高中数学必修二直线与圆测试卷(二)

合集下载

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
(2)由(1)可知M的轨迹是以点 为圆心, 为半径的圆.
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.

高中数学必修2圆的方程单元检测题

高中数学必修2圆的方程单元检测题

高中数学必修2圆的方程单元检测题一、 知识要点1、 圆心为),(b a C ,半径为r 的圆的标准方程为:2、 .特殊地,当0==b a 时,圆心在原点的圆的方程为: .3、 圆的一般方程022=++++F Ey Dx y x ,圆心为点 ,半径r = ,其中0422>-+F E D .4、 二元二次方程022=+++++F Ey Dx Cy Bxy Ax ,表示圆的方程的充要条件是:5、设圆222)()(γ=-+-b y a x ;直线0=++C By Ax判断直线与圆的位置关系的两种方法分别是 ;6、设两圆的半径分别为R ,γ)(γ>R 、圆心距为d ,判断两圆的位置关系的两种方法分别是 ;7、过圆1C :011122=++++F y E x D y x 和直线0=++C By Ax 的交点的圆系方程是8、过圆1C :011122=++++F y E x D y x 和圆2C :022222=++++F y E x D y x 的交点的圆系方程是 11122F y E x D y x +++++0)(22222=++++F y E x D y x λ)1(-≠λ,1-≠λ时,消去22,y x 得过两圆交点的直线方程.基础训练1.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是( )A 、100)2()1(22=++-y xB 、100)2()1(22=-+-y xC 、25)2()1(22=-+-y xD 、25)2()1(22=+++y x2.0≠=C A 且0=B 是方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的( )A.充分非必要条件 B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件3.圆心为(1,2)且与直线51270x y --=相切的圆的方程为 . 4.圆1)1()2(22=-+-y x 关于A (1,2)对称的圆的方程为 。

数学北师大版高中必修2专题:直线与圆的方程(学生卷)

数学北师大版高中必修2专题:直线与圆的方程(学生卷)

专题:直线与圆的方程探究点一:直线的倾斜角和斜率 例1:设直线l 的方程是210x By α+-=,倾斜角; (1)试将B α表示为的函数;(2)若263ππα<<,试求B 的取值范围;(3)若B ∈(,2)(1)α-∞-∞,+,求的取值范围。

[规律方法]在已知斜率或倾斜角之中任一个量的取值范围,来求另一个量的取值范围时,首先要注意斜率不存在与2a π=的特殊情况对解题的影响,然后要注意利用正切函数来帮助确定相应的范围。

练习:1:设直线的斜率为k ,且k <则直线的倾斜角α的取值范围为________2.直线sin 10x y α-+=的倾斜角的变化范围为( )A .2π(0,)B .π(0,)C .44ππ(-,)D .30,)44πππ[,][ 3.若直线l 的方程为tan 2y x α=+,则( ) A .l α一定是直线的倾斜角 B .l α一定不是直线的倾斜角C .l πα-一定是直线的倾斜角D .l α不一定是直线的倾斜角4.已知直线(1,2)(2,3),(3,0)l P A B ---过点且与以为端点的线段相交,则直线l的斜率的取值范围为__________[规律与方法](1)要注意倾斜角的取值范围是[0,180)︒︒(2)一般地,知斜率的范围求倾斜角范围时一定要借助于正切函数的图象,以增强直观性;反之知倾斜角求斜率,有如下规律:“含垂线取两边,不含垂线取中间。

”探究点二:直线的方程及两直线的位置关系例2:210ABC BC x y A∆-+=∠中,边上的高所在直线的方程为,的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A 和点C的坐标。

练习:5.过点P(2,3)且在两轴上的截距相等的直线方程为___________。

6.过点22(1,1A x y=-+=作圆的切线,则切线方程为__________。

7.已知A(3,1),B(—1,2),若ACB∠的平分线在1y x=+,则AC所在的直线方程是_________。

2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析

2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析

2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版(2019)选择性必修第一册第一章~第三章(空间向量与立体几何+直线与圆+圆锥曲线)。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,在平行六面体ABCD 则AC'的长为()A.98562+B.【答案】A-'【解析】平行六面体ABCD A故选:A7.已知椭圆的方程为2 9 x+的周长的最小值为()A.8B 【答案】C则由椭圆的中心对称性可知可知12AF BF 为平行四边形,则可得2ABF △的周长为2AF A .0B .【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.则21242||222y y m HC ++===12||4||22yy p AB HM ++===所以||2sin ||2(HC m HMN HM m ∠==因为20m ≥,所以212(1)m ∈三、填空题:本题共3小题,每小题5分,共15分.则11,22BN BA BD DM =+ 所以1122BN DM BA ⎛⋅=+ ⎝ 1144BA BC BD BC =⋅+⋅-uu r uu u r uu u r uu u r四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.【解析】(1)直线l 与直线310x y ++=平行,故设直线l 为130x y C ++=,(1分)联立方程组203210x y x y ++=⎧⎨-+=⎩,解得11x y =-⎧⎨=-⎩.(3分)∴直线1:20l x y ++=和2:3210l x y -+=的交点()11P --,.16.(15分)在正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在线段1CC 上,且14CC CE = ,点F 为BD 中点.(1)求点1D 到直线EF 的距离;(2)求证:1A C ⊥面BDE .【解析】(1)如图,以D 为原点,以,DA DC 正四棱柱111ABCD A B C -()()(10,0,4,0,2,1,1,1,0D E F ∴则点1D 到直线EF 的距离为:17.(15分)18.(17分)如图,在四棱锥P ABCD -中,M 为棱PC 的中点.(1)证明:BM ∥平面PAD ;(2)若5PC =,1AB =,(2)1AB = ,2DC ∴=,又PD 222PC PD DC ∴=+,则PD DC ⊥又平面PDC ⊥平面ABCD ,平面PD ∴⊥平面ABCD ,(7分)19.(17分)416(2)(i )由题意知直线l 的方程为联立221416x y ⎧-=⎪⎨,化简得(4m 2(ii )1212232,41m y y y y m -+=-直线AD 的方程为11y y x =+。

2019-2020学年人教A版高中数学必修二检测-圆与圆的位置关系-直线与圆的方程的应用-Word版含解析

2019-2020学年人教A版高中数学必修二检测-圆与圆的位置关系-直线与圆的方程的应用-Word版含解析

圆与圆的位置关系 直线与圆的方程的应用 检测题一、题组对点训练对点练一 圆与圆的位置关系1.两圆x2+y2=r2,(x -3)2+(y +1)2=r2外切,则正实数r 的值是________. 解析:由题意得,2r =(3-0)2+(-1-0)2=10,即r =102. 答案:1022.已知圆C :x2+y2-8x +15=0,直线y =kx +2上至少存在一点P ,使得以点P 为圆心,1为半径的圆与圆C 有公共点,则实数k 的最小值是________.解析:将圆C 的方程化为标准方程,得(x -4)2+y2=1,故圆心为C(4,0),半径r =1.又直线y =kx +2上至少存在一点P ,使得以点P 为圆心,1为半径的圆与圆C 有公共点,所以点C 到直线y =kx +2的距离小于或等于2,即|4k -0+2|k2+1≤2,解得-43≤k ≤0,所以实数k 的最小值是-43. 答案:-433.圆O1:x2+y2-4y +3=0和圆O2:x2+y2-16y =0的位置关系是( )A .相离B .相交C .相切D .内含解析:选D 因为r1=1,r2=8,|O1O2|=(0-0)2+(2-8)2=6,则|O1O2|<r2-r1.所以两圆内含.4.若两圆x2+y2=m 和x2+y2+6x -8y -11=0有公共点,则实数m 的取值范围是( )A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)解析:选C x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d=(0+3)2+(0-4)2=5,若两圆有公共点,则|6-m|≤5≤6+m,∴1≤m≤121.5.求与圆(x-2)2+(y+1)2=4相切于点A(4,-1)且半径为1的圆的方程.解:设所求圆的圆心为P(a,b),则(a-4)2+(b+1)2=1. ①(1)若两圆外切,则有(a-2)2+(b+1)2=1+2=3, ②联立①②,解得a=5,b=-1,所以,所求圆的方程为(x-5)2+(y+1)2=1;(2)若两圆内切,则有(a-2)2+(b+1)2=|2-1|=1, ③联立①③,解得a=3,b=-1,所以,所求圆的方程为(x-3)2+(y+1)2=1.综上所述,所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.对点练二直线与圆的方程的应用6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( )A.1.4米B.3.5米C.3.6米D.2米解析:选B 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A(0.8,h -3.6)所在圆的方程为: x2+(y +3.6)2=3.62,把A(0.8,h -3.6)代入得0.82+h2=3.62.∴h =40.77≈3.5(米).7.某公园有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设在何处?解:所选观景点应使对两景点的视角最大.由平面几何知识知,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点.以小路所在直线为x 轴,B 点在y 轴正半轴上建立平面直角坐标系.由题意,得A(2,2),B(0,22),设圆的方程为(x -a)2+(y -b)2=b2,由A 、B 两点在圆上,得⎩⎪⎨⎪⎧ a =0,b =2或⎩⎪⎨⎪⎧ a =42,b =52,由实际意义知a =0,b =2,∴圆的方程为x2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.8.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x2+y2=1.因为点B(8,0),C(0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.所以DE 长的最小值为|0+0-8|2-1=(42-1) km. 二、综合过关训练1.半径长为6的圆与x 轴相切,且与圆x2+(y -3)2=1内切,则此圆的方程为( )A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b),则b =6(b =-6舍去).再由a2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.2.已知点M 在圆C1:(x +3)2+(y -1)2=4上,点N 在圆C2:(x -1)2+(y +2)2=4上,则|MN|的最大值是( )A .5B .7C .9D .11解析:选C 由题意知圆C1的圆心C1(-3,1),半径长r1=2;圆C2的圆心C2(1,-2),半径长r2=2.因为两圆的圆心距d=[1-(-3)]2+[(-2)-1]2=5>r1+r2=4,所以两圆相离,从而|MN|的最大值为5+2+2=9.故选C.3.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是( )A.(x-5)2+(y-7)2=25B.(x-5)2+(y-7)2=17或(x-5)2+(y+7)2=15C.(x-5)2+(y-7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析:选D 设动圆圆心为(x,y),若动圆与已知圆外切,则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25;若动圆与已知圆内切,则(x-5)2+(y+7)2=4-1,∴(x-5)2+(y+7)2=9.4.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )A.4 B.4 2C.8 D.8 2解析:选C ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,5.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a =__________.解析:由已知两个圆的方程作差可以得到相应弦的直线方程为y=1a,利用圆心(0,0)到直线的距离d=⎪⎪⎪⎪⎪⎪⎪⎪1a1=22-(3)2=1,解得a=1.答案:16.已知圆C1:x2+y2-2mx+4y+m2-5=0和圆C2:x2+y2+2x=0.(1)当m=1时,判断圆C1和圆C2的位置关系;(2)是否存在实数m,使得圆C1和圆C2内含?若存在,求出实数m的值;若不存在,请说明理由.解:(1)当m=1时,圆C1的方程为(x-1)2+(y+2)2=9,圆心为C1(1,-2),半径长为r1=3,圆C2的方程为(x+1)2+y2=1,圆心为C2(-1,0),半径长为r2=1,两圆的圆心距d=(1+1)2+(-2-0)2=22,又r1+r2=3+1=4,r1-r2=3-1=2,所以r1-r2<d<r1+r2,所以圆C1和圆C2相交.(2)不存在实数m,使得圆C1和圆C2内含.理由如下:圆C1的方程可化为(x-m)2+(y+2)2=9,圆心C1的坐标为(m,-2),半径为3.假设存在实数m,使得圆C1和圆C2内含,即(m+1)2<0,此不等式无解.故不存在实数m,使得圆C1和圆C2内含.7.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,即轮船不会受到台风的影响.。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学第二章-直线与圆单元测试(提升卷)(原卷版)

高中数学第二章-直线与圆单元测试(提升卷)(原卷版)

第二章直线与圆单元过关检测能力提高B 版 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知直线l 过点()1,2P -且与线段AB 的延长线有公共点,若()2,3A --,()3,0B ,则直线l 的斜率的取值范围是( )A .1,52⎡⎤-⎢⎥⎣⎦B .13,25⎛⎤- ⎥⎝⎦C .13,25⎛⎫- ⎪⎝⎭D .[)1,5,2⎛⎤-∞-+∞ ⎥⎝⎦2.已知,a b 满足21a b +=,则直线30ax y b ++=必过定点( )A .1,23⎛⎫- ⎪⎝⎭ B .11,26⎛⎫ ⎪⎝⎭ C .11,26⎛⎫- ⎪⎝⎭ D .12,3⎛⎫- ⎪⎝⎭3.若动点()()1122,,,A x y B x y 分别在直线1:70l x y +-=和2:50l x y +-=上移动,则AB 中点M 到原点距离的最小值为( )A .32B .23C .33D .424.圆22:4440C x y x y ++-+=关于直线20x y -+=对称的圆的方程是( )A .224x y +=B .22(2)(2)4-++=x yC .22(2)4x y -+=D .22(2)4x y ++=5.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关,则实数a 的取值范围是( )A .4a ≤B .46a -≤≤C .4a ≤或6a ≥D .6a ≥6.我们把顶角为36︒的等腰三角形称为黄金三角形......其作法如下:①作一个正方形ABCD ;②以AD 的中点E 为圆心,以EC 长为半径作圆,交AD 延长线于F ;③以D 为圆心,以DF 长为半径作⊙D ;④以A 为圆心,以AD 长为半径作⊙A 交⊙D 于G ,则ADG ∆为黄金三角形.根据上述作法,可以求出cos36︒=ABCD7.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比||||MQ MP λ=(0,1)λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点(1,1)B ,则2||||MP MB +的最小值为( ) ABCD8.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC ∆的顶点为A (0,0),B (4,0),(C ,则该三角形的欧拉线方程为( )A0y --=B.0x -= C20y --=D.20x --=二、多选题9.下列说法错误的是( )A .“1a =-”是“直线210a x y -+=与直线20x ay --=互相垂直”的充要条件B .直线sin 20x y α++=的倾斜角θ的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ C .过()11,x y ,()22,x y 两点的所有直线的方程为112121y y x x y y x x --=-- D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-=10.已知圆22111:0M x y D x E y F ++++=与圆22222:0N x y D x E y F ++++=的圆心不重合,直线()()121212:0l D D x E E y F F -+-+-=.下列说法正确的是( )A .若两圆相交,则l 是两圆的公共弦所在直线B .直线l 过线段MN 的中点C .过直线l 上一点P (在两圆外)作两圆的切线,切点分别为A ,B ,则PA PB =D .直线l 与直线MN 相互垂直 11.以下四个命题表述正确的是( )A .直线()()34330m x y m m R ++-+=∈恒过定点()3,3--B .圆224x y +=上有且仅有3个点到直线:20l x y -+=的距离都等于1C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有三条公切线,则4m =D .已知圆22:4C x y +=,点P 为直线142x y +=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点(1,2) 12.已知圆22:5,,O x y A B +=为圆O 上的两个动点,且2,AB M =为弦AB 的中点()22,C a ,()22,2D a +.当,A B 在圆O 上运动时,始终有CMD ∠为锐角,则实数a 的可能取值为( ) A .-3B .-2C .0D .1三、填空题13.已知直线l :y x b =+被圆C :22(3)(2)6x y -+-=截得的弦长等于该圆的半径,则b =______.14.在平面直角坐标系中,若直线l 与圆221:1C x y +=和圆()()222:525249C x y -+-=都相切,且两个圆的圆心均在直线l 的下方,则直线l 的斜率为__________.15.如图,O 是坐标原点,圆O 的半径为1,点A (-1,0),B (1,0),点P ,Q 分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP AQ ⋅的最大值是_______.16.以三角形边BC ,CA ,AB 为边向形外作正三角形BCA ',CAB ',ABC ',则AA ',BB ',CC '三线共点,该点称为ABC 的正等角中心.当ABC 的每个内角都小于120º时,正等角中心点P 满足以下性质:(1)120APB APC BPC ;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得222222(1)(1)(2)x y x y x y +-++++-+的最小值为_________四、解答题 17.已知P 是直线3480x y ++=上的动点,PA 、PB 是圆22:2210C x y x y +--+=的两条切线,A 、B 是切点.(1)求四边形PACB 面积的最小值;(2)直线上是否存在点P ,使60BPA ︒∠=?若存在,求出P 点的坐标;若不存在,说明理由.18.已知直线20x y -+=和圆22:8120C x y x +-+=,过直线上的一点()00,P x y 作两条直线PA ,PB与圆C 相切于A ,B 两点.(1)当P 点坐标为()2,4时,求以PC 为直径的圆的方程,并求直线AB 的方程;(2)设切线PA 与PB 的斜率分别为1k ,2k ,且127k k ⋅=-时,求点P 的坐标.19.已知()0,3A ,,B C 为222(0)x y r r +=>上三点.(1)求r 的值;(2)若直线BC 过点(0,2),求ABC 面积的最大值;(3)若D 为曲线22(1)4(3)x y y ++=≠-上的动点,且AD AB AC =+,试问直线AB 和直线AC 的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.20.已知两个定点(0,4)A ,(0,1)B , 动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒ (O 为坐标原点),求直线l 的斜率; (3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.21.如图,已知圆22:1O x y +=,点(),4P t 为直线4y =上一点,过点P 作圆O 的切线,切点分别为,M N .(Ⅰ)已知1t =,求切线的方程;(Ⅱ)直线MN 是否过定点?若是,求出定点坐标,若不是,请说明理由;(Ⅲ)若1t >,两条切线分别交y 轴于点,A B ,记四边形PMON 面积为1S ,三角形PAB 面积为2S ,求12S S ⋅的最小值.22.已知圆22:1O x y +=和点()1,4M --.(1)过点M 向圆O 引切线,求切线的方程;(2)求以点M 为圆心,且被直线212y x =-截得的弦长为8的圆M 的方程;(3)设P 为(2)中圆M 上任意一点,过点P 向圆O 引切线,切点为Q ,试探究:平面内是否存在一定点R ,使得PQ PR为定值?若存在,请求出定点R 的坐标,并指出相应的定值;若不存在,请说明理由.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高中数学必修二直线与圆、圆与圆的位置关系练习题

高中数学必修二直线与圆、圆与圆的位置关系练习题

1.已知直线和圆有两个交点,则的取值范围是() A. B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切 B.相交 C.相离 D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A. B.2 C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切 C.内切 D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合 B.与圆C1同心圆C.过P1且与圆C1同心相同的圆 D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即 , 化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7 =0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修二圆与方程单元测试卷【二】(测试时间:120分钟 满分:150分) 考生姓名: 考试成绩:一、选择题(每小题5分,共50分. 以下给出的四个备选答案中,只有一个正确)1.直线20x y --=的倾斜角为( )A .30︒ ;B .45︒ ; C. 60︒ ; D. 90︒; 2.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( )A.1133y x =-+ ; B. 113y x =-+ ; C.33y x =- ; D.31y x =+;330x y m -+=与圆22220x y x +--=相切,则实数m 等于( ) A .33-3;B .33-33C .33;D .3或334.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,则AB 的最小值为( )A .2 ;B .23 ;C .3 ;D .255.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( )A. 1)37()3(22=-+-y x ; B. 1)1()2(22=-+-y x ;C. 1)3()1(22=-+-y x ;D. 1)1()23(22=-+-y x ;6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.2(2)x ++2(2)y -=1 ;B.2(2)x -+2(2)y +=1;C.2(2)x ++2(2)y +=1;D.2(2)x -+2(2)y -=1 7.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A.22(1)(1)2x y ++-= ;B. 22(1)(1)2x y -++=C. 22(1)(1)2x y -+-= ;D. 22(1)(1)2x y +++= 8.设A 在x 轴上,它到点2,3)P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( ) A.(1,0,0)和( -1,0,0) ; B.(2,0,0)和(-2,0,0); C.(12,0,0)和(12-,0,0) ; D.(22,0,0)和(22,0,0) 9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( ) 30 ; B 355230;D 65510.若直线y x b =+与曲线234y x x =-有公共点,则b 的取值范围是( )A.[122-122+123] ; C.[-1,122+ D.[122-,3];二、填空题(每小题5分,共25分. 将你认为正确的答案填写在空格上)11.设若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =______.12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为22,则圆C 的标准方程为_________ ___.13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.已知直线2310x y +-=与直线40x ay += 平行,则a = .15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是①15;②30;③45;④60;⑤75. 其中正确答案的序号是 .三、解答题(本大题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤)16(1).已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程..(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.17.已知圆22:(3)(4)4C x y -+-=,(Ⅰ)若直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程; (Ⅱ) 若圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.18..在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=9.(1)判断两圆的位置关系;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,与圆C 2截得的弦长是6.19. 已知圆C :,25)2()1(22=-+-y x直线)(47)1()12(:R m m y m x m l ∈+=+++(1)证明:不论m 取何实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 所截得的弦长的最小值及此时直线l 的方程;20.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△AOB 的面积为定值; (2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程; 21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+= 的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围; (Ⅱ)以OA,OB 为邻边作平行四边形OADB,是否存在常数 k ,使得直线OD 与PQ 平行?如果存在,求k 值;如果不 存在,请说明理由.高中数学必修二测试题七(直线和圆)参考答案:一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 答案 B AABBBBADD二、填空题11. _1__. 12.4)3(22=+-y x . 13.18)1(22=++y x . 14. 6 15. ①⑤ .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)16.解:(1)(x -2)2+y 2=10 ;(2)5)2()1(22=++-y x ;17.(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意.②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2, 即2= 解之得 34k =.所求直线方程是1x =,3430x y --=.(Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4),2C r =, 由两圆外切,可知5CD =∴可知=5, 解得 2,3-==a a 或, ∴(3,1)D -或(2,4)D -,∴所求圆的方程为9)4()29)1()32222=-++=++-y x y x 或((.18.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2, ∴两圆相离;(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易得连心线所在直线方程为:4x -7y +19=0.19.解:(1)证明:直线)(47)1()12(:R m m y m x m l ∈+=+++可化为:04)72(=-++-+y x y x m ,由此知道直线必经过直线072=-+y x 与04=-+y x 的交点,解得:⎩⎨⎧==13y x ,则两直线的交点为A (3,1),而此点在圆的内部,故不论m 为任何实数,直线l 与圆C恒相交。

(2)联结AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D 两点,根据圆的几何性质可得,线段BD 为直线被圆所截得最短弦,此时|AC|5=,|BC|=5,所以|BD|=45。

即最短弦为45;又直线AC 的斜率为21-,所求的直线方程为)3(21-=-x y ,即052=--y x20. (1)证明 由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , ∴S △AOB =12OA ·OB =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5, 由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5. 21.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k 的直线方程为2y kx =+. 代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ① 直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,, 由方程①,1224(3)1k x x k -+=-+ ②又1212()4y y k x x +=++. ③而(02)(60)(62)P Q PQ =-,,,,,.所以OA OB +与PQ 共线等价于1212()6()x x y y +=+, 将②③代入上式,解得34k =-. 由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k .。

相关文档
最新文档