江苏省苏州市高新区八年级上册期末考试数学试卷
江苏省苏州市八年级上数学期末试卷

江苏省苏州市八年级上数学期末试卷一、选择题1.下列四个图标中,是轴对称图形的是( ) A .B .C .D .2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245 D .53.下列四个实数中,属于无理数的是( ) A .0B .9C .23D .124.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( )A .(﹣4,1)B .(1,﹣4)C .(4,﹣1)D .(﹣1,4)5.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 6.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( ) A .21B .22或27C .27D .21或277.下列图案中,不是轴对称图形的是( ) A .B .C .D .8.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组 9.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CDB .AD =2CDC .AD =3BDD .AB =2BC10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .15B .13C .58D .38二、填空题11.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.12.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____. 13.如果2x -有意义,那么x 可以取的最小整数为______.14.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.15.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.16.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.17.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b-=⎧⎨+=⎩的解是________.19.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.如图,矩形ABCD 中,AB =12,BC =8,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.22.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与PMQ 的内部重叠部分面积为96cm2).(1)求点P的速度:(2)求y与t的函数关系式,并直接写出的取值范围.23.王阿姨到超市购买大米,元旦前按原价购买,用了105元,元旦后,这种大米8折出售,她用168元又买了一些,两次一共购买了45kg,这种大米的原价是多少?24.如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.25.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?四、压轴题26.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度; (2)当2t =时,请说明//PQ BC ; (3)设BCQ ∆的面积为()2S cm,求S 与t 之间的关系式.27.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)28.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P与C重合时,求直线DP的函数解析式;(2)如图②,当P在BC边上,将矩形沿着OP折叠,点B对应点B'恰落在AC边上,求此时点P的坐标.∆为等腰三角形?若存在,直接写出点P的坐标;若不存在,请(3)是否存P在使BDP说明理由.29.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.30.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3, ∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=12.52AB =, ∴∠ACF=∠BAC , 又∵∠AFC=∠BCA=90°, ∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2, ∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE , ∴CE 垂直平分AD , 又∵E 为AB 的中点, ∴EF 为△ABD 的中位线, ∴BD=2EF=1.4, ∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE , 又∵∠DAE+∠ADE+∠BDE+∠DBE=180°, ∴∠ADB=∠ADE+∠BDE=90°, ∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C . 【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.3.D解析:D 【解析】 【分析】根据无理数的定义,即可得到答案. 【详解】=D 正确;03=,23是有理数,故ABC 错误; 故选择:D. 【点睛】本题考查了无理数的定义,解题的关键是熟记定义.4.A解析:A 【解析】 【分析】根据一次函数与二元一次方程组的关系进行解答即可. 【详解】解:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为:(-4,1) 故选:A. 【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.5.B解析:B 【解析】 【分析】根据无理数的定义判断即可. 【详解】解:3π-1-3 ,227-可以化成分数,不是无理数.故选 B 【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.6.C解析:C 【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.7.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.8.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS、SAS、ASA及AAS,即可判定.【详解】①满足SSS,能判定三角形全等;②满足SAS,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.△≌△全等的条件有3组.∴能使ABC DEF故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.9.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD3,在Rt△ABC中,∠A=30°,AD3=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.【解析】【分析】根据题意得出PA 就是P 到x 轴的距离,即可得出结论.【详解】∵PA⊥x 轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x 轴的距离.掌握点到坐标轴的距离是解解析:6【解析】【分析】根据题意得出PA 就是P 到x 轴的距离,即可得出结论.【详解】∵PA ⊥x 轴,∴PA =|6|=6.故答案为:6.【点睛】本题考查了点到x 轴的距离.掌握点到坐标轴的距离是解答本题的关键.12.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.14.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出,可求出HC的长度即为AF的长度.解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2, ∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.15.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.16.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键. 17.11【解析】【分析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.18.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),所以解析:21 xy=⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1), 所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】 本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.19.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键. 20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)见解析;(2【解析】【分析】(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出DE ,由勾股定理求出BD ,得出OD ,再由勾股定理求出EO ,即可得出EF 的长.【详解】解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中, ,,,OBE ODF OB OD BOE DOF ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)∵四边形BEDF 为菱形,∴BE=DE DB ⊥EF ,又∵AB=12,BC=8,设BE=DE=x ,则AE=12-x ,在Rt △ADE 中,82+(12-x )2=x 2,∴x =263. 又BD= ∴DO =12BD =∴OE3. ∴【点睛】 本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.22.(1)3 cm/s ;(2)()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【解析】【分析】(1)由于P 的速度比Q 的速度大,因此P 到达B 点时,Q 在DC 边上,此时重叠部分面积为正方形的面积减去△DQM 和△ABM 的面积,求解即可;(2)分三种情况讨论:当点P 在边AB 上时,当点P 在边BC 上时,当点P 在边CD 上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤, APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.23.7元/千克【解析】【分析】设这种大米原价是每千克x 元,根据题意列出分式方程,解出并检验即可.【详解】解:设这种大米原价是每千克x 元,根据题意得: 105168450.8x x+=, 解得x=7 经检验x=7是原分式方程的解,答:这种大米的原价是7元/千克.【点睛】此题主要考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC 的长度;(2)根据勾股定理的逆定理判断出△ACD 是直角三角形,四边形ABCD 的面积等于△ABC 和△ACD 的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴3=,(2)在△ACD 中,AC 2+CD 2= 52+122=169AD2 =132=169,∴AC2+CD2= AD2,∴△ACD是直角三角形,∴∠ACD=90°;由图形可知:S四边形ABCD=S△ABC+S△ACD= 12AB•BC+12AC•CD,= 12×3×4+12×5×12,=36.【点睛】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.25.(1)2000;(2)y=5x﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x<750时,y=4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750kb=⎧⎨=-⎩,∴y=5x﹣750;(3)设甲送a单,则a<600<750,则乙送(1200﹣a)单,若1200﹣a<750,则4a+4(1200﹣a)=4800≠5000,不合题意,∴1200﹣a>750,∴4a+5(1200﹣a)﹣750=5000,∴a=250,1200﹣a=950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.四、压轴题26.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm ) ∴118t 416222BCQ S BQ CM t ==⨯-⨯=- 因此,S 与t 之间的关系式为S=16-2t .【点睛】 此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.28.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,7+2)或(6,7).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩则此时直线DP解析式为y=43x+2;(2)设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA'-=8,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP17P1(6,7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3228627-∴AP3=AE+EP37,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.29.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.30.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.。
江苏省苏州市八年级上学期期末数学试卷 (解析版)

江苏省苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( ) A .12y y <B .12y y =C .12y y >D .不能确定3.如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于( )A .25°B .30°C .45°D .60°4.把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的125.+1x x 的取值范围是( ). A .x >﹣1 B .x ≥0 C .x ≥﹣1 D .任意实数 6.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .13 2C .6,8,10D .3,4,57.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A.()2020,1 B .()2020,0 C .()2020,2 D .()2019,08.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数10.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0 C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题11.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.12.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____. 13.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.14.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.15.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.16.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.17.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可)18.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.19.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)20.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.三、解答题21.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息: 型号 载客量 租金单价 A 30人/辆 380元/辆 B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱? 22.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形. 23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,ADE ∆与CFE ∆全等吗?试说明理由.24.如图,直线l 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=,点(1,)P a 为坐标系中的一个动点.(1)请直接写出直线l 的表达式; (2)求出ABC ∆的面积;(3)当ABC ∆与ABP ∆面积相等时,求实数a 的值.25.如图,平面直角坐标系中,直线AB :y =kx +3(k ≠0)交x 轴于点A (4,0),交y 轴正半轴于点B ,过点C (0,2)作y 轴的垂线CD 交AB 于点E ,点P 从E 出发,沿着射线ED 向右运动,设PE =n .(1)求直线AB 的表达式;(2)当△ABP 为等腰三角形时,求n 的值;(3)若以点P 为直角顶点,PB 为直角边在直线CD 的上方作等腰Rt △BPM ,试问随着点P 的运动,点M 是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.四、压轴题26.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2). (1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ; ②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.27.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC交BF 于点E . (1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.28.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.29.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x 的取值范围.2.C解析:C 【解析】 【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可. 【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小, 又∵两点的横坐标2<3, ∴12y y > 故选C. 【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.B解析:B 【解析】 【分析】先根据图形折叠的性质得出BC=CE ,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE ,进而可判断出△BEC 是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论. 【详解】解:∵△ABC 沿CD 折叠B 与E 重合, ∴BC=CE ,∵E 为AB 中点,△ABC 是直角三角形, ∴CE=BE=AE ,∴△BEC 是等边三角形. ∴∠B=60°, ∴∠A=30°, 故选B . 【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4.A解析:A 【解析】把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y ⋅==---,由此可得分式的值不变,故选A.5.C解析:C 【解析】 【分析】根据二次根式的意义可得出x +1≥0,即可得到结果. 【详解】解:由题意得:x +1≥0, 解得:x ≥﹣1, 故选:C . 【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.6.A解析:A 【解析】 【分析】根据勾股定理的逆定理,分别判断即可. 【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形; 故选:A. 【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.8.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条. 故选:B .【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a≥时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120︒【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.12.3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查解析:3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查了频数,正确把握频数的定义是解题关键.13..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21 xy=⎧⎨=⎩.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.14.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.15.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.16.x<-1.【解析】【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴解析:x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.17.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.18.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.19.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)--故答案为:()2,4或()2,0-或()2,4-【点睛】 本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 20.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE ⊥OA ,PF ⊥OB ,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=12∠AOB, ∵∠AOP=90°-∠OPE ,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定. 三、解答题21.(1)y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数);(2)共有25种租车方案;租用A 型号客车21辆,B 型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A 、B 两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x 的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x )=100x+17360.∵30x+20(62-x )≥1441,∴x ≥20.1,又∵x 为整数,∴x 的取值范围为21≤x ≤62的整数.即y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数).(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,又100>0,∴y随x的增大而增大,∴x=21时,y有最小值.即租用A型号客车21辆,B型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.23.证明见解析.【解析】【分析】先根据平行线的性质证明A C ∠=∠,ADE CFE ∠=∠ ,然后根据“AAS ”即可证明ADE ∆与CFE ∆全等.【详解】解:AED CFE ∆≅∆,∵//FC AB ,∴A ACC ∠=∠,ADE CFE ∠=∠ ,在AED ∆与CFE ∆中A ACF ADE CFE DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AED CFE ∆≅∆.【点睛】本题考查了平行线的性质,以及全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(1)223y x =-+;(2)132ABC S =;(3)当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【解析】【分析】 (1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,用待定系数法求解即可;(2)先根据勾股定理求出AB 的长,然后根据三角形的面积公式求解即可;(3)分点P 在第一象限和点P 在第四象限两种情况求解即可.【详解】解:(1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,得302k b b +=⎧⎨=⎩, 解得223b k =⎧⎪⎨=-⎪⎩, ∴223y x =-+ ; (2)∵(3,0)A 、(0,2)B , ∴OA=3,OB=2,在Rt ABC ∆中,依勾股定理得:222223213AB OA OB =+=+=,∵ABC ∆为等腰直角三角形, ∴21322ABC AB S ==; (3)连接,,BP PO PA ,则: ①若点P 在第一象限时,如图:∵1=23ABO OA SOB ⋅=,2213APO O S A a a ⋅==,1=121BOP OB S ⨯=, ∴132ABP BOP APO ABO S S S S =+-=, 即3131322a +-=,解得173a =; ②若点P 在第四象限时,如图:∵3312ABO APO BOP SS a S ==-=,,, ∴132ABP ABO APO BOP S S S S =+-=, 即3133122a --=,解得3a =-, ∴当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,三角形的面积公式,以及分类讨论的数学思想,分类讨论是解答本题的关键.25.(1)y =﹣34x +3;(2)n =56或8321436;(3)在直线上,理由见解析【解析】【分析】(1)将点A的坐标代入直线AB:y=kx+3并解得:k=﹣34,即可求解;(2)分AP=BP、AP=AB、AB=BP三种情况,分别求解即可;(3)证明△MHP≌△PCB(AAS),求出点M(n+73,n+103),即可求解.【详解】(1)将点A的坐标代入直线AB:y=kx+3并解得:k=﹣34,故AB的表达式为:y=﹣34x+3;(2)当y=2时,x=43,故点E(43,2),则点P(n+43,2),而点A、B坐标分别为:(4,0)、(0,3),则AP2=(43+n﹣4)2+4;BP2=(n+43)2+1,AB2=25,当AP=BP时,(43+n﹣4)2+4=(n+43)2+1,解得:n=56;当AP=AB时,同理可得:n=8213(不合题意值已舍去);当AB=BP时,同理可得:n=﹣43+26;故n=56或83+21或﹣43+26;(3)在直线上,理由:如图,过点M作MD⊥CD于点H,∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°∴△MHP≌△PCB(AAS),则CP=MH=n+43,BC=1=PH,故点M(n+73,n+103),n+73+1= n+103,故点M在直线y=x+1上.【点睛】此题主要考查了平面直角坐标系中一次函数与全等三角形、等腰三角形的综合应用,熟练掌握,即可解题.四、压轴题26.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣或2m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)详见解析;(2)36(04)2BDE t t S-+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】 (1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.28.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF =∠1+∠BAF =60°即可解决问题;②只要证明△BFC ≌△ADB ,即可推出∠BFC =∠ADB =90°;(2)在BF 上截取BK =AF ,连接AK .只要证明△ABK ≌CAF ,可得S △ABK =S △AFC ,再证明AF =FK =BK ,可得S △ABK =S △AFK ,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m 或4;当AB BP =时,同理可得:9m =(舍去)或1-;。
苏州市八年级(上)期末数学试卷(含答案)

苏州市八年级(上)期末数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2) B.(2,-3)C.(1,-2)D.(-1,2)2.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)3.7的平方根是()A.±7 B.7 C.-7 D.±74.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.155.下列图案中,不是轴对称图形的是()A.B.C.D.6.下到图形中,不是轴对称图形的是()A.B.C.D.7.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 8.对于函数y =2x ﹣1,下列说法正确的是( ) A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 9.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4) 10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.3.145精确到百分位的近似数是____.14.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.15.4的平方根是 .16.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)17.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.18.用四舍五入法将2.0259精确到0.01的近似值为_____.19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.22.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .23.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =. 24.计算与求值:(1)计算:()203120195274+-+--. (2)求x 的值:24250x -=25.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).四、压轴题26.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以1/cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若条件不变.设点 Q 的运动速度为x/存在,求出相应的x、t的值;若不存在,请说明理由.27.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A=44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.28.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】7)2=7,∴77.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.D解析:D【解析】,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.9.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.12.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.解析:15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到解析:0【解析】【分析】根据题意,由36x =时,代入32y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.15.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.16.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.17.8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x , 列方程为:604x +=40x, 解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.18.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.19.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解 解析:12. 【解析】【分析】 由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题21.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451x x x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.22.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A (1,3),B (3,1),O (0,0),∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、E (3+2,1-3)、F (0+2,0-3),即D (3,0)、E (5,-2)、F (2,-3);如图:(2)△DEF 的面积:11133131322=9 1.5 1.52=4222⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.23.11x +,13. 【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭, ()()()211111x x x x x x +--+=⋅-+, 11x =+, 当2x =时,原式13=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.24.(1)52;(2)52x =±. 【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++--=52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】本题考查实数的混合运算和利用平方根解方程.(1||a =,2(0)a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.25.()113;()28BD =;()3.数轴上画出表示数的B 点.见解析.【解析】【分析】 (1)根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】()1∵这一个直角三角形的两条直角边分别为512、∴这个直角三角形斜边长为225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE=⎧⎨=⎩ ∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.四、压轴题26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.27.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】 (1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -,由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上,∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解;(2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2022-2023学年江苏省苏州市八年级(上)期末数学试卷

2022-2023学年江苏省苏州市八年级(上)期末数学试卷考试时间:120分钟试卷满分:130分考试范围:第1章-第6章姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)的平方根是()A.B.C.D.2.(3分)(2008春•海淀区校级期末)点P在第四象限内,P到x轴的距离是3,到y轴的距离是2,那么点P的坐标为()A.(﹣3,2)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)3.(3分)(2020秋•双流区期末)如图,在△ABC中,∠B=∠C,点D,E都在边BC上,且BD=CE,若AD=3,则AE的长为()A.2B.3C.4D.54.(3分)(2021秋•上城区期末)在Rt△ABC中,∠ACB=90°,分别以A点,B点为圆心以大于AB为半径画弧,两弧交于E,F,连接EF交AB于点D,连接CD,以C为圆心,CD长为半径作弧,交AC 于G点,则CG:AB=()A.1:B.1:2C.1:D.1:5.(3分)(2019秋•潜山市期末)下列一次函数中,y的值随着x的值增大而减小的是()A.y=x﹣1B.y=+2C.y=﹣1+2x D.y=1﹣3x6.(3分)(2021春•江州区期中)已知三角形的三边长分别为9,12,15,则最长边上的高为()A.72B.54C.7.2D.7.57.(3分)(2019秋•邹城市期中)等腰三角形的一个外角等于70°,则它的底角是()A.110°B.55°C.35°D.35°或55°8.(3分)若直线y=2x﹣1与y=x﹣k的交点在第四象限,则k的取值范围是()A.k<0.5B.k>1C.0.5<k<1D.以上都不对9.(3分)(2020秋•灞桥区校级期中)在平面直角坐标系中,已知点A(1,3)和点B(3,1),点C、D分别是x轴,y轴上的动点,则四边形ABCD的周长最小值为()A.5B.6C.2+2D.810.(3分)(2019秋•防城区期中)如图,在△ABC中,∠B=∠C=40°,D,E是BC上的两点,且∠ADE =∠AED=80°,则图中共有等腰三角形()A.3个B.4个C.5个D.6个评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知,则=.12.(3分)(2021秋•三明期末)若=,则=.13.(3分)(2021春•霍林郭勒市期末)若直线y=kx+b与直线y=2x﹣3平行且经过点A(1,﹣2),则kb =.14.(3分)(2020春•碑林区校级期中)在直角坐标系中,点P(a,b)向左平移2个单位,向下平移3个单位后,得到的点的坐标为.15.(3分)(2021春•云浮期末)面积为48的等腰三角形底边上的高为6,则腰长为.16.(3分)8的平方根为,的算术平方根为.17.(3分)如图,四边形ABCD、CEFG是两个大小完全相同的矩形,连接AC、CF、AF,则∠ACF的度数为.18.(3分)(2022•东营)如图,△AB1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则点A2022的横坐标是.评卷人得分三.解答题(共10小题,满分76分)19.(8分)(2022秋•吴江区校级月考)计算:(1);(2).20.(6分)(2021秋•海门市期末)计算:(1)(m+2);(2)().21.(6分)如图1,△BAC和△DAE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连BD、CE.(1)求证:BD=CE;(2)如图2,延长BD交CE于F,连AF,求∠AFB的度数.22.(6分)(2018春•宁波期末)先化简:,然后从2,0,1中选取一个合适的数作为x的值代入求值.23.(6分)(2022春•长沙期中)如图,在10×10的正方形网格中,每个小正方形的边长为1.已知△ABC 三个顶点都在格点(网格线的交点叫做格点)上.点A,B,C的坐标分别是(1,﹣1),(﹣2,﹣3),(0,﹣3).(1)若△A1B1C1与△ABC关于x轴成轴对称,请画出△A1B1C1;(2)将△ABC绕O点旋转后得△A2B2C2,若点C的对应点C2的坐标为(3,0),则B点的对应点B2的坐标为.24.(8分)(2022春•崇川区期中)已知y关于x的一次函数y=(2﹣k)x﹣k2+4.(1)若y随x的增大而减小,求k的取值范围;(2)k为何值时,它的图象经过原点?25.(8分)(2021秋•东台市期中)如图,AD是△ABC的中线,AD=24,AB=26,BC=20,求AC.26.(8分)(2022•惠山区一模)据环保中心观察和预测:发生于甲地的河流污染一直向下游方向移动,其移动速度v(千米/小时)与时间t(小时)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,根据物理知识:梯形OABC在直线l左侧部分的面积表示的实际意义为t(小时)内污染所经过的路程S(千米),其中0≤t≤30.(1)当t=3时,则S的值为;(2)求S与t的函数表达式;(3)若乙城位于甲地的下游,且距甲地171km,试判断这河流污染是否会侵袭到乙城?若会,求河流污染发生后多长时间它将侵袭到乙城;若不会,请说明理由.27.(10分)(2021春•静安区校级期末)已知:等边△ABC边长为3,点D、点E分别在射线AB、射线BC 上,且BD=CE=a(0<a<3),将直线DE绕点E顺时针旋转60°,得到直线EF交直线AC于点F.(1)如图1,当点D在线段AB上,点E在线段BC上时,说明BD+CF=3的理由.(2)如图2,当点D在线段AB上,点E在线段BC的延长线上时,请判断线段BD,CF之间的数量关系并说明理由.(3)当点D在线段AB延长线上时,线段BD,CF之间的数量关系又如何?请在备用图中画图探究,并直接写出线段BD,CF之间的数量关系.28.(10分)(2021秋•苏州期末)在学习一次函数时,我们学习了列表、描点、连线画函数图象,并结合函数图象研究函数的性质.同时,在初一的时候我们学习了绝对值的意义:|a|=.请你完成下列问题.【尝试】(1)①当x=2时,y=﹣2|x﹣2|+3=3;②当x<2时,y=﹣2|x﹣2|+3=.③当x>2时,y=﹣2|x﹣2|+3=.【探索】(2)探究函数y=﹣2|x﹣2|+3的图象与性质.①请完成以下列表x…﹣1012345…y…3…②请根据①中的表格,在给出的平面直角坐标系中画出y=﹣2|x﹣2|+3的图象.【拓展应用】(3)若关于x的方程﹣2|x﹣2|+x+3=﹣x x+m有且只有一个正的解和一个负的解,则m的取值范围是.。
江苏省苏州市八年级(上)期末数学试卷解析版

江苏省苏州市八年级(上)期末数学试卷解析版一、选择题1.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .2.某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是( ) A .2y x = B .1y x =+C .1y x =--D .1y x =-3.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个C .3个D .4个4.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙5.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.6.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2B .b>-2C .b<2D .b<-27.下列各式成立的是( ) A 93=±B 235=C ()233-=± D .(233-=8.估算x 5 ) A .0<x <1B .1<x <2C .2<x <3D .3<x <49.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26510.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题11.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)12.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.13.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.14.3-的绝对值是 .15.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.16.若1712a+=,则352020a a-+=__________.17.点(−1,3)关于x轴对称的点的坐标为____.18.若代数式321xx-+有意义,则x的取值范围是______________.19.在△ABC中,已知AB=15,AC=11,则BC边上的中线AD的取值范围是____.20.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=6,则菱形AECF的面积为__________.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.22.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD 表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.23.解方程:21133x xx x=+++.24.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.25.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示(1)根据图象信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式 (3)甲、乙两人何时相距400米?四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标. (2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d .①求d与t的函数解析式(写出自变量的取值范围).②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t的取值范围.28.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当m<−1 式,连接AD,若线段AD 沿直线AB 方向平移得到线段BE,连接DE 与直线y=−2 交于点F,则点F 坐标为.(用含m 的式子表达)29.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF30.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC2a,试写出此时BF的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除B选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C、D选项,故选A.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.D解析:D【解析】【分析】分别求出每个函数与x轴的交点,即可得出结论.【详解】A.y=2x与x轴的交点为(0,0),故本选项错误;B.y=x+1与x轴的交点为(-1,0),故本选项错误;C.y=-x-1与x轴的交点为(-1,0),故本选项错误;D.y=x-1与x轴的交点为(1,0),故本选项正确.故选:D.【点睛】本题考查了一次函数的性质.掌握求一次函数与x轴的交点坐标的方法是解答本题的关键.3.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3,227-可以化成分数,不是无理数. 故选 B 【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.4.B解析:B 【解析】 【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可. 【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙, 故选:B . 【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.5.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n-⨯︒=︒解得610n =≠,D 选项错误.故选:D. 【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.6.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解. 详解:∵点A (m ,n )在一次函数y=3x+b 的图象上, ∴3m+b=n . ∵3m-n >2,∴3m-(3m+b)>2,即-b>2, ∴b <-2. 故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.7.D解析:D 【解析】 【分析】根据算术平方根的定义对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的性质对C 、D 进行判断. 【详解】解:A 3=,所以A 选项错误;B B 选项错误;C 3=,所以C 选项错误;D 、(23=,所以D 选项正确.故选D. 【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.8.C解析:C 【解析】 【分析】. 【详解】∴23, 故选:C .【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.9.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系. 10.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题11.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD ,再根据对顶角相等得到∠E=∠APE ,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC ,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .12.x >-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.13.【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC解析:3【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC于点G,连接OA,OB,OC,∵AB=AC=BC=2,∴BG=1BC=1,2∴22321∵S △ABC =S △ABO +S △BOC +S △AOC , ∴12AB×(OD+OE+OF )=12BC•AG ,∴.【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.14..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以15.2【解析】【分析】延长AC,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF ⊥AC 于F∵是的角平分线,DE ⊥AB ,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACDSS S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF ∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.【点睛】 此题主要考查了角平分线的性质,熟记概念是解题的关键.16.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()2211520205202022a a ⎡⎤⎛⎫⎢⎥-+=⨯-+ ⎪ ⎪⎢⎥⎝⎭⎣⎦=52020⎤+⎥⎣⎦=2020 =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.17.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.18.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x 的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.19.2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD 全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三解析:2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<13;故答案为:2<AD<13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.20.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:3【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:22-22EC BE42-3∴菱形的面积=AE•3故答案为:【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题21.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x(x+8),=x2+8x+7-x2-8x,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.22.(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(317,9);其意义为当 x<317时是方案调价前合算,当x>317时方案调价后合算.【解析】【分析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x <6时,y 2与x 的关系式是:y 2=7+(x ﹣3)×1.4,整理得,y 2=1.4x+2.8;所以,当y 1=y 2时,交点存在,即,2.1x ﹣0.3=1.4x+2.8,解得,x=317,y=9; 所以,函数y 1与y 2的图象存在交点(317,9); 其意义为当 x<317时是方案调价前合算,当 x>317时方案调价后合算. 【点睛】 本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x 的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.23.32x =-【解析】【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+,解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.24.(1)①详见解析;②AF2+EB2=EF2,理由详见解析;(2)10或58.【解析】【分析】(1)①证明△ADF≌△CDE(ASA),即可得出AF=CE;②由①得△ADF≌△CDE(ASA),得出AF=CE;同理△CDF≌△BDE(ASA),得出CF=BE,在Rt△CEF中,由勾股定理得222CE CF EF+=,即可得出结论;(2)分两种情况:①点E在线段CB上时,求出CE=BC﹣BE=1,由(1)得AF=CE=1,222AF EB EF+=,即可得出答案;②点E在线段CB延长线上时,求出CE=BC+BE=7,同(1)得△ADF≌△CDE(ASA),得出AF=CE,求出CF=BE=3,在Rt△EF中,由勾股定理即可得出答案.【详解】(1)①∵△ABC中,∠ACB=90︒,AC=BC=4,D是AB的中点,∴∠DCE=45︒=∠A,CD=12AB=AD,CD⊥AB,∴∠ADC=90︒,∵DF⊥DE,∴∠FDE=90︒,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,A DCEAD CDADF CDE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF≌△CDE(ASA),∴AF=CE;②222AF EB EF+=,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:222CE CF EF +=,∴222AF EB EF +=;(2)分两种情况:①点E 在线段CB 上时,∵BE =3,BC =4,∴CE =BC ﹣BE =1,由(1)得:AF =CE =1,222AF EB EF +=,∴EF 22221310AF EB =+=+=;②点E 在线段CB 延长线上时,如图2所示:∵BE =3,BC =4,∴CE =BC +BE =7,同(1)得:△ADF ≌△CDE (ASA ),∴AF =CE=7,∴CF =BE =3,在Rt △CEF 中,由勾股定理得:222CE CF EF +=,∴EF 22227358CE CF +=+=综上所述,当EB =3时,EF 1058【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、分类讨论等知识;本题综合性强,证明三角形全等是解题的关键.25.(1)24,40;(2)y =40t (40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【解析】【分析】(1)根据图象信息,当t =24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t =24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A 点的横坐标,用A 点的横坐标乘以甲的速度得出A 点的纵坐标,再将A 、B 两点的坐标代入,利用待定系数法即可求出线段AB 所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【详解】解:(1)根据图象信息,当t =24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t =24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A 点的坐标为(40,1600).设线段AB 所表示的函数表达式为y =kt+b ,∵A (40,1600),B (60,2400),∴401600602400k b k b +=⎧⎨+=⎩,解得k 40b 0=⎧⎨=⎩, ∴线段AB 所表示的函数表达式为y =40t (40≤t≤60);(3)设出发t 分钟后两人相距400米,根据题意得(40+60)t =2400﹣400或(40+60)t =2400+400,解得t =20或t =28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017. 【解析】【分析】(1)将点B 坐标代入解析式可求直线AB 解析式,即可求点A 坐标;(2)联立方程组可求点C 坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y =﹣34x+m 与y 轴交于点B (12,0), ∴0=﹣34×12+m , ∴m =9, ∴直线AB 的解析式为:y =﹣34x+9, 当x =0时,y =9,∴点A 坐标为(0,9); (2)由题意可得:38394y x y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:83x y =⎧⎨=⎩, ∴点C (8,3), ∴△BOC 的面积=12×12×3=18; (3)①如图,∵点D 的横坐标为t ,∴点D (t ,﹣34t+9),点E (t ,38t ), 当t <8时,d =﹣34t+9﹣38t =﹣98t+9, 当t >8时,d =38t+34t ﹣9=98t ﹣9; ②∵以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点, ∴12≤t≤1或919829918t t t t ⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩, ∴12≤t≤1或7617≤t≤8017. 【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =, ∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,。
江苏省苏州市八年级上学期数学期末考试试卷

江苏省苏州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·潮南期末) 如图图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .2. (2分) (2020八下·洛宁期中) 人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A .B .C .D .3. (2分) (2020七上·北海期末) 下列计算正确的是()A .B .C .D .4. (2分) (2017九上·老河口期中) 如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A . 25°B . 40°C . 50°D . 65°5. (2分)(2020·宁波模拟) 如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A . 148°B . 140°C . 135°D . 128°6. (2分) (2020七下·江阴期中) 如图,,为的角平分线,、分别是和的角平分线,且,则以下与的关系正确的是()A .B .C .D .7. (2分) (2018八上·岳池期末) 点A(3,4)关于x轴对称的点的坐标为()A . (-3,4)B . (4,3)C . (-3,-4)D . (3,-4)8. (2分) (2019七下·常熟期中) 下列各式中,能用完全平方公式因式分解的是()A .B .C .D .9. (2分) (2018九上·运城月考) 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=2018,则AD=()A . 1009B . 2018C . 1009D . 201810. (2分)(2020·河北模拟) 化简,其结果为()A .B .C .D .11. (2分) (2019八上·嘉荫期末) 已知关于x的方程=1的解是非负数,则a的取值范围是()A . a≥﹣1B . a≥﹣1且a≠0C . a≤﹣1D . a≤﹣1且a≠﹣212. (2分) (2020八上·北京期中) 如图,,,则等于()A .B .C .D .二、填空题 (共6题;共8分)13. (1分)已知一个三角形的三边长分别是a+4,a+5和a+6,则a的取值范围是________.14. (2分) (2019八上·天津月考) 在△ABC中,∠A=40°,∠B=60°,则∠C=________°.15. (1分) (2020八上·沭阳月考) 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于________.16. (2分) (2017七下·三台期中) 已知∠A=60°,∠A与∠B的两边分别互相平行,则∠B=________.17. (1分)(2018·惠州模拟) 因式分解:a2﹣6a+9=________.18. (1分) (2020八下·泰兴期中) 若分式的值为零,则 ________.三、解答题 (共8题;共62分)19. (10分) (2017·新化模拟) 计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0 .20. (5分)(2018·南岗模拟) 先化简,再求代数式(1﹣)÷ 的值,其中x=2cos30°﹣tan45°.21. (5分) (2019八上·重庆期末) 解方程(1)(2)22. (2分) (2020八上·蜀山期末) 已知,如图,相交于点,, .求证: .23. (10分) (2020八上·海珠期中) 如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.24. (10分) (2020八上·香洲期末) 如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB,交CE于点F,连接BF.(1)求证:EF=BF;(2)猜想∠AFC的度数,并说明理由.25. (10分) (2019九上·尚志期末) 服装店10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元,进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折销售,结果全部卖掉,而且这批羽绒服总获利不少于12700元,问这批羽绒服至少购进多少件?26. (10分) (2016八上·鄱阳期中) 如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共62分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
江苏省苏州市八年级(上)期末数学试卷
江苏省苏州市八年级(上)期末数学试卷 一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .12.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--3.下列长度的三条线段不能组成直角三角形的是( ) A .1.5,2.5,3 B .1,3,2 C .6,8,10D .3,4,5 4.下列图案属于轴对称图形的是( )A .B .C .D .5.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:3 6.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对 7.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 8.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 9.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL10.计算2263y y x x÷的结果是( ) A .3318y x B .2y x C .2xy D .2xy 二、填空题11.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.12.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.13.若x +2y =2xy ,则21+x y的值为_____. 14.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.15.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.16.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;17.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.18.若代数式321x x -+有意义,则x 的取值范围是______________. 19.若函数y=kx +3的图象经过点(3,6),则k=_____. 20.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.三、解答题21.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.22.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0?(2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积?23.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.24.如图,已知ABC ∆各顶点的坐标分别为()3,2A -,()4,3B --,()1,1C --,直线l 经过点()1,0-,并且与y 轴平行,111A B C ∆与ABC ∆关于直线l 对称.(1)画出111A B C ∆,并写出点1 A 的坐标 . (2)若点()P m n ,是ABC ∆内一点,点1P 是111 A B C ∆内与点P 对应的点,则点1P 坐标 .25.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.28.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .29.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.30.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 2.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x 轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.3.A解析:A【解析】【分析】根据勾股定理的逆定理,分别判断即可.【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形;故选:A.【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D 有一条对称轴,由此即可得出结论.详解:A 、不能找出对称轴,故A 不是轴对称图形;B 、不能找出对称轴,故B 不是轴对称图形;C 、不能找出对称轴,故C 不是轴对称图形;D 、能找出一条对称轴,故D 是轴对称图形.故选D .点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.5.B解析:B【解析】【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:2,所以设a=x ,b=2x ,x ,则x 2+x )2=(2x )2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.6.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.7.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.9.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.10.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.11.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E 表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴-1,∴,∴点E12..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 13.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.15.【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平解析:8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 17.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.18.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x 的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12x ≠-【解析】【分析】 代数式321x x -+有意义,则它的分母2x+1≠0,由此求得x 的取值范围. 【详解】 ∵代数式321x x -+有意义,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.19.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k+=,解得:k=1.故答案为:1.20.8【解析】【分析】【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为604x+,乙做40个所用的时间为40x,列方程为:604x+=40x,解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.三、解答题21.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.22.(1)x>2;(2)x<4 ;(3)2<x<4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积.【详解】由图可知:(1)当x>2时,2x−4>0;(2)当x<4时,-2x+8>0;(3)由(1)(2)可知当2<x<4时,2x−4>0与−2x+8>0同时成立;(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.23.证明见解析.【解析】【分析】欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了.【详解】在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24.(1) (1,2) ; (2) ()2,m n --.【解析】【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出1P .【详解】(1)如图所示:直接通过图形得到1A (1,2)(2) 由题意可得:由于()P m n ,与1P 关于x=-1 对称所以()12,P m n --.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.25.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.四、压轴题 26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点;(2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E (t ,2t +5),点T (t ,2t−1),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.28.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM 与△QCN 全等时,则t 等于1011s 或2s , 故答案为:1011s 或2s . 【点睛】 本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.29.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.30.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠-∠=∠-∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BP BC+=,BF BP BC∴+=,BC BD=,BF BP BD∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,=+,CP BC BP∴=+,BF BC BP=,BC BD∴=+.BF BD BP【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等∆≅∆,是一道中等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF难度的中考常考题.。
江苏省苏州市八年级上学期数学期末考试试卷
江苏省苏州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·阳信开学考) 如下图所示:下列手机软件图标中,是轴对称图形的是()A .B .C .D .2. (2分)(2018·遵义) 如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC,BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为()A . 5B . 4C . 3D . 23. (2分)已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A . 第四象限B . 第三象限C . 第二象限D . 第一象限4. (2分) (2019八上·庆元期末) 庆元大道两侧需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A . 200B . 300C . 400D . 5005. (2分)(2019·桥东模拟) 在等腰△ABC中,AB=AC,D、E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在△ABC的()A . 重心B . 内心C . 外心D . 不能确定6. (2分)在直角坐标系中,点P在直线x+y﹣4=0上,O为原点,则|OP|的最小值为()A . -2B . 2C .D .7. (2分)如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是()A . BD和CE分别为AC和AB边上的中线B . BD和CE分别为∠ABC和∠ACB的平分线C . BD和CE分别为AC和AB边上的高D . ∠ABD=∠BCE8. (2分) (2019八下·腾冲期中) 如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD,AC于点E,O,连接CE,则CE的长为()A . 3B . 3.5C . 2.5D . 2.8二、填空题 (共10题;共10分)9. (1分)(2013·南京) 第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为________.10. (1分)若一个正数的两个不同的平方根为m+1与m﹣3,则这个正数为________.11. (1分)已知等腰三角形一边的长是4cm,另一边的长是7cm,则这个三角形的周长是________12. (1分) (2020八下·西吉期末) 写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式(写出一个即可)________.13. (1分) (2019八下·北京期末) 在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为________.14. (1分) (2019九上·海淀开学考) 将直线平移后经过点(5,),则平移后的直线解析式为________.15. (1分) (2020八上·西青期末) 如图,在△ABC 和△DEF 中,点 B 、F 、C 、E 在同一条直线上,BF = CE , AB / / DE ,请你添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加其他字母及辅助线)16. (1分) (2018九上·宁江期末) 如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为________cm.17. (1分) (2019八上·慈溪期中) 如图,AD平分∠BAC 交BC于点D,DE⊥AB于点E,DF⊥AC于点F,若, DF=2,AC=5,则AB的长是________.18. (1分) (2018八上·无锡期中) 如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为________.三、解答题 (共8题;共86分)19. (10分) (2016八上·扬州期末) 计算题(1)计算:(2)求x的值:20. (10分) (2016七下·郾城期中) 如图,已知火车站的坐标为(2,1),文化宫的坐标为(﹣1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市、医院的坐标.21. (10分) (2019八下·濮阳期末) 如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且 .(1)求证:;(2)求的长度.22. (5分)如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.23. (15分)(2018·鄂州) 甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).24. (11分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③.请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=________.25. (15分)(2017·黄冈) 月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.26. (10分) (2019八下·北京期中) 如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2) AB,AC的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共86分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
苏州市八年级上学期期末数学试卷 (解析版)
苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)- B .()4,5-C .(1,0)D .(8,1)--2.若分式12xx -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .2 3.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=34.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 5.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92° B .88° C .44° D .88°或44° 6.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-7.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA8.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点9.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题11.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.12.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.15.1x -在实数范围内有意义的条件是__________.16.已知22139273m ⨯⨯=,求m =__________.17.等腰三角形中有一个角的度数为40°,则底角为_____________.18.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可) 19.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 20.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.三、解答题21.计算:(1)()03420121+---; (2)1383322+-+. 22.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.24.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题: (1)甲、乙两地相距 km ,轿车比货车晚出发 h ; (2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?25.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.四、压轴题26.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES最大值.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACFSS的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.A解析:A 【解析】 【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论. 【详解】 A .=2,此选项计算正确; B .|﹣3|=3,此选项计算错误;C .=2,此选项计算错误;D .不能进一步计算,此选项错误. 故选A . 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.4.A解析:A 【解析】 【分析】3329a b a b a b a 23a b a ab ab ab a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,3329a b a b a b a 23a b a ab ab ab a ⨯⨯15233ab ab ab =故选:A . 【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.5.A解析:A 【解析】 【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论. 【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.6.A解析:A【解析】【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P P(1+m,3)在第二象限,∴1+m<0,解得: m<-1.故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.8.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D.【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.9.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.12.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n ;∴m +n =﹣2k +b +b =﹣2k +2b =2(﹣k +b )=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m +n 看作一个整体,进行计算,是解题的关键.13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.15.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x>解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.17.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.18.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.19.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 20.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作CP ⊥AB 于点P ,根据题意得此时CP 的值最小;解:作BC 边上的高AF ,∵AB =AC =5,BC =6,∴BF =CF =3,∴由勾股定理得:AF=4,∴S △ABC =12AB •PC =12BC •AF =12×5CP =12×6×4 得:CP =4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.三、解答题21.(1)4;(2)32332. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】 解:(1)原式=2+1+1=4; (2)原式23223=32332. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键. 22.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.23.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =,(2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.24.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴ 3.9234x y =⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.25.BF 的长为【解析】【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AEBEF AEFFE FE=⎧⎪∠=∠⎨⎪=⎩∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴222232BF BD FD BD=+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.四、压轴题26.(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11.③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC≌△AOB,3(,0)Ak-,A在x轴正半轴上,所以BF=OA,所以OF=OB-OF=3 3k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
∥3套精选试卷∥2019年苏州高新区XX名校中学八年级上学期期末检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知A (1,﹣3),B (2,﹣2),现将线段AB 平移至A 1B 1,如果A 1(a ,1),B 1(5,b ),那么a b 的值是( )A .32B .16C .5D .4 【答案】B【分析】利用平移的规律求出a ,b 即可解决问题.【详解】解:∵A (1,﹣3),B (2,﹣2)平移后为A 1(a ,1),B 1(5,b ),∴平移方式为向右平移3个单位长度,向上平移4个单位长度,∴a =4,b =2,∴a b =42=16,故选:B .【点睛】本题主要考查平移变换和有理数的乘方运算,解题的关键是根据点的平移求出a ,b 的值. 2.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( )A .253520x x =-B .253520x x =-C .253520x x =+D .253520x x=+ 【答案】C【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .3.已知a b c 、、为一个三角形的三条边长,则代数式2222a b c ab +--的值( )A .一定为负数B .一定是正数C .可能是正数,可能为负数D .可能为零【答案】A【分析】把代数式分解因式,然后根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行判断.【详解】2222a b c ab +--=(a−b )2−c 2,=(a−b +c )(a−b−c ),∵a +c−b >1,a−b−c <1,∴(a−b +c )(a−b−c )<1,即2222+--<1.a b c ab故选:A.【点睛】本题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.4.如图,CD⊥AB于点D,点E在CD上,下列四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,将其中两个作为条件,不能判定△ADC≌△EDB的是A.①②B.①④C.②③D.②④【答案】C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A:∵CD⊥AB∴∠CDA=∠BDE又∵AD=ED;②∠A=∠BED∴△ADC≌△EDB(ASA)所以A能判断二者全等;B:∵CD⊥AB∴△ADC与△EDB为直角三角形∵AD=ED,AC=EB∴△ADC≌△EDB(HL)所以B能判断二者全等;C:根据三个对应角相等无法判断两个三角形全等,所以C不能判断二者全等;D:∵CD⊥AB∴∠CDA=∠BDE又∵∠A=∠BED,AC=EB∴△ADC≌△EDB(AAS)所以D能判断二者全等;所以答案为C选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.5.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 【答案】A【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案. 【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数, ∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A .【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.6.下列运算中正确的是( )A .623x x x= B .1x y x y-+=-+ C .22222a ab b a b a b a b+++=-- D .11x x y y+=+ 【答案】C【分析】A 、根据同底数幂的除法法则:底数不变,只把指数相减,得出结果,作出判断;B 、分子分母中不含有公因式,故不能约分,可得本选项错误;C 、把分子利用完全平方公式分解因式,分母利用平方差公式分解因式,找出分子分母的公因式+a b ,分子分母同时除以+a b ,约分后得到最简结果,即可作出判断;D 、分子分母中不含有公因式,故不能约分,可得本选项错误.【详解】解:A 、66333x x x x-==,本选项错误; B 、x y x y-++分子分母没有公因式,不能约分,本选项错误; C 、()()()222222a b a ab b a b a b a b a b a b ++++==-+--,本选项正确; D 、11x y ++分子分母没有公因式,不能约分,本选项错误,故选:C .【点睛】本题主要考查了分式的化简,熟练掌握分式的基本性质是解题关键.7.已知2m n +=,mn 2=-,则()()11m n ++的值为( )A .6B .2-C .0D .1【答案】D【分析】根据整式乘法法则去括号,再把已知式子的值代入即可.【详解】∵2m n +=,mn 2=-,∴原式()11221m n mn =+++=+-=.故选:D .8.如图,边长为4的等边ABC ∆在平面直角坐标系中的位置如图所示,点A 在y 轴上,点B ,C 在x 轴上,则点B 的坐标为( )A .()0,2B .()2,0-C .()0,2-D .()2,2【答案】B 【解析】由题意根据等边三角形的性质结合点在平面直角坐标系中的位置进行分析即可得解.【详解】解:∵等边ABC ∆的边长为4,∴BC=4,∵点A 在y 轴上,点B ,C 在x 轴上,∴O 为BC 的中点,BO=2,∴点B 的坐标为()2,0-.故选:B.【点睛】本题考查平面直角坐标系中点的位置的确认,结合等边三角形的性质进行分析是解题的关键.9.如图,△ABC 与△A′B′C′关于直线l 对称,且∠A =78°,∠C′=48°,则∠B 的度数为( )A .48°B .54°C .74°D .78°【答案】B 【解析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°. 解:∵在△ABC 中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC 与△A′B′C′关于直线l 对称,∴∠B=∠B′=54°.故选B .10.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A .32xB .23xC .33xD 3x【答案】D【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:22(2)3BD x x x =-=3DE BD x ∴==故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.二、填空题=+(a≠0,,a、b为实数)的“关联数”.若“关联数”为[3,m-2] 的一11.新定义:[a,b]为一次函数y ax b次函数是正比例函数,则点(1-m,1+m)在第_____象限.【答案】二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m的值,进而确定坐标、确定象限.【详解】解:∵“关联数”为[3,m﹣2]的一次函数是正比例函数,∴y=3x+m﹣2是正比例函数,∴m﹣2=0,解得:m=2,则1﹣m=﹣1,1+m=3,故点(1﹣m,1+m)在第二象限.故答案为:二.【点睛】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m的值.12.将一副三角板如图叠放,则图中∠α的度数为______.【答案】15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.13.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为______米.【答案】1.22×10﹣1.【详解】解:0.00000122=1.22×10-1.故答案为1.22×10-1.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如113237x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,此题设“1ax=,1by=”,得方程3237a ba b+=⎧⎨+=⎩,解得21ab=⎧⎨=⎩,0.51xy=⎧∴⎨=⎩.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做6需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,设甲公司单独完成需x周,乙公司单独完成需y周,则得到方程_______.利用整体思想,解得__________.【答案】116()1491x yx y⎧+=⎪⎪⎨⎪+=⎪⎩1015xy=⎧⎨=⎩【分析】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得分式方程组,换元后得关于a和b 的二元一次方程组,解得a和b,再根据倒数关系可得x和y的值,从而问题得解.【详解】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:116()1491x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,设11b xay==,,原方程化为:()61 491a ba b⎧+⎨+⎩==,解得:110115ab⎧⎪⎪⎨⎪⎪⎩==,∴1015 xy⎧⎨⎩==,故答案为:116()1491x yx y⎧+=⎪⎪⎨⎪+=⎪⎩;1015xy=⎧⎨=⎩.【点睛】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.15.如图,OA =OB ,OC =OD ,∠O=50°,∠D=35°,则∠AEC=________.【答案】60°【分析】本题需先证出△BOC ≌△AOD ,求出∠C ,再求出∠DAC ,最后根据三角形的内角和定理即可求出答案.【详解】在△BOC 和△AOD 中,∵OA=OB ,∠O=∠O ,OC=OD ,∴△BOC ≌△AOD ,∴∠C=∠D=35°.∵∠DAC=∠O +∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC ﹣∠C=180°﹣85°﹣35°=60°.故答案为60°.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意和三角形的内角和定理相结合是本题的关键.16.化简2269x x +-得 . 【答案】23x -. 【解析】试题分析:原式=.考点:分式的化简.17.如图1,将边长为a 的大正方形剪去一个边长为b 的小正方形(a >b ),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a ,b 的等式表示为_________________.【答案】22=()()a b a b a b +--【解析】图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2−b2;图(2)中阴影部分为梯形,其上底为2b ,下底为2a ,高为(a-b )则其面积为(a+b)(a −b),∵前后两个图形中阴影部分的面积,∴()()22a b =a b a b -+-. 故答案为()()22a b =a b a b -+-. 三、解答题18.某农场去年生产大豆和小麦共300吨.采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%.求该农场今年实际生产大豆和小麦各多少吨?【答案】大豆,小麦今年的产量分别为110吨和240吨【分析】设农场去年生产大豆x 吨,小麦y 吨,利用去年计划生产大豆和小麦共300吨.x+y=300,再利用大豆超产10%,小麦超产20%.今年总产量为350吨,得出等式(1+20%)y+(1+1%)x=350,进而组成方程组求出答案.【详解】解:设去年大豆、小麦产量分别为x 吨、y 吨,由题意得:300(110%)(120%)350x y x y +=⎧⎨+++=⎩解得100200x y =⎧⎨=⎩(110%) 1.1100110x +=⨯=吨,(120%)y 1.2200240+=⨯=吨.答:大豆,小麦今年的产量分别为110吨和240吨.【点睛】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键. 19.如图,已知点B 在线段AE 上,分别以AB ,BE 为边长在AE 上方作正方形ABCD ,BEFG ,点P 为AB 中点,连接CF ,CP ,FP ,设AB a ,BE b =.(1)若2a b =,请判断CPF 的形状,并说明理由;(2)请用含a ,b 的式子表示CPF 的面积;(3)若CPF 的面积为6,6AE =,求AB 的长.【答案】(1)等腰三角形,理由见解析;(2)21144a ab +;(3)4 【分析】(1)利用题目所给条件,通过SAS 证明EFP △≌BPC △,可得出结果;(2)根据图像可知,B CPF EFP ABC C D ADCP FE S S S S S =+--正方形梯形△△梯形,分别求出各部分面积可求出最终结果;(3) 若CPF 的面积为6,则211644a ab +=,因式分解后可解出最终结果. 【详解】(1)CPF 为等腰三角形.∵点P 为AB 的中点,∴1122BP AB a ==, ∵BE EF b ==,2a b =, ∴BP EF =,12EP b a a BC =+==, ∵90E CBP ∠=∠=︒,∴EFP △≌BPC △,∴PF PC =, ∴CPF 为等腰三角形.(2)∵211112242EFP S b b a ab b ⎛⎫=+=+ ⎪⎝⎭△, 113224ADCP S a a a a 2⎛⎫=+= ⎪⎝⎭梯形, ()2111222BCFE S b a b ab b =+=+梯形, ∴B CPF EFP ABC C D ADCP FE S S S S S =+--正方形梯形△△梯形2222211113112242444a ab b ab b a a ab ⎛⎫=++-+-=+ ⎪⎝⎭. (3)∵6CPF S =△, ∴211644a ab +=, ∴()164a a b +=, ∵6a b AE +==, ∴1664a ⨯=, ∴4a =,即4AB =.【点睛】本题主要考查三角形综合问题,涉及证明三角形全等,三角形面积的求解,需要熟练掌握全等三角形以及多边形中三角形面积求解的方法,利用数形结合的思想是解题的关键.20.计算:(1) (2)222⨯【答案】(1(2)2-【分析】(1)首先将各项二次根式化到最简,然后进行加减计算即可;(2)首先去括号,然后进行加减计算即可.【详解】(1)原式=36422632--+ =62-;(2)原式=()4233323⨯--+=4323--+=332--【点睛】此题主要考查二次根式的混合运算,熟练掌握运算法则,即可解题.21.定义:在平面直角坐标系中,对于任意两点(,)A a b ,(,)B c d ,若点(,)T x y 满足3a c x +=,3b d y +=,那么称点T 是点A ,B 的融合点.例如:(1,8)A -,(4,2)B -,当点(,)T x y 满是1413x -+==,8(2)23y +-==时,则点(1,2)T 是点A ,B 的融合点,(1)已知点(1,5)A -,(7,7)B ,(2,4)C ,请说明其中一个点是另外两个点的融合点.(2)如图,点(3,0)D ,点(,23)E t t +是直线l 上任意一点,点(,)T x y 是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当DTH ∆为直角三角形时,求点E 的坐标.【答案】(1)点(2,4)C 是点A ,B 的融合点;(2)①21y x =-,②符合题意的点为13,62E ⎛⎫ ⎪⎝⎭,2(6,15)E . 【分析】(1)由题中融合点的定义即可求得答案.(2)①由题中融合点的定义可得21y x =-,.②结合题意分三种情况讨论:(ⅰ)90THD ∠=︒时,画出图形,由融合点的定义求得点E 坐标;(ⅱ)90TDH ∠=︒时,画出图形,由融合点的定义求得点E 坐标;(ⅲ)90HTD ∠=︒时,由题意知此种情况不存在.【详解】(1)解:1723-+=,5743+= ∴点(2,4)C 是点A ,B 的融合点(2)解:①由融合点定义知33t x +=,得33t x =-. 又∵0(23)3t y ++=,得332y t -= ∴33332y x --=,化简得21y x =-. ②要使DTH ∆为直角三角形,可分三种情况讨论:(i )当90THD ∠=︒时,如图1所示,设(,21)T m m -,则点E 为(,23)m m +.由点T 是点E ,D 的融合点,可得33m m +=或(23)0213m m ++-=, 解得32m =,∴点13,62E ⎛⎫ ⎪⎝⎭. (ii )当90TDH ∠=︒时,如图2所示,则点T 为(3,5).由点T 是点E ,D 的融合点,可得点2(6,15)E .(iii )当90HTD ∠=︒时,该情况不存在. 综上所述,符合题意的点为13,62E ⎛⎫⎪⎝⎭,2(6,15)E 【点睛】本题是一次函数综合运用题,涉及到勾股定理得运用,此类新定义题目,通常按照题设顺序,逐次求解. 22.已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知8AB cm =,BC 10cm =,求EC 的长.【答案】3EC =【分析】设EC x =,在△CEF 中用勾股定理求得EC 的长度.【详解】10AF AD ==∵∴由勾股定理得226BF AF AB =-=, 4FC BC BF =-=.设EC x =,则8EF DE x ==-.∴由勾股定理得222EC CF EF∴()22248x x +=-解得3x =∴EC 的长为1.【点睛】本题考查了勾股定理的应用,用代数式表示△CEF 中各边的等量关系式,求出EC 的长.23.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.【答案】 (1)见解析;(2)见解析.【分析】(1)先运用SAS 判定△AED ≌△FDE ,可得DF=AE ,再根据AE=AB=CD ,即可得出CD=DF ;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.24.我县某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图所示.根据图示信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价;(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价;(3)请你依据折线图的变化趋势,对营销点以后的进货情况提出建议;【答案】(1)甲、乙两品牌冰箱的销售量相同;(2)乙品牌冰箱的销售量比甲品牌冰箱的销售量稳定;(3)从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱.【分析】(1)由平均数的计算公式进行计算;(2)由方差的计算公式进行计算;(3)依据折线图的变化趋势,对销售量呈上升趋势的冰箱,进货时可多进.【详解】解:(1)依题意得:甲平均数:910119129106;乙平均数:7108101213106;所以这6个月甲、乙两品牌冰箱的销售量相同(2)依题意得:甲的方差为:2222221310101011101012101063999;乙的方差为:2222224710101081010101210131063;∵134 33所以6个月乙品牌冰箱的销售量比甲品牌冰箱的销售量稳定;(3)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱.【点睛】本题考查了平均数和方差,从折线统计中获取信息的能力,熟悉相关性质是解题的关键.25.若关于x y 、的二元一次方程组24524x y m x y m +=-+⎧⎨+=+⎩的解满足6.8x y x y --⎧⎨+⎩>< (1)_________x y x y -=+=;(用含m 的代数式表示);(2)求m 的取值范围.【答案】(1)1-5m ,3-m ;(2)-5<m <75. 【解析】(1)将方程组两方程相减可得x-y ,两式相加可得x+y ;(2)把x-y 、x+y 代入不等式组可得关于m 的不等式组,求解可得.【详解】(1)在方程组24524x y m x y m +=-+⎧⎨+=+⎩①②中, ①+②,得:3x+3y=9-3m ,即x+y=3-m ,①-②,得:x-y=1-5m ,故答案为:1-5m ,3-m ;(2)∵68x y x y --⎧⎨+⎩><, ∴15638m m ><--⎧⎨-⎩, 解得:-5<m <75. 【点睛】本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于m 的不等式是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.点()()124,,2,y y -都在直线y x k =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能比较【答案】A【分析】先根据直线的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】解:∵直线y x k =-+中,-1<0,∴y 随x 的增大而减小.∵-4<1,∴y 1>y 1.故选:A .【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.如图,在△ABC 中,∠C=90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E ,若∠CBD :∠DBA=2:1,则∠A 为( )A .20°B .25°C .22.5°D .30°【答案】C 【解析】试题分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB ,再根据等边对等角可得∠A=∠DBA ,然后在Rt △ABC 中,根据三角形的内角和列出方程求解即可.解:∵MN 是AB 的垂直平分线,∴AD=DB ,∴∠A=∠DBA ,∵∠CBD :∠DBA=2:1,∴在△ABC 中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选C .考点:线段垂直平分线的性质.3.如图,设k =乙图中阴影部分面积甲图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .112k << D .102k <<【答案】C【解析】由题意可得:22()()()()a a b a a b ak a b a b a b a b --===-+-+,∴11a bbk a a +==+,又∵0a b >>,∴112k <<,∴12k k <<,即112k <<.故选C.4.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是()A .40°B .45°C .50°D .60°【答案】D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.5.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A .“E”是轴对称图形,故本选项不合题意;B .“M”是轴对称图形,故本选项不合题意;C .“N”不是轴对称图形,故本选项符合题意;D .“H”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AC=23,BC=6,则CD 为( )A 2B .2C 3D .3【答案】B 【解析】根据勾股定理就可求得AB 的长,再根据△ABC 的面积=12•AC•BC=12•AB•CD ,即可求得. 【详解】根据题意得:2222(23)(6)32AB BC +=+= ∵△ABC 的面积=12•AC•BC=12•AB•CD,∴CD=•2AC BC AB ==. 故选B . 【点睛】本题主要考查了勾股定理,根据三角形的面积是解决本题的关键. 7.一等腰三角形的两边长x 、y 满23x y -=足方程组23328x y x y -=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或4【答案】A【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案. 【详解】解:解方程组23328x y x y -=⎧⎨+=⎩,得21x y =⎧⎨=⎩,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由112+=知,这样的三角形不存在. 若腰长为2,底边长为1,则三角形的周长为2. 所以,这个等腰三角形的周长为2. 故选:A . 【点睛】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题. 8.计算结果为x 2﹣y 2的是( ) A .(﹣x+y )(﹣x ﹣y ) B .(﹣x+y )(x+y ) C .(x+y )(﹣x ﹣y ) D .(x ﹣y )(﹣x ﹣y )【答案】A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A. (﹣x+y )(﹣x ﹣y )=(- x )2- y 2= x 2﹣y 2,故A 选项符合题意; B. (﹣x+y )(x+y )()()22=y x y x y x -+=-,故B 选项不符合题意;C. (x+y )(﹣x ﹣y )()()22=+2x y x y x xy y -+=---,故C 选项不符合题意;D. (x ﹣y )(﹣x ﹣y )=()()()2222=y x y x y x y x -+--=--=-,故D 选项不符合题意; 故选A. 【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键. 9.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:则成绩发挥最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【详解】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【点睛】本题考查的知识点是方差的意义,方差是用来反映一组数据整体波动大小的特征量,方差越小,数据的波动越小.10.某工程队在城区内铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“……”,设实际每天铺设管道x米,则可得方程400040002012x x-=-,根据此情景,题中用“……”表示的缺失的条件应补为()A.每天比原计划多铺设12米,结果延期20天完成B.每天比原计划少铺设12米,结果延期20天完成C.每天比原计划多铺设12米,结果提前20天完成D.每天比原计划少铺设12米,结果提前20天完成【答案】C【分析】由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:400040002012x x-=-,∴缺失的条件为:每天比原计划多铺设12米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.二、填空题11.命题“三个角都相等的三角形是等边三个角”的题设是_____,结论是_____.【答案】一个三角形的三个角都相等,这个三角形是等边三角形.【解析】如果一个三角形的三个角都相等,那么这个三角形是等边三角形.所以题设是一个三角形的三个角都相等,结论是这个三角形是等边三角形. 考点:命题与定理.12.一次函数y kx b =+(0k ≠,k ,b 是常数)的图像如图所示.则关于x 的方程4kx b +=的解是_______.【答案】x=1【分析】根据一次函数y=kx+b 与y=4轴的交点横坐标即为对应方程的解. 【详解】∵一次函数y=kx+b 与y=4的交点坐标是(1,4), ∴关于x 的方程kx+b=4的解是:x=1 故答案为x=1. 【点睛】本题主要考查了一次函数与一元一次方程的关系,理解两条直线交点的横坐标即为对应方程的解是解答本题的关键.13.在实数范围内分解因式:231x x -+=_______________________.【答案】3535x x ⎛+- ⎝⎭⎝⎭【分析】先解方程231x x -+=0,然后把已知的多项式写成()()12a x x x x --的形式即可. 【详解】解:解方程231x x -+=0,得123535x x +-==, ∴2353531x x x x ⎛+--+= ⎝⎭⎝⎭. 故答案为:353522x x ⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键. 14.若点(,)A m n 和点(3,2)B 关于x 轴对称,则m n 的值是____. 【答案】8-【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,先求出m 、n 的值,再计算(-n )m 的值【详解】解:∵A (m ,n )与点B (3,2)关于x 轴对称,∴m=3,n=2,∴(-n)m=(-2)3=-1.故答案为:-1【点睛】此题主要考查了关于x轴、y轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如图,等边三角形ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为直线l上一动点,则AD+CD的最小值是________.【答案】23【分析】连接CC´,根据△ABC与△A′BC′均为等边三角形即可得到四边形ABC´C为菱形,因为点C关于直线l对称的点是C´,以此确定当点D与点D´重合时,AD+CD的值最小,求出AC´即可.【详解】解:连接CC´,如图所示∵△ABC与△A′BC′均为等边三角形,∴∠A´BC´=∠CAB=60°,AB=BC´=AC,∴AC∥BC´,∴四边形ABC´C为菱形,∴BC⊥AC´,CA=CC´,∠ACC´=180°-∠CAB=120°,∴∠CAC´=12(180°-∠ACC´)=12(180°-120°)=30°,∴∠C´AB=∠CAB-∠CAC´=30°,∵∠A´=60°,∴∠AC´A´=180°-∠C´AB-∠A´=180°-30°-60°=90°,∵点C关于直线l对称的点是C´,∴当点D与点D´重合时,AD+CD取最小值,∴tan30´=3ACAD CD AC+===︒故答案为【点睛】本题考查了轴对称——最短路径问题,等边三角形的性质,菱形的判定与性质,解直角三角形等知识.解题的关键是学会利用轴对称解决问题.16.请用“如果…,那么…”的形式写一个命题______________【答案】答案不唯一【解析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.17.若分式55yy--的值为0,则y=_______【答案】-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式y55y--的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式y55y--的值等于0,则y=-1.故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.三、解答题18.如图,直角坐标系中,点C是直线12y x=上第一象限内的点,点1,0A,以AC为边作等腰,Rt ACB AC BC=,点B在x轴上,且位于点A的右边,直线BC交y轴于点D.(1)求点,B C 的坐标;(2)点A 向上平移m 个单位落在OCD 的内部(不包括边界),求m 的取值范围.【答案】(1)()(),3021B C ,,;(2)122m << 【分析】(1)根据题意,设点2()1,C a a ,由等腰直角三角形的性质进行求解即可得解; (2)过A 作x 轴的垂线交直线OC 于点P ,交直线CD 于Q ,分别以A 点在直线OC 和直线CD 上为临界条件进行求解即可的到m 的值. 【详解】(1)设点2()1,C a a 过点C 作CE x ⊥轴,交点为E由题意得ACE ∆为等腰直角三角形 ∵CE x ⊥轴 ∴AE CE EB == ∵点B 在点A 的右边 ∴112a a -=,解得2a = ∴1(2)C ,,(30)B ,; (2)∵1(2)C ,,(30)B , ∴直线BD 的解析式为3y x =-+如下图,过A 作x 轴的垂线交直线OC 于点P ,交直线CD 于Q∵(1,0)A∴解得P 的坐标为1(1,)2,Q 的坐标为(1,2) ∴122m <<. 【点睛】本题属于一次函数的综合题,包含等腰直角三角形的性质等相关知识点,熟练掌握一次函数综合题的解决技巧是解决本题的关键.19.如图,在ABC ∆中,∠90C =︒.(1)尺规作图:作BAC ∠的平分线交BC 于点D ;(不写作法,保留作图痕迹) (2)已知AD BD =,求B 的度数. 【答案】(1)见解析;(2)30°【分析】(1)首先以A 为圆心,小于AC 长为半径画弧,交AC 、AB 于H 、F ,再分别以H 、F 为圆心,大于12HF 长为半径画弧,两弧交于点M ,再画射线AM 交CB 于D ; (2)先根据角平分线定义和等腰三角形的性质得:∠B=∠BAD=∠CAD ,则∠B=30°. 【详解】解:(1)如图所示:AD 即为所求;(2)∵AD 平分∠BAC , ∴∠BAD =∠CAD , ∵AD =BD , ∴∠B =∠BAD , ∴∠B =∠BAD =∠CAD , ∵∠C =90°,∴∠B =30°. 【点睛】此题主要考查了角平分线的基本作图,以及等腰三角形的性质和三角形的内角和,熟练掌握角平分线的基本作图是关键.20.已知:一次函数(0)y kx b k =+≠的图象经过(0,2),(1,3)M N 两点.求该一次函数表达式. 【答案】y=x+2【分析】将点M 、N 的坐标代入解析式,求出方程组的解即可得到函数表达式. 【详解】将点M 、N 的坐标代入解析式,得23b k b =⎧⎨+=⎩, 解得:21b k =⎧⎨=⎩则该函数表达式为:y x 2=+. 【点睛】此题考查待定系数法求函数解析式,掌握正确的解法即可正确解答. 21.已知,如图所示,在Rt ABC ∆中,90C =∠. (1)作B 的平分线BD 交AC 于点D ; (要求:尺规作图,保留作图痕迹,不写作法.) (2)若6CD =,10AD =,求AB 的长.【答案】(1)答案见解析;(2)1【解析】(1)根据角平分线的尺规作图步骤,画出图形即可;(2)过点D 作DE ⊥AB 于点E ,先证明DE=DC=6,BC=BE ,再根据AD=10,求出AE ,设BC=x ,则AB=x+8,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第2题图) 义务教育阶段学业质量测试 八年级数学 注意事项: 1.本试卷共3大题、28小题,满分100分,考试用时120分钟; 2.答题前,考生务必将自己的姓名,考点名称,考场号、座位号、考试号填写清楚,并用2B铅笔认真正确填涂考试号下方的数字; 3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效. 一、选择题 (本大题10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题的选项代号填涂在答题卡相应位置)
1.若分式231xx的值为零,则等于
A.-l B.1 C.23 D.0 2.已知一次函数bxay)1(的图像如右图所示,那么的取值范围是 A.1a B.1a C.0a D.0a 3.如果ABCDEF△≌,DEF的周长为13,AB+BC=7,则AC的长是 A.3 B.4 C.5 D.6
4.在实数:..12.4,,-2,722,0.6732323232…,|7|3中,无理数的个数是 A.1个 B.2个 C.3个 D.4个 5.以下列各组数为边长,能构成直角三角形的是 A.1、2、3 B.3、4、5 C.32、42、52 D.3、4、5 6.下列说法中错误的是 A.如果一个三角形的三边长为勾股数,那么这个三角形一定是直角三角形 B.每一个实数都可以用数轴上的一个点表示 C.任意实数都有平方根 D.如果直线AB平行于y轴,那么A点和B点的横坐标相等 7.某玩具厂要生产a只吉祥物“欢欢”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前了( )天完成任务. (第9题图) (第12题图) (第17题图) (第18题图) (第10题图)
A.ca B.bacba C.cba D.cbaba 8.在平面直角坐标系中,已知点A的坐标为(8,0),△AOP为等腰三角形且面积为16,则满足条件的点P有 A.4个 B.8个 C.10个 D.12个 9.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交
轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN21的长 为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1), 则a与b的数量关系为 A.6a-2b=1 B.6a+2b=1 C.6a-b=1 D.6a+b=1 10.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 A.37.2分钟 B.48分钟 C.33分钟 D.30分钟 二、填空题 (本大题共8小题,每小题3分,共24分,请把答案填在答题卡相应位置上) 11.38的值为 ▲ . 12.如图,∠ABC=∠DEF,AB=DE,要说明ABCDEF△≌,若以“SAS”为依据,还要添加的条件为 ▲ . 13.已知点P在第二象限,且与坐标轴的距离均为2,则 点P的坐标为 ▲ .
14.已知两边的长分别为8和15,若要组成一个直角三角形,则第三边应该为 ▲ . 15.当a= ▲ 时,关于的方程xaax32=1的根是2.
16.直线y=+b与直线y=32x平行,且与直线y=312x交于y轴上同一点,则该直线 y=+b的解析式为 ▲ . 17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,沿DE所在直线折叠,使 点B恰好与点A重合,若CD=2,则AB的值为 ▲ . 18.如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于点F,BE⊥AC于点E,D是AB的中点,则△DEF的周长是 ▲ . 三、解答题 (本大题10小题,共56分,解答应写出必要的计算过程、步骤或文字说明) A B C
19.计算 (本题满分8分,每小题4分) (1)2332)21()4(4() (2)1292622
xxx
x
20.(本题满分4分) 解方程:xx2321421. 21.(本题满分4分) 如图,在△ABC中,AB=AC,∠BAC=120o, AD是边BC上的中线,且BD=BE,计算∠ADE的度数.
22.(本题满分4分) 如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E. 求证:BC=DC.
23.(本题满分4分) 在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形ABC (顶点是网格线交点的三角形)的顶点A、C的坐标分别为(-4,5)、(-1,3) (1)请在如图所示的网格平面内作出平面直角坐标系,并计算 △ABC的面积; (2)点P在轴上,且△OBP的面积等于△ABC面积的一半, 则点P的坐标是 ▲ .(友情提醒....:当确定好平面直 角坐标系的位置后,请用黑色水笔画图)
24.(本题满分6分) 甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为 20m,他们前进的路程为s(m),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数 图像如图所示,根据图像信息回答下列问题: (1)甲的速度是 ▲ m/h,乙比甲晚出发 ▲ h; (2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之 间的函数关系式; (3)甲经过多长时间被乙追上?此时两人距离B地还有多远?
25.(本题满分5分) 如图所示,一棵8米高的笔直的杉树在台风中被刮断,树顶C落在离树根B点4米处,科研人员要查看断痕A处的情况,在离树根B点1米的D处竖起一个梯子AD(点D、B、C在同一直线上),请问:这个梯子有多长?(结果请保留根号) (备用图)
26.(本题满分6分) 如图,在直角坐标系中,长方形纸片ABCD的边 AB∥CO,点B坐标为(9,3),若把图形按如图所示折叠,使B、 D两点重合,折痕为EF. (1)求证:△DEF为等腰三角形; (2)求折痕EF的长.
27.(本题满分6分) 如图,在等腰直角三角形ABC中,∠A=90º,AB=AC,点D是斜边BC的中点,点E、F分别为AB、AC边上的点,且DE⊥DF. (1)求证:DF=DE; (2)连接EF,若BE=8,CF=6,求△DEF的面积.
28.(本题满分9分) 如图,平面直角坐标系中,直线ABbxy31交y轴于点A(0,1),交 轴于点B.过点E(1,0)作轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n. (1)求直线AB的表达式; (2)求△ABP的面积(用含n的代数式表示); (3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在
同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由. 义务教育阶段学业质量测试 八年级数学参考答案
一、选择题 (每小题2分,共20分) 题1 2 3 4 5 6 7 8 9 10 答A A D C D C D C B A
二、填空题 (每题3分,共24分) 11.2 12.BC=EF或BE=CF 13.(-2,2) 14.17或161 15.35 16.3131xy 17.43 18.10 三、解答题 (本大题10小题,共56分,解答应写出必要的计算过程、步骤或文字说明) 19.(本题满分8分,每小题4分)
(1)2332)21()4(4() =4+(-4)×41 …………………………………………………………3' =4-1 =3 …………………………………………………………4'
(2)1292622
xxx
x
=1)3)(3(22)3(2xxxxx …………………………………………………………2' =132x …………………………………………………………3' =332xx =35xx …………………………………………………………4' 20.(本题满分4分) 解方程:xx2321421
解:2321421xx …………………………………………………………1' 126x …………………………………………………………2' 5x …………………………………………………………3' 经检验:5x是原方程的解,∴原方程的解是5x.……………………………4' 21.(本题满分4分) ∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°, …………………………………………………………1' ∵BD=BE,
∴∠BDE=230180=75°, …………………………………………………………2' ∵AD是BC边上的中线,且AB=AC, ∴∠ADB=90°, ∴∠ADE=15°. …………………………………………………………4' 22.(本题满分4分) ,BCEDCAQ BCEACEDCAACE 即ACBECD …………………………………………………………1' 在ABC和EDC中
EAECACECDACB
ABC≌EDC …………………………………………………………3'
BCDC …………………………………………………………4'
23.(本题满分4分) (1)图略; …………………………………………………………1' 11143242321222ABCS
12431 4 …………………………………………………………2'
(2)点P的坐标为(-4,0)或(4,0) ………………………………………………………4' 24.(本题满分6分) (1)5,1 …………………………………………………………2' (2)S甲=5t,S乙=20 t-20, …………………………………………………………4' (3)当S甲=S乙时,甲被乙追上.根据题意,得:
20205tsts
,解得32034st,34032020(m)
∴甲经过34h被乙追上,此时两人距B地还有340m.……………………………6' 25.(本题满分5分) 设AB=米,则AC=(8-)米 根据题意得2224(8)xx …………………………………………………………2' 解得3x ∴AB=3米 …………………………………………………………3'