土壤污染中重金属铅镉的测定

合集下载

土壤重金属测定ICPMS实验操作步骤

土壤重金属测定ICPMS实验操作步骤

土壤重金属测定ICPMS实验操作步骤土壤重金属是指土壤中含有的对生态环境和人体健康有潜在危害的金属元素,如铅、镉、汞等。

ICPMS(Inductively Coupled Plasma Mass Spectrometry,电感耦合等离子体质谱法)是利用电感耦合等离子体对样品原子化,并通过质谱仪对原子化后的物质进行检测和分析的技术手段,其具有灵敏度高、准确性好等优点,因此被广泛应用于土壤中重金属的测定。

下面是ICPMS实验操作步骤的详细介绍:1.样品准备:- 将土壤样品通过经过筛网的1mm筛分,去除大颗粒杂质。

-取适量的土壤样品,经过粉碎和搅拌均匀。

-将样品称取到称量皿中,用电子天平称量精确的样品质量。

2.样品前处理:-对于含有有机质的土壤样品,可以采用溶解或提取的方式,将有机质溶解或提取出来,一般使用酸或溶剂进行处理。

-如果土壤样品中含有不溶于水的金属元素,可以采用酸溶解或者熔融法进行处理。

-如果需要对土壤样品中的表面附着金属进行分析,可以采用表面洗涤法进行处理。

3.样品稀释:-将前处理后的土壤样品溶液用去离子水进行稀释,将浓度调至合适的范围,以便仪器能够正确测定。

4.仪器准备:-打开ICPMS仪器,并进行预热和漂移校正。

-根据所测定的金属元素种类和浓度范围,选择合适的质谱仪检测模式,并设置参数。

5.样品测量:-采用称取或吸取样品量的方式将处理后的土壤样品溶液加入进样器中。

-调整进样速度和仪器参数,确保进样量和仪器测定范围相适应。

-重复测量多个样品,以确保结果的准确性和可靠性。

6.数据处理:-仪器测得的信号经过质谱仪进行信号转换,得到质谱图。

-根据样品预处理和仪器响应因子,将质谱图中峰面积或峰高与所测金属元素的浓度进行定量计算。

-对得到的数据进行校正和标准化,以得到准确的分析结果。

-分析所得数据可以使用专业的数据处理软件进行处理和统计分析,得到最终的结果。

土壤铅、镉作业指导书

土壤铅、镉作业指导书

土壤铅、镉作业指导书土壤中的铅、镉是常见的重金属污染物,对环境和人体健康都具有潜在的危害。

因此,制定土壤铅、镉作业指导书,对于有效管理和减少土壤重金属污染具有重要意义。

本文将从五个方面详细介绍土壤铅、镉作业指导书的内容和要点。

一、土壤铅、镉的来源和危害1.1 土壤铅、镉的主要来源包括工业废水、废弃物、农药、化肥等。

1.2 铅、镉对土壤的污染会导致土壤质量下降,影响植物生长和品质。

1.3 铅、镉会通过食物链进入人体,对人体健康造成危害,引起多种疾病。

二、土壤铅、镉的检测方法2.1 常用的土壤铅、镉检测方法包括原子吸收光谱法、电感耦合等离子体质谱法等。

2.2 检测前应选择合适的土壤样品采集点,并按照规定的方法采集样品。

2.3 检测结果应及时记录和分析,根据结果制定相应的处理方案。

三、土壤铅、镉的管理方法3.1 土壤铅、镉的管理方法包括生物修复、化学还原、土壤修复等。

3.2 生物修复是利用植物或者微生物对土壤中的重金属进行吸收和转移,减少土壤中的铅、镉浓度。

3.3 化学还原是通过添加还原剂将土壤中的重金属离子还原为不活跃的形式,减少其毒性。

四、土壤铅、镉的预防措施4.1 减少工业废水和废弃物的排放,加强环境监测和管理。

4.2 合理使用农药和化肥,避免过量施用对土壤造成污染。

4.3 定期对土壤进行监测和检测,及时发现和处理土壤铅、镉污染。

五、土壤铅、镉的处理注意事项5.1 处理土壤铅、镉污染时应佩戴防护装备,避免直接接触重金属。

5.2 处理过程中应注意环境保护,避免次生污染。

5.3 处理完成后应对处理区域进行清洁和消毒,确保安全和卫生。

综上所述,土壤铅、镉作业指导书是有效管理和减少土壤重金属污染的重要工具,通过科学规范的操作和管理,可以有效保护环境和人体健康。

希翼相关部门和从业人员能够认真执行指导书的要求,共同维护良好的生态环境。

土壤中重金属铅、镉、铬含量检测

土壤中重金属铅、镉、铬含量检测

土壤中重金属铅、镉、铬含量检测摘要:土壤是环境的重要组成部分,是人类赖以生存的自然环境和农业生产的重要资源。

重金属是指相对密度≧5.0的金属元素,其作为一种持久性污染物已越来越多地被关注和重视。

随着全球经济的快速发展,含重金属的污染物通过各种途径进入土壤,造成土壤中相应重金属元素的富集。

土壤重金属污染不仅降低了农作物产量,也严重危害了人畜的健康。

因而,如何有效解决土壤重金属污染问题已成为影响我国发展的重要任务。

关键词:土壤;铅;镉;铬环境污染研究中特别关注的重金属主要是生物毒性显著的铅、镉、铬等。

含重金属的污染物通过各种途径进入土壤,造成土壤中相应重金属元素的富集。

植物根系被动从土壤中吸收重金属是食物链中重金属污染的主要来源,对人类社会健康可持续发展造成严重危害。

因此,查明土壤中重金属污染物质的含量水平和污染来源,并从源头上加以控制,对实施污染治理具有重要意义。

本文对土壤中重金属铅、镉、铬含量的检测进行了分析。

一、土壤重金属污染的来源土壤重金属污染来源分为自然来源和人类活动来源。

其中,自然来源包括:①土壤自身的来源,土壤成土母质中重金属元素含量不同最终形成的土壤环境背景值也有差异,如矿床附近形成的土壤,其背景值要远高于普通土壤;②大气尘降,森林火灾、火山爆发等过程产生的重金属灰尘漂浮在空气中,随着雨水等最后沉降到土壤中引起土壤重金属污染。

而人类活动造成的污染来源包括:①工业生产造成的污染,主要是开采矿、冶金、炼油、电子制造等产生的工业“三废”对土壤带来的严重的污染;②农业生产污染,农业生产中使用的农药、化肥、污水灌溉及农业废弃物也带来了较大的重金属污染;③交通运输业带来的污染,交通运输过程中会产生大量含有重金属的粉尘和气体,最后逐渐转移到周边的土壤中造成污染。

二、土壤中重金属污染物1、镉。

镉的污染主要来源于铅、锌、铜的矿山和冶炼厂的废水、尘埃和废渣、电镀、电池、颜料、塑料稳定剂和涂料工业的废水等。

土壤污染中重金属铅镉的测定

土壤污染中重金属铅镉的测定

这是贵州省修文县的黄壤剖面,母 质为页岩风化物。它与红壤同处一 个地带,多分布于阴坡或山丘上部。
黄壤是中亚热带湿润地区发育的富 含水合氧化铁(针铁矿)的黄色土 壤。雾日多,湿度大,土体中游离 氧化铁水化,使剖面呈现黄色或蜡 黄色。这类土壤主要分布在川、黔、 湘、闽山丘地区,适种杉木、茶、 天麻等经济植物。
视消解情况,可再加入3 mL 硝酸、3 mL氢氟酸、 1mL 高氯酸,重复上述消解过程。当白烟再次冒尽 且内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖放 内壁,并加入1 mL 盐酸榕液(1+1) 温热溶解残渣。 然后全量转移至100 mL 分液漏斗中,加水至约50 mL 处(石墨炉法为25mL)。
一起,严禁混错。 制样所用工具每处理一份样品后应擦
洗一次,严防交叉污染。
消解步骤:
盐酸消解
硝酸、氢氟酸、 高氯酸消解
加IK、MIBK萃取
火焰原子吸收 GB 17140
盐酸、 硝酸溶 解残渣
石墨炉原子吸收测定 GB17141
准确称取0.至0.0002 g)试样于50 mL 聚四氟乙烯坩埚中。用水润湿后加入 10 mL盐酸,于通风橱内的电热板上低温加热,使样 品初步分解,待蒸发至约剩3 mL 左右时,取下稍冷。
相关标准
《土壤质量 铅、镉的测定 KI-MIBK 萃取火焰 原子吸收分光光度法 》GB/T 17140-1997
《土壤质量 铅、镉的测定 石墨炉原子吸收分 光光度法》 GB/T 17141 -1997
原理(火焰法)
采用盐酸硝酸氢氟酸高氯酸全分解的方法,彻底破 坏土壤的矿物晶格,使试样中的待测元素全部进入 试液中。然后,在约1% 的盐酸介质中,加入适量 的KI,试液中的Pb2+、Cd2+与I 形成稳定的离子缔合 物,可被甲基异丁基甲酮(MIBK) 萃取。

两种测定土壤中铅和镉的方法比较

两种测定土壤中铅和镉的方法比较

Pb(400μg/L):取1mL10mg/L Pb 标准溶液,也是与Cd 的配制方法一样,都是调制到25mL 。

标系空白:取6mL 5%的磷酸氢二铵溶液,用1%硝酸定容至50mL 。

ICP-OES 标准系列配制:通过采用1%的HNO 3溶剂将标准的无机元素的混合溶剂物质分级稀释配标,溶剂标准依次为Cd:0μg/L 、1.00μg/L 、5.00μg/L 、10.00μg/L ;Pb:0μg/L 、10.0μg/L 、20.0μg/L 、100.0μg/L 、200.0μg/L [3]。

(3)样品前处理。

检测人员要谨慎并精确称取经过风干、研磨至粒径<0.149mm(100目)的土壤样品。

它的克数必须在0.1~0.3g(精确至0.0002g)范围内,放入到50mL 聚四氟乙烯坩埚中,然后再通过水物质的沾湿再将5mL 的HCI 加入其中,对样品进行初步分解利用电热板进行加热,在加热时一定要注意温度是在低温的状态下进行加热低温一般是120~140℃,相关人员观察其蒸发状态,如果蒸发到2~3mL 时,停止加热,使其冷却后再加入5mL HNO 3溶剂,4mL 氢氟酸,2mL 高氯酸,然后盖上锅盖,将温度再加到180℃,秒表定时1h, 时间结束后,揭盖,将埚里的硅加热去除,在此过程中,要不停地晃动坩埚,保持除硅效果更好。

若在加热的过程中,出现很厚重的高氟酸白烟的情况,要及时地将盖子盖上,让坩埚埚壁中的黑色有机碳化物充分分解至消失,然后揭盖将埚中高氯酸白烟驱散并使其蒸制的内容物是黏稠的状态,然后再析出小部分的盐状晶体。

观察其消解的状态,继续重复上述的消解过程,这次将氢氟酸减少到2mL ,高氯酸为1mL ,硝酸依然是2mL 。

再次观察白烟是否消1 石墨炉原子吸收光谱法采用的是石墨的材料,将其制作成圆形杯状的原子化器皿,然后在用电发热原子化进行摄取解析的方式。

因检定的试验品能够整体渗入原子化,所以一定程度上会幸免原子浓度在燃烧气体中的稀释,使得分析结果更快一些。

土壤中重金属全量测定方法

土壤中重金属全量测定方法

土壤中重金属全量测定方法重金属是指相对密度大于5的金属元素,在自然界中广泛存在,包括铜、铅、锌、镉、铬、镍、汞等元素。

这些重金属对人类和环境都有较高的毒性,因此土壤中重金属含量的准确测定对环境保护和农产品安全至关重要。

以下将介绍几种常见的土壤中重金属全量测定方法。

1.原子吸收光谱法(AAS):AAS是一种常用的重金属分析方法,其原理是利用重金属原子对特定光波的吸收来测定样品中的重金属含量。

它具有检测限低、准确性高的优点,可以同时测定多个重金属元素。

2.电感耦合等离子体发射光谱法(ICP-AES):ICP-AES是一种高灵敏度和高准确性的重金属分析方法,可测定多种重金属元素。

该方法通过将样品溶解在酸中,利用高温等离子体激发样品中的重金属元素产生特征光谱,然后通过光谱仪测定其相对强度来计算重金属含量。

3.电感耦合等离子体质谱法(ICP-MS):ICP-MS是一种高灵敏度和高选择性的重金属分析方法,具有非常低的检测限。

它通过将样品溶解成离子态,并利用质谱仪测定不同原子质量的离子信号来测定重金属元素的含量。

4.X射线荧光光谱法(XRF):XRF是一种非破坏性的重金属分析方法,可同时测定多个元素。

该方法通过将高能量X射线照射样品,样品中的重金属元素吸收部分射线并重新发出特定能量的荧光X射线,然后通过测定荧光X射线的能量和强度来计算重金属的含量。

5.火焰原子吸收光谱法(FAAS):FAAS是一种常用的重金属分析方法,适用于铜、铅、锌等元素的测定。

该方法通过将样品喷入火焰中,利用重金属原子对特定光波的吸收来测定重金属的含量。

6.石墨炉原子吸收光谱法(GFAAS):GFAAS是一种常用的重金属分析方法,适用于镉、铅等微量元素的测定。

该方法通过将样品溶解在酸中,然后在石墨炉中蒸发溶液,最后利用重金属原子对特定光波的吸收来测定重金属的含量。

总而言之,土壤中重金属全量测定方法多种多样,每种方法都有其特点和适用范围。

在实际应用中,可以根据实际需要选择合适的方法进行测定,并结合不同方法的优点进行分析,以获得准确的重金属含量数据。

土壤中重金属镉的测定步骤

土壤中重金属镉的测定步骤

土壤中重金属镉的测定步骤一、引言土壤是生态系统中的重要组成部分,其中含有多种元素和化合物。

然而,由于人类活动和自然因素的影响,土壤中可能存在着一些有害物质,如重金属镉。

镉是一种有毒的金属元素,对人体健康和环境造成严重危害。

因此,准确测定土壤中镉的含量非常重要。

二、样品处理1. 样品采集首先需要进行样品采集。

在采集过程中应避免受到外界污染和干扰。

一般来说,采用随机取样法或网格取样法来保证样品的代表性。

2. 样品制备将土壤样品进行干燥、研磨、筛选等处理后制成均匀粉末状物质,并将其保存在密封容器中以防止氧化。

三、测定方法1. 原子吸收光谱法(AAS)原子吸收光谱法是一种常用的测定土壤中镉含量的方法。

该方法利用原子吸收光谱仪对样品溶液进行分析。

首先将制备好的土壤样品与酸进行混合,然后加入一定量的标准镉溶液,使样品中的镉离子与标准溶液中的镉离子竞争吸收光谱。

然后将该混合物放入原子吸收光谱仪中,通过测量样品吸收的特定波长的光线来确定土壤中的镉含量。

2. 电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是一种高灵敏度、高分辨率、多元素分析的方法。

该方法利用质谱仪对样品进行分析。

首先将制备好的土壤样品与酸进行混合,然后通过加热和压力处理使其完全溶解。

然后将该混合物放入电感耦合等离子体质谱仪中,通过测量样品中不同元素的质量来确定土壤中镉含量。

3. X射线荧光光谱法(XRF)X射线荧光光谱法是一种快速、无损、准确测定土壤中镉含量的方法。

该方法利用X射线荧光光谱仪对样品进行分析。

首先将制备好的土壤样品放入X射线荧光光谱仪中,然后通过测量样品中不同元素的荧光强度来确定土壤中镉含量。

四、结论以上三种方法都可以用于测定土壤中镉的含量。

在选择方法时,需要考虑到测定结果的准确性、灵敏度和成本等因素。

同时,在进行实验时需要注意安全操作,避免受到有害物质的影响。

简述土壤重金属镉含量测定步骤

简述土壤重金属镉含量测定步骤

简述土壤重金属镉含量测定步骤一、背景介绍土壤是生态系统的重要组成部分,但随着人类活动的增加,土壤中的重金属含量也越来越高。

其中,镉是一种高毒性、易积累的重金属元素,对人体健康和环境造成严重危害。

因此,测定土壤中镉的含量具有重要意义。

二、样品采集和处理1.样品采集在进行土壤镉含量测定前,首先需要采集样品。

一般情况下,应选择生长期较长、未施用化肥和农药的农田作为采样点。

在采样时应选取不同深度(如0-20cm、20-40cm等)和不同位置(如中央、边缘等)的土壤进行混合,并将其装入干燥无菌容器中。

2.样品处理为了保证测定结果准确可靠,需要对采集到的土壤样品进行处理。

首先需要将其空气干燥,并通过筛网过滤去除杂质。

然后将筛选后的土壤粉末通过加水悬浮液法或硝酸提取法进行处理,以便溶解出其中的镉。

三、镉含量测定方法1.原子吸收光谱法原子吸收光谱法是一种常用的土壤镉含量测定方法。

该方法利用镉原子对特定波长的光的吸收来确定样品中镉的含量。

在进行测定前,需要将土壤样品溶解并转化成气态,然后通过电热原子化器将其转化为原子状态。

最后,将样品中的镉原子与特定波长的光进行相互作用,通过检测吸收光线的强度来确定样品中镉的含量。

2.电感耦合等离子体质谱法电感耦合等离子体质谱法是一种高灵敏度、高精度、高分辨率的土壤镉含量测定方法。

该方法利用质谱仪对样品中离子进行分析,并根据其质荷比来确定其中重金属元素(如镉)的含量。

该方法具有快速、准确、灵敏度高等优点,但设备成本较高。

3.荧光免疫分析法荧光免疫分析法是一种新型、快速、准确、灵敏度高且易于操作的土壤镉含量测定方法。

该方法利用荧光标记的抗体特异性识别土壤样品中的镉离子,并通过荧光检测器检测其荧光信号来确定其中镉的含量。

该方法操作简便,结果准确可靠,但需要购买相应的试剂盒。

四、结论通过以上三种方法中的任意一种或多种方法,可以对土壤样品中的镉含量进行测定。

在选择具体的测定方法时,应根据实际情况和需求进行选择,并注意操作规范和安全措施,以保证测定结果准确可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

养分的重要来源之一。
有机质

有机质含量的多少是衡量土壤
肥力高低的一个重要标志,它和矿
物质紧密地结合在一起。在一般耕
地耕层中有机质含量只占土壤干重
的0.5-2.5%
土壤成分复杂,从土壤的化学元素组成来看, 土壤中含有的元素有O、Si、Al、Fe、Ca、 Na、K、Mg、C、H、N、P、S、B、Cu、 Zn、Mo、Co等。
测定
石墨炉原子吸收法参考条件:ቤተ መጻሕፍቲ ባይዱ
测定波长 nm 干燥 ℃/s 灰化 ℃/s 原子化 ℃/s 清除 ℃/s 进样量 ul

283.3 80-100/20
700/20 2000/5 2700/3
10

228.8 80-100/20
500/20 1500/5 2600/3
10
空白试验
用去离于水代替试样,采用和试样相 同的步骤和试剂,制备并进行测定。
不同种类土壤所含物质差异较大,在消解时,应注 意观察,各种酸的用量可视消解情况酌情增减。含 有机物过多的土壤,应增加硝酸量,使大部分有机 物消化完全,再加高氯酸,否则加高氯酸会发生强 烈反应,致使瓶中内容物溅出,甚至发生爆炸,消 解时务必小心。土壤消解液应呈白色或淡黄色(含铁 较高的土壤) ,没有明显沉淀物存在。
这是摄于山东邹县的棕壤剖面, 母质为花岗岩坡积物,耕种多年。 这类土壤集中分布于山东半岛和 辽东半岛沿海一带暖温带湿润地 区,剖面呈鲜艳的棕色,心土粘 粒聚集明显,棱块结构面上多铁 锰胶膜,呈中性,肥力较高,是 我国重要的旱作农业基地,山区 多生长果木。
这是哈尔滨附近黄土性母质发 育的黑土剖面,黑色粒状结构 的腐殖质层厚 50~60 厘米,呈 舌状下伸到灰褐色胶膜明显的 核粒状淀积层中,全剖面都可 见到不同数量的硅粉和球状小 铁子,微酸性, pH5.5~6.5 。
然后加入5 mL 硝酸, 5 mL 氢氟酸,3 mL 高氯酸, 加盖后于电热板上中温加热1 h 左右,然后开盖,继 续加热除硅,为了达到良好的飞硅效果,应经常摇动 坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色 有机物充分分解。待坩埚壁上的黑色有机物消失后, 开盖。驱赶臼烟并蒸至内容物呈粘稠状。
在浓缩试样中铅镉的同时,还达到与大量共 存成分铁铝及碱金属、碱土金属分离的目的 。
原理(石墨炉法)
采用盐酸硝酸氢氟酸高氯酸全分解的方法, 彻底破坏土壤的矿物晶格,使试样中的待测 元素全部进入试液中。
加稀硝酸(1+5)1mL温热溶解残渣,定容至 25mL。
在选择的最佳测定条件下,以磷酸氢二铵为 基改,测定铅、镉的吸光度。
一起,严禁混错。 制样所用工具每处理一份样品后应擦
洗一次,严防交叉污染。
消解步骤:
盐酸消解
硝酸、氢氟酸、 高氯酸消解
加IK、MIBK萃取
火焰原子吸收 GB 17140
盐酸、 硝酸溶 解残渣
石墨炉原子吸收测定 GB17141
准确称取0. 2~0. 5g(石墨炉0.1-0.3g,精确至0.0002 g)试样于50 mL 聚四氟乙烯坩埚中。用水润湿后加入 10 mL盐酸,于通风橱内的电热板上低温加热,使样 品初步分解,待蒸发至约剩3 mL 左右时,取下稍冷。
这是砖红壤剖面,摄于海南 岛福山县,母岩为玄武岩。 成土风华作用非常强烈,原 生矿物几乎分解殆尽,铁铝 大量富集,土层深厚粘重。 粘粒硅铝率 1.5 左右,粘土 矿物以高岭、三水铝石、赤 铁矿为主。
砖红壤是热带雨林、季雨林 下生成的强烈脱硅富铝化的 深厚红色土壤,分布于云南 西双版纳、海南岛、雷州半 岛和台湾西南角地区,适宜 橡胶、椰子、胡椒等生长, 是发展热带经济作物的重要 基地。
温带半湿润地区草原化草甸植 被下发育的具深厚均腐殖质层 的黑色土壤。主要分布在东北 中温带湿润的漫岗平原地区。
这是摄于四川省仁寿县的紫色土剖面, 虽然耕种了多年,剖面上下的形态特 征仍无多大变化,通体为紫色。
紫色土是热带和亚热带由紫色岩类风 化而成的岩成土壤,土层较薄,剖面 分化不明显。紫色土易遭侵蚀,但紫 色岩易风化,土层更新快,因而长期 保持初期发育阶段。土壤有机质积累 不高,但因母质原因,土壤矿质养分 含量较高,因而仍不失为一种良好的 农用土壤,垦殖指数较高。在我国江 南热带、亚热带地区都有分布,但以 四川盆地最为集中。
加高氯酸时一定要等消煮液冷却。
高氯酸对铅的干扰随着酸浓度的增加而加大。因此, 加入试样中的高氯酸量要一致,消化时应尽可能将 高氯酸白烟驱尽,试样消煮时温度不能太高,温度 超过250℃时,高氯酸会大量冒烟,使试样中铅镉 损失。
样品中铜锌含量高时,酌情增加KI量。 注意电热板温度不宜太高(<260℃),否则
相关标准
《土壤质量 铅、镉的测定 KI-MIBK 萃取火焰 原子吸收分光光度法 》GB/T 17140-1997
《土壤质量 铅、镉的测定 石墨炉原子吸收分 光光度法》 GB/T 17141 -1997
原理(火焰法)
采用盐酸硝酸氢氟酸高氯酸全分解的方法,彻底破 坏土壤的矿物晶格,使试样中的待测元素全部进入 试液中。然后,在约1% 的盐酸介质中,加入适量 的KI,试液中的Pb2+、Cd2+与I 形成稳定的离子缔合 物,可被甲基异丁基甲酮(MIBK) 萃取。
这是摄于江西泰和县母质为第四纪红 色粘土的红壤剖面,上部呈鲜艳的棕 红色,底土为红白相间的网纹层,有 的还有褐色坚硬的铁磐,土质粘重, 胶体硅铝率 2.0~2.5 之间,粘土矿物 以高岭为主,并含水云母。是我国中 亚热带常绿阔叶林条件下形成的土壤, 分布在江南各省,大体位于北纬 25 度 ~31 度之间,适宜油茶、柑桔等 多种亚热带经济果木生长。
若国家标准物质测定结果符合标示值,则 本次实验视为可靠有效。
注意事项:
整个实验过程应防止铅镉的污染和损失。
细心细心再细心!
购买的化学试剂最好是优级纯,本底值 要低。
所有试验用玻璃器皿应用硝酸溶液浸泡 过夜,用自来水、纯水多次冲洗干净后 方可使用。
每批样品至少制备2 个以上的空白溶 液。
校准曲线溶液参考浓度
MIBK 中Pb 的浓度
mg/L
0 0.5 1 2 3 5
MIBK 中Cd 的浓度
mg/L
0 0.025 0.05 0.10 0.15 0.25
石墨炉 中Pb的浓度
μg/L
0.0 5.0 10.0 20.0 30.0 50.0
石墨炉 中Cd的浓度
缩分后的土样经风干(自然风干或冷冻干燥)后
除去土样中石子和动植物残体等异物,用木棒(或 玛瑙棒)研压,通过2 mm 尼龙筛(9目或10目,除 去2 mm 以上的砂砾 , 混匀。
用玛瑙研钵将通过2 mm 尼龙筛的土样研磨至全 部通过100 目(孔径0.149 mm) 尼龙筛,混匀后备用。
注意事项 采样时的土壤标签与土壤样始终放在
土壤中铅镉的测定
土壤概述 检测标准讲解
土壤概述
土壤是能产生植物收获 物的地球陆地的疏松表 层,是岩石圈,水圈, 大气圈和生物圈相互进 行物质循环和能量转换 的产物,是在母质(岩 石及其风化物)、气候、 生物、地形、时间等因 素相互作用下形成的自 然体。
土壤是由固体、液体和气体三类物质组成的。 固体物质包括土壤矿物质、有机质和微生物 等。液体物质主要指土壤水分。气体是存在 于土壤孔隙中的空气。
将有机相喷入火焰,在火焰的高温下,铅、镉化合 物离解为基态原子,该基态原子蒸汽对相应的空心 阴极灯发射的特征谱线产生选择性吸收。在选择的 最佳测定条件下,测定铅、镉的吸光度。
当盐酸浓度为1%~2% 、碘化钾浓度为0.1 mol/L 时,甲基异丁基甲酮(MIBK) 对铅、镉 的萃取率分别是99.4% 、99.3% 以上。
检出限( mg/kg ) 铅

GB/T17141-1997 0.1 0.01 GB/T17140-1997 0.2 0.05 (注:取样0.5g,定容至50ml)
主要试剂: 铅镉标准溶液
实验用水 符合GB/T6682规定的一级水 盐酸、硝酸、氢氟酸、高氯酸 磷酸氢二铵(GB/T 17141-1997 ) 碘化钾、甲基异丁基甲酮(MIBK)、抗坏血酸 (GB/T 17140-1997 ) 各种试剂最好使用优级纯 甲基异丁基甲酮(MIBK)水饱和溶液:在分液漏斗中放入 和MIBK 等体积的水,振摇1 min. 静置分层(约3 min) 后弃去 水相,取上层MIBK 相使用。
样品制备 工具: 晾干 白磁盘 磨样 玛瑙研钵(白色瓷研钵 ) 过筛 尼龙筛(10目和100目)。 分装 具塞磨口玻璃瓶、具塞无色聚乙烯
塑料瓶,无色聚乙烯塑料袋或特制牛皮 纸袋。
湿样晾干
摊成2 cm厚的薄层 室内,防阳光直射,
风干后称重 (结果报告要求)
样品制备:
将采集的土壤样品(一般不少于500 g)混匀后用 四分法缩分至约100 g 。
水稻土是农民长期种稻、 耕作、施肥、灌溉影响下 形成的人工水成土壤。主 要成土过程是频繁的氧化 还原作用,它使土壤产生 特殊的剖面形态,即棱块 结构面被覆灰色胶膜,土 内孔隙布满铁锰斑纹。
水稻土主要分布于成都平 原、长江中下游平原。
石灰(岩)土是我国南方亚热带地区 石灰岩母质发育的土壤,多为粘质, 土壤交换量和盐基饱和度均高,土体 与基岩面过渡清晰。但土壤颜色却各 不相同,常见的有红、黄、棕、黑四 种。这是贵阳地区摄的棕色石灰土剖 面,土层厚 50 厘米。表土灰棕色,向 下由暗红棕逐渐过渡为淡红棕,底部 是淡紫灰色石灰岩母质层。这种土壤 以桂、黔、滇三省分布较多。
这是贵州省修文县的黄壤剖面,母 质为页岩风化物。它与红壤同处一 个地带,多分布于阴坡或山丘上部。
黄壤是中亚热带湿润地区发育的富 含水合氧化铁(针铁矿)的黄色土 壤。雾日多,湿度大,土体中游离 氧化铁水化,使剖面呈现黄色或蜡 黄色。这类土壤主要分布在川、黔、 湘、闽山丘地区,适种杉木、茶、 天麻等经济植物。
相关文档
最新文档