长,以及能解决与弦长相关的简单问题.
6.通过直线与圆的位置关系的代数化处理,使学生进一步认识到坐标系是联系“数”与“形”的桥梁,从而更深刻地体会坐标法思想.
教学应对
三、教学问题诊断
人教A版高中数学必修2 4.2.1直线与圆的位置关系(教学设计)

人教A版高中数学必修2课题:4.2.1直线与圆的位置关系【教材分析】《直线、圆的位置关系》是圆与方程这一章的重要内容。
它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用解析法进一步研究直线与圆的位置关系,它既是对圆的方程的应用和拓展,又是研究圆和圆的位置关系的基础,并且为后续研究直线和圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。
【学生学情分析】在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。
本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。
通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。
【教学目标】(一)知识与技能:理解直线与圆三种位置关系;能根据直线、圆的方程,用代数法和几何法判断直线与圆位置关系;掌握直线和圆的位置关系判定的应用,会求弦长.(二)方法与过程:通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、合作交流的学习方式;强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.(三)情感态度与价值观:让学生亲生经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“数形结合”等数学思想的内涵,养成良好的思维习惯.【教学重点与难点】重点:直线与圆的位置关系的判断方法.难点:灵活的运用“数形结合”解决直线和圆相关的问题.【课型】新课【课时安排】1节课【教法、学法指导、教学手段】教法“引导-探究”教学法、“命名”教学法、“题组”教学法;学法:观察发现、自主探究、合作交流、变式学习、归纳总结、应用提高;教学手段:多媒体教学【教学准备】学生学情,课件、教学设计,学生课堂练习题;彩色粉笔,翻页笔。
间的位置关系呢?方法一:可以依据圆心到直线的距离与半径长的关系,判断直线与圆的方法二,由直线l(–问题6过点M【板书设计】有两个公共点直线和圆相交有惟一公共点直线和圆相切直线和圆相离。
高中数学选修必修2-直线与圆的位置关系(改)1

直线与圆相交
练习.直线y=x+1与圆x2+y2=1的位置关系是( B )
A.相切
B.相交但直线不过圆心
C.直线过圆心 D.相离
解析
圆心到直线的距离 d=
1= 1+1
2 2 <1,
又∵直线y=x+1不过圆心(0,0),
∴选B.
弦长问题 方法一(代数法): 解方程组求交点,两点间的距离公式求弦长
弦长公式为 | AB | (x1 x2 )2 ( y1 y2 )2
解析 因为|MN|≥2 3,
所以圆心(1,2)到直线 y=kx+3 的距离不大于 22- 32=1,
|k+1|
即
≤1, 解得k≤0.
k2+1
三基能力强化 例3.已知圆C: x2 y2 2x 4 y :11 0 直线 l : 3x 4y 4 ,0则圆上到直线距离为 1的点的个数为——
距离为2呢,0.5呢
直线 l 与圆有两个交点,它们的坐标分别是:A(2,0),B(1,3)
小结:直线与圆的位置关系的判定方法
(1)利用直线与圆的交点的个数进行判断:
△<0 △=0
直线与圆相离 直线与圆相切
△>0
直线与圆相交
(2)利用圆心到直线的距离d与半径r的大小关系判断:
d >r
直线与圆相离
d =r
直线与圆相切
d <r
点C(0,1)到直线 l 的距离为:
y
l B
d |3016| 5 5
32 12
10
所以,直线 l 与圆相交,有两个公共点.
CAOx来自由 x2 3x 2 0,解得:x1 2, x2 1
把 x1 2,代x2入方1程①,得 y1 0 ; x1 2把, x2 1 代入方程① ,得 y2 3 .
人教版高中数学必修2第四章《4.2直线、圆的位置关系:4.2.1 直线与圆的位置关系》教学PPT

1)若AB和⊙O相离, 则 d > 5cm ; 2)若AB和⊙O相切, 则 d = 5cm ; 3)若AB和⊙O相交,则 0cm≤ d < 5cm.
例1、如图,已知直线l:3x+y-6=0和圆心为C 的圆x2+y2-2y-4=0,判断直线l与圆的位置关 系;如果相交,求它们的交点坐标。
相交
△>0
r >d
O
x
当-2 2<b<2 2 时,⊿>0, 直线与圆相交;
当b=2 2或 b=-2 2 时, ⊿=0, 直线与圆相切;
当b>2 2或b<-2 2 时,⊿<0,直线与圆相离。
㈠方法探索
y 解法二(利用d与r的关系):圆x2+y2=4的圆心为(0,0),半径为r=2
00b b
圆心到直线的距离为 d
(3)△<0 直线与圆径相r离的. 大小关系 直线与圆没有交点
方法3:代数性质
2、相切 (d=r)
直线与圆有一个交点
3、相交 (d<r)
直线与圆有两个交点
设圆 C∶(x-a)2+(y-b)2=r2, 直线L的方程为 Ax+By+C=0,
(x-a)2+(y-b)2=r2
Ax+By+C=0
练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交, 直线与圆有___2_个公共点. 2)若d=6.5cm ,则直线与圆__相__切__, 直线与圆有___1_个公共点. 3)若d= 8 cm ,则直线与圆__相__离__, 直线与圆有___0_个公共点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2、3章 直线与圆
1. 斜率公式:(1)角公式:tan k α=,α是直线的倾斜角 (2)点公式:2121
y y k x x -=
-,必须已知两点 111(,)P x y 、222(,)P x y
2.直线方程的五种形式:
(1)点斜式:11()y y k x x -=- (直线过点111(,)P x y , 斜率为k )
(2)斜截式:y kx b =+ ( 斜率为k ,截距b 。
b 为直线l 在y 轴上的截距。
截距可以是负数、0、正数) (3)两点式:
112121
y y x x y y x x --=
-- (直线过111(,)P x y 、222(,)P x y 12x x ≠, 12y y ≠ ).
(4)截距式:
1=+b
y
a x (a 为直线l 在x 轴上的截距,
b 为直线l 在y 上的截距。
截距可正可负 )
(5)一般式:0Ax By C ++=
3.两条直线的位置关系:若111:l y k x b =+,222:l y k x b =+,则: ① 1l ∥2l 21k k =⇔,21b b ≠; ②12121l l k k ⊥⇔=-. 4.四个重要个公式:(1)线段AB 的中点M 的坐标公式:(
,
)2
2
A B
A B
x x y y M ++
(2)两点距离: A 、B
的距离:AB =
(3)点线距离: 点P (x 0,y 0)到直线Ax+By+C=0的距离:2
2
00B
A
C
By Ax d +++=;
(4)平行线距离:两条平行线Ax+By+C 1=0与 Ax+By+C 2=0的距离2
2
21B
A
C C d +-=
5.圆的方程: ⑴标准方程:①2
2
2
)()(r b y a x =-+- ; 其中圆心为(,)a b , 半径为r
(2)一般方程:02
2
=++++F Ey Dx y x。
圆心(-2
D ,-
2
E );
半径r =
6.点、直线与圆的位置关系:(主要掌握几何法) “圆心”就是“点” ⑴点与圆的位置关系:(先计算:d 两点距离、半径R ,再作以下判断) ①⇔=R d 点在圆上;②⇔<R d 点在圆内;③⇔>R d 点在圆外。
⑵直线与圆的位置关系:(先计算:d 点线距离、半径R ,再作以下判断) ①⇔=R d 相切;②⇔<R d 相交;③⇔>R d 相离。
⑶圆与圆的位置关系:(先计算:d 两点距离,表示圆心距、r R ,表示两圆半径,再作以下判断) ①⇔+>r R d 相离;②⇔+=r R d 外切;③⇔+<<-r R d r R 相交; ④⇔-=r R d 内切;⑤⇔-<<r R d 0内含。
7.公式:(1)圆的弦AB
的长等于:23=d 是点线距离公式。
2
2
00B
A
C
By Ax d +++=
(2).圆上的点到直线0Ax By C ++=的距离的最小值是d r -,最大值是d r +
如.已知直线:40l x y -+=与圆()()2
2
:112C x y -+-=,则C 上各点到l 的距离的最小值为______
第1章空间立体几何
一、柱体、锥体、台体的表面积与体积、“表面积”是“全面积”
★★★★三、考试最常用的定理:(其中平面αβγ
、、,直线a b c l
、、、)★★★★
a⊄α
(1)证明“线面平行”:3推1:bα
⊂ => a∥α常构造“三角形的中位线”(两个中点)
a∥b
★★(2)很好用的定理:直线l与平面垂直,我们就说直线l垂直面内所有直线。
(3)证明“线与面垂直”:5推1:l a
⊥ , l b
⊥
a∩b = P => lβ
⊥
aβ
⊂,bβ
⊂
四、其他的相关证明
特殊:(1)证明“面面平行”:就是证明2次“线面平行”
a β,
b β
a∩b = P => β∥α
a∥α, b∥α
(2) 证明“线线平行”:一条直线与一个平面平行,过这条直线的平面与此平面有一条交线,则该直线与交线平行。
a∥α
a β => a∥b。
α∩β= b
(3)证明“面面垂直”: 2推1 lα
⊥
lβ
⊂ => αβ
⊥
(4)证明“线与面垂直”:若两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
α⊥β
α∩β= b => lβ
⊥
lα
⊂l b
⊥
α
a
b。