高三基础知识天天练3-7. 数学 数学doc人教版

合集下载

高三基础知识天天练 数学7-4人教版

高三基础知识天天练 数学7-4人教版

第7模块第4节[知能演练]一、选择题1.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是() A.异面B.相交C.平行D.不确定解析:由线面平行的性质定理容易推出,该直线应该与交线平行.答案:C2.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题是真命题的是()①若m⊂α,n∥α,则m∥n;②m⊥n,m⊥β,则n∥β;③α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.A.①③B.②③C.③④D.④解析:①中m、n可能异面,②中n可能在平面β内,③中m可能在平面α或β内.答案:D3.下列命题正确的是() A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线与平面α所成的角相等,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直解析:当直线a在平面α内时,它与平面α不平行,但a可以与平面α内的一些直线平行,故选项A错误;两条直线与平面α所成的角相等时,这两条直线可以平行,但也可能相交或异面,故选项B错误;直线a与平面α不垂直,但直线a可以与平面α内的一些直线垂直,故选项D错误,只有选项C正确.答案:C4.给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β. 其中为假命题的是( )A .①B .②C .③D .④解析:①为真,依据的是异面直线的判定法则;②为真,l ,m 在α内的射影为两相交直线l ′,m ′,可知l ′∥l ,m ′∥m ,又n ⊥l ,n ⊥m ,所以n ⊥l ′,n ⊥m ′,所以n ⊥α;③中l 、m 可能平行,也可能相交或异面,为假命题;④由两平面平行的判定定理可知为真命题,故假命题为③.答案:C 二、填空题5.在△ABC 中,AB =5,AC =7,∠A =60°,G 为重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN =________.解析:如下图,在△ABC 中,由余弦定理知BC =39,∵BC ∥α,∴MN ∥BC ,又G 是△ABC 的重心,∴MN =23BC =2393.答案:23936.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.解析:如图所示,连接AC ,易知MN ∥平面ABCD , ∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC , 又∵AP =a3,∴PD AD =DQ CD =PQ AC =23,∴PQ =23AC =223a . 答案:223a三、解答题7.如下图,E 、F 、G 、H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.(1)求证:EG ∥平面BB 1D 1D ; (2)求证:平面BDF ∥平面B 1D 1H .解:(1)取B 1D 1的中点O ,连结GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥GE ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由正方体得BD ∥B 1D 1.如图,连结HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D ,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .8.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解:∵BE ⊥PC ,∴EC =BC 2-BE 2=a 2-2a 23=33a .在Rt △PBC 中,BE 2=EP ·EC ,∴EP =BE 2EC =23a 233a =233a ,∴PE EC =2.当AFFB =2时,可以使EF ∥平面P AD .证明:如下图.在PD 上取一点G ,使PG GD =2,连结EG ,AG ,则有EG 綊23AB綊23CD ,∴EG 綊AF ,∴四边形AFEG 为平行四边形.∴EF ∥AG ,又∵AG ⊂平面P AD ,EF ⊄平面P AD ,∴EF ∥平面P AD .[高考·模拟·预测]1.下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行; ⑤若l 与平面α平行,则l 与α内任何一条直线都没有公共点; ⑥平行于同一平面的两直线可以相交. A .1 B .2 C .3D .4解析:①②中a 可与α相交,③中l ∥α,只能说明有一系列的平行线与l 平行,④中另一条线可能在面内,⑤正确,⑥正确.答案:B2.设m ,n 是平面α内的两条不同直线;l 1、l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析:因m⊂α,l1⊂β,若α∥β,则有m∥β且l1∥α,故α∥β的一个必要条件是m∥β且l1∥α,排除A.因m,n⊂α,l1,l2⊂β且l1与l2相交,若m∥l1且n∥l2,因l1与l2相交,故m与n也相交,故α∥β;若α∥β,则直线m与直线l1可能为异面直线,故α∥β的一个充分而不必要条件是m∥l1且n∥l2,故选B.答案:B3.设α、β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β解析:对于选项A、B、D均可能出现l∥β,而对于选项C是正确的.答案:C4.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误..的为()A.O-ABC是正三棱锥B.直线OB∥平面ACDC.直线AD与OB所成的角为45°D.二面角D-OB-A为45°解析:将原图补为正方体不难得出B为错误,故选B.答案:B5.如下图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q 分别为AE,AB的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值. 解:(1)因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 由于PQ ⊄平面ACD ,DC ⊂平面ACD 从而PQ ∥平面ACD . (2)如下图,连接CQ ,DP .因为Q 为AB 的中点,且AC =BC , 所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC . 因此CQ ⊥EB , 故CQ ⊥平面ABE .由(Ⅰ)知PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形, 故DP ∥CQ ,因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角. 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55. 因此AD 和平面ABE 所成角的正弦值为55. [备选精题]6.如图平面内两正方形ABCD 与ABEF ,点M 、N 分别在对角线AC 、FB 上,且AM ∶MC=FN ∶NB ,沿AB 折成直二面角.(1)证明:折叠后MN ∥平面CBE ;(2)若AM ∶MC =2∶3,在线段AB 上是否存在一点G ,使平面MGN ∥平面CBE ?若存在,试确定点G 的位置.解:(1)如图,设直线AN 与BE 交于点H ,连接CH ,∵△ANF ∽△HNB , ∴FN NB =AN NH ,又AM MC =FN NB , ∴AN NH =AMMC,∴MN ∥CH . 又MN ⊄平面CBE ,CH ⊂平面CBE , ∴MN ∥平面CBE .(2)存在,过M 作MG ⊥AB ,垂足为G ,连接NG , 则MG ∥BC , ∴MG ∥平面CBE .又MN ∥平面CBE ,MG ∩MN =M , ∴平面MGN ∥平面CBE ,即G 在AB 线上,且AG ∶GB =AM ∶MC =2∶3.。

高三基础知识天天练2-11.数学数学doc人教版

高三基础知识天天练2-11.数学数学doc人教版

⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。

高考数学天天练带答案

高考数学天天练带答案

高考数学天天练五1.若集合2{|90}A x x x =-<,⎭⎬⎫⎩⎨⎧∈∈=*Z yZ y y B 4|且,则集合AB 的元素个数为 .2.已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 . 3.某校高一、高二、高三共有3600名学生,其中高一学生1400名,高二学生1200名,高三学生1000名,现用分层抽样的方法抽取样本,已知抽取高一学生数为21,则每个学生被抽到的概率为 . 4.各项都是正数的等比数列{}n a 的公比1≠q ,且653,,a a a 成等差数列,则6453a a a a ++= ____. 5.若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是 .6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,且tan B =则角B 的大小是 .7.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a . 8(第8题图)9.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于或等于a 的概率为 .10. 已知P 是△ABC 内任一点,且满足AP xAB yAC =+,x 、y R ∈,则2y x +的取值范围是 .11.若过点(,)A a a 可作圆2222230x y ax a a +-++-=的两条切线,则实数a 的取值范围是 .12.设首项不为零的等差数列{}n a 前n 项之和是n S ,若不等式22212n n S a a nλ+≥对任意{}n a 和正整数n 恒成立,则实数λ的最大值为 .13.定义在R 上的函数f (x )的图象关于点(43-,0)对称,且满足f (x )= -f (x +23),f (1)=1,f (0)=-2,则f (1)+f (2)+f (3)+…+f (2009)的值为 .14. 己知:函数()f x 满足()()()()f x y f x f y xy x y +=+++,又()'01f =.则函数()f x 的解析式为 .1.3; 2.1-; 3.3200; 4.3; 5.3441≤≤m ; 6.3π或32π; 7.35;8.(4,8); 9.21; 10.6π; 11.(0,2); 123312a a <-<<或.; 13. 15; 14.2.。

高三基础知识天天练化学3单元质量检测人教版

高三基础知识天天练化学3单元质量检测人教版

单元质量检测(时间90分钟,满分100分)第Ⅰ卷(选择题,共48分)一、选择题(本题包括16小题,每小题3分,共48分)1.红珊瑚栖息于200~2000米的海域,产于台湾海峡、南中国海,它与琥珀、珍珠被统称为有机宝石.在中国,珊瑚是吉祥富有的象征,一直用来制做珍贵的工艺品.红珊瑚是无数珊瑚虫分泌的石灰质大量堆积形成的干支状物,其红色是因为在海底长期积淀某种元素,该元素是() A.Na B.Fe C.Si D.Cu解析:红珊瑚是无数珊瑚虫分泌的石灰质大量堆积形成的干支状物,而Fe(OH)3是红褐色物质,NaOH是易溶于水的,Cu(OH)2是蓝色的,硅酸盐也不是红色的,故只有B正确.答案:B2.美国科学家在《Science》上发表论文,宣布发现了铝的“超级原子”结构——Al13和Al14. 已知这类“超级原子”最外层电子数之和为40个时处于相对稳定状态.下列说法中,正确的是() A.Al13、Al14互为同位素B.Al13超原子中Al原子间通过离子键结合C.Al14最外层电子数之和为42,与第ⅡA族元素原子的性质相似D.Al13和Al14都具有较强的还原性,容易失去电子生成阳离子解析:Al13和Al14都是由多个Al原子构成的超原子,不是Al的同位素;Al13超原子中铝原子间是通过金属键结合的,不是离子键;Al14最外层电子数之和为3×14=42个价电子,比稳定结构(40个最外层电子)多2个电子,应与ⅡA族元素性质相似;Al13具有3×13=39个最外层电子,比稳定结构少1个电子,容易得到1个电子,应与卤素性质相似,具有较强的氧化性.答案:C3.如图所示装置,试管中盛有水,气球a盛有干燥的固体过氧化钠颗粒,U形管中注有浅红色的水已知,过氧化钠与水反应是放热的.将气球用橡皮筋紧缚在试管口,实验时将气球中的固体颗粒抖落到试管b的水中,将发生的现象是()A.U形管内红色褪去B.试管内溶液变红C.气球a被吹大D.U形管水位d<c解析:2Na2O2+2H2O===4NaOH+O2↑,因该反应生成O2且放出热量,故气球变大,U形管内液面c端下降,d端上升,故C 正确,D错误;该反应是在试管内发生的且无酚酞,故A、B均错误.答案:C4.按下图装置通入X气体,并在管P处点燃,实验结果是澄清石灰水变浑浊,则X、Y可能是()A.H2和Fe2O3B.CO和CuOC.H2和Na2CO3D.CO和Na2CO3解析:能使澄清石灰水变浑浊的气体应为CO2,可以是CO与CuO在加热条件下反应产生的.答案:B5.下列各组溶液,不另加其他试剂就可以将它们分别开的是() A.NaCl,HCl,NaAlO2,NaHCO3B.Na2SO4,KNO3,(NH4)2SO4,MgCl2C.FeCl3,NaOH,AlCl3,HNO3D.AgNO3,NaCl,Na2SO4,NaI解析:不另加试剂鉴别多种物质有两种主要方法,其一是利用物理性质(主要是颜色)鉴别出其中的一种或几种,再以这种物质作为试剂,看能否区别出余下的物质;其二是假设其中的一种为已知,并以它作为试剂,看能否鉴别余下的物质.本题C中FeCl3呈棕黄色,将其加入其余三种物质中有红褐色沉淀产生的是NaOH,再将NaOH加入其他两种溶液中,有白色沉淀生成的是AlCl3,无变化的是HNO3.答案:C6.铁氧体(Fe3O4) 法是处理含铬废水的常用方法.其原理是:用FeSO4把废水中Cr2O2-7还原为Cr 3+,并通过调节废水的pH ,使生成物组成符合类似于铁氧体(Fe 3O 4或Fe 2O 3·FeO)的复合氧化物(Cr x +3Fe +32-x O 3·Fe +2O). 处理含1 mol Cr 2O 2-7废水至少需要加入a mol FeSO 4·7H 2O.下列结论正确的是( )A .x =1,a =5B .x =0.5,a =8C .x =2,a =10D .x =0.5,a =10解析:据Cr 原子守恒,复合氧化物(Cr x +3Fe +32-x O 3·Fe +2O)的物质的量为2x mol ,由Fe 原子守恒有2x ×(3-x )=a ,再根据电子守恒得2x×(2-x )=1×6,联立解得x =0.5,a =10,故选D.答案:D7.下列各选项均有X 、Y 两种物质,将X 缓缓滴入(通入)Y 溶液中,无论X 是否过量,均能用同一离子方程式表示的是( )解析:A 项中X 33CO 2-3+2H+===CO 2↑+H 2O.B 项中,X 不足时,反应为AlO -2+4H +===Al 3++2H 2O ;X 过量时,反应为AlO -2+H++H 2O===Al(OH)3↓.C 项中,X 不足时,反应为2Fe 3++S 2-===2Fe 2++S ↓;X 过量时,反应为2Fe 3++3S 2-===2FeS ↓+S ↓. D项中无论CO 2过量与否,反应均为CO 2++答案:D8.一定体积CO 2和O 2的混合气体通过足量的Na 2O 2后,所得气体体积变为原来的3/4,则CO 2在原混合气体中的体积分数为( )A .25%B .40%C .50%D .75%解析:设原有混合气体共4体积,则反应后气体减少1体积.由2CO2+2Na2O2===2Na2CO3+O2ΔV2 1 1V(CO2) 1所以V(CO2)=2φ(CO2)=2/4×100%=50%答案:C9.俄罗斯西伯利亚研究人员开发出一种生物活性吸附剂,可以吸附水中的几乎全部微生物和噬菌体.据俄《科学信息》杂志报道,这种新的吸附剂由成本低廉、环保性能好的棉纤维素和主要成分为氢氧化铝的勃姆石制造而成. 下列有关说法中不.正确的是() A.Al(OH)3既能够与盐酸反应又能够与NaOH溶液反应B.纤维素和淀粉不是同分异构体C.纤维素能够与醋酸发生酯化反应D.实验室中Al(OH)3可以由偏铝酸盐和氨水制备解析:Al(OH)3具有两性,可与酸或强碱反应;其实验室制备方法是用铝盐与弱碱氨水反应(氢氧化铝不溶于氨水);纤维素与淀粉都是高分子化合物,可用[(C6H10O5)n]表示,但其聚合度(n)不同,所以不是同分异构体;纤维素中分子中存在醇羟基,所以可以发生酯化反应.答案:D10.下列各组离子一定能大量共存的是() A.在含大量Fe3+的溶液中:NH+4、Na+、Cl-、SCN-B.在强碱性溶液中:Na+、K+、AlO-2、CO2-3C.在c(H+)=10-13 mol/L的溶液中:NH+4、Al3+、SO2-4、NO-3D.在pH=1的溶液中:K+、Fe2+、Cl-、NO-3解析:A项中Fe3+与SCN-反应;B项中在有OH-时该组离子能共存;C项中溶液中OH-与NH+4作用生成NH3·H2O;D项中溶液中有H+时NO-3会将Fe2+氧化,故只有B符合题意.答案:B11.托盘天平的两盘中各放一只盛有等体积、等物质的量浓度盐酸的小烧杯,调整天平平衡后向两烧杯中分别加入等质量的Fe粉和Zn粉,下列现象不.可能出现的是() A.开始天平加锌的一端上升B.最终天平加锌的一端上升C.最终天平仍平衡D.最终加铁的一端上升解析:本题考查金属的化学性质,较难题.如果酸过量,由于锌的活动性大于铁,开始时锌产生氢气的速度快,加锌的一端上升,A对;但最终加锌的一端的增重大于加铁的一端的增重,最终加铁的一端上升,D对;如果金属过量,则加锌的一端和加铁的一端增重相同,最终天平仍平衡,C对.答案:B12.有两瓶失去标签的物质的量浓度相同的Na2CO3和NaHCO3稀溶液.下列鉴别方法和所得到的结论不.正确的是() A.取少量未知溶液,分别滴加Ba(NO3)2溶液,有沉淀生成的为Na2CO3溶液B.取少量未知溶液,分别滴加CaCl2溶液,有沉淀生成的为Na2CO3溶液C.分别滴加酚酞试液,红色较深的是Na2CO3溶液D.用pH试纸测定两溶液的pH,pH较小的为Na2CO3溶液解析:Ba(NO3)2、CaCl2均能与Na2CO3反应产生白色沉淀,而均不能与NaHCO3反应,故A、B正确;Na2CO3的碱性比NaHCO3的碱性强,pH大,故C正确,D错误.答案:D13.有a、b、c、d、e 5种金属.已知:①e的氧化产物比d的氧化产物氧化能力强;②a投入e的盐溶液可得e的单质,而c投入e的盐溶液却不能获得e的单质;③在以a、d 为极板形成的原电池中,d极上发生还原反应;④e投入b的盐溶液中,在e的表面有b析出;⑤c的碳酸盐的溶解度大于它的酸式碳酸盐.由此可推知五种金属的活动性由强到弱的顺序为() A.adbec B.cadeb C.aedbc D.cabed解析:金属的活动性:①e<d,②a>e,③a>d,④e>b,而据⑤判断c应为碱金属元素,故c最活泼,综合分析比较得出:c>a>d>e>b,故选B.答案:B14.将5.4 g Al投入到200.0 mL 2.0 mol/L的某溶液中有氢气产生,充分反应后有金属剩余.该溶液可能为() A.HNO3溶液B.Ba(OH)2溶液C.H2SO4溶液D.HCl溶液解析:n(Al)=5.4 g27 g/mol=0.2 mol,n(H2SO4)=0.4 mol,n(HCl)=0.4 mol,但H2SO4是二元酸,而HCl是一元酸,和0.2 mol Al反应,H2SO4过量,HCl不足,n[Ba(OH)2]=0.4 mol,可知与Al反应时,Ba(OH)2过量不会有金属剩余.A中Al与HNO3反应无氢气产生,B中Ba(OH)2过量,2Al+2OH-+2H2O===2AlO-2+3H2↑,C中H2SO4过量,所以选D.答案:D15.将铁片投入下列溶液中,不放出气体,并且Fe片质量减轻的是()A.CuSO4B.H2SO4 C.AgNO3 D.FeCl3解析:A项中Fe置换出Cu而使Fe片质量增大;B项中产生气体;C项中Fe置换出Ag而使Fe质量增大;D项发生反应:Fe+2FeCl3===3FeCl2而符合条件,故选D.答案:D16.下列实验操作正确的是() A.向过量稀硫酸中加入除去油污的废铁屑,是制备硫酸亚铁的可行方案B.向碳酸钠粉末中加入乙二酸溶液,生成大量气泡,说明乙二酸的酸性比碳酸强C.向铝屑与硫酸反应后的溶液中加入氢氧化钠溶液,是制备氢氧化铝的最佳方案D.在测定硫酸铜晶体中结晶水含量时,将CuSO4晶体加热至晶体完全变白色后,在空气中冷却后称量解析:过量稀硫酸与废铁屑(含氧化铁)反应生成的硫酸亚铁中混有硫酸铁,产品不纯,应加入过量铁屑,A错;根据强酸制弱酸原理知,乙二酸与碳酸钠反应生成碳酸,碳酸分解产生二氧化碳和水,B正确;硫酸与铝反应生成硫酸铝,再与氢氧化钠溶液反应生成氢氧化铝,因为氢氧化铝溶于氢氧化钠溶液,不易控制加入氢氧化钠溶液的量,C错;硫酸铜在空气中冷却时吸收空气中水分,使测定硫酸铜晶体中结晶水含量偏低,D错.答案:B第Ⅱ卷(非选择题,共52分)二、非选择题(本题包括6小题,共52分)17.(8分)国务院强调“南水北调”工程必须坚持“三先三后”的原则.在调水工程中,沿途工业污水的任意排放是造成水质恶化的最大隐患.检测某工厂废液中,含有大量的Mg2+、Al3+、Cu2+、Ag+.试分析回答下列问题:(1)该废液中可能大量存在的一种阴离子是________(选填序号).A.SO2-4B.NO-3C.Cl-D.CO2-3(2)检验废液中铝元素的含量,需将其从废水样品中分离出来,所用的试剂可以是________,铝元素发生变化的离子方程式是______________________.(3)为了回收废液中的金属银,某同学设计了如下方案:若依该方案获得银108 g ,为保证不污染环境和氯气的循环利用,理论上应提供标准状况下的氢气________L.解析:(1)SO 2-4、Cl -与Ag +不共存;CO 2-3与Cu 2+、Ag +、Mg 2+、Al 3+都不共存.(2)利用Al(OH)3的两性将Al 元素从废水样品中分离出来.(3)根据题中转化关系图,2Ag ~Cl 2~H 2 即n (H 2)=12n (Ag)=12×108 g 108 g/mol =0.5 molV (H 2)=0.5 mol ×22.4 L/mol =11.2L答案:(1)B (2)NaOH 溶液 Al 3++4OH -===AlO -2+2H 2O (3)11.218.(8分) KHCO 3溶液中含溶质20 g ,加入一定质量的单质或化合物X ,恰好使溶液中溶质只有K 2CO 3,请你填写出X 可能的化学式和质量.(1)______________________________ (2)______________________________ (3)______________________________ (4)______________________________解析:要让KHCO 3转化为K 2CO 3,则应加入碱或能生成碱的物质,再考虑不引入新的杂质,则应加入K 或K 的化合物. 故可加入K 、K 2O 、KOH 、K 2O 2或KO 2等物质.答案:(1)K 7.8 g (2)K 2O 2 11 g (3)K 2O 9.4 g (4)KOH 11.2 g(若考虑KO 2也正确)19.(10分)中学化学中几种常见物质的转化关系如下图所示:将D 溶液滴入沸水中可得到以F 为分散质的红褐色胶体. 请回答下列问题:(1)红褐色胶体中F 粒子直径大小的范围:________.(2)A 、B 、H 的化学式:A__________、B__________、 H________.(3)①H 2O 2分子的电子式为______________. ②写出C 的酸性溶液与双氧水反应的离子方程式: __________________________________.(4)写出鉴定E 中阳离子的实验方法和现象:________________________________. (5)在C 溶液中加入与C 等物质的量的Na 2O 2,恰好使C 转化为F ,写出该反应的离子方程式:____________________________.解析:以红褐色胶体F 是Fe(OH)3为突破口,再根据Fe(OH)3的生成和性质可推知:A 为Fe ,B 为FeS ,C 为FeSO 4,D 为Fe 2(SO 4)3,E 为(NH 4)2SO 4,H 为稀H 2SO 4.答案:(1)1~100 nm (2)Fe FeS H 2SO 4(稀) (3)①H ·×O ¨¨∶O ¨¨·×H②2Fe 2++H 2O 2+2H +===2Fe 3++2H 2O(4)取少量E 于试管中,用胶头滴管滴入NaOH 溶液,加热试管,在试管口放一湿润的红色石蕊试纸,观察到红色石蕊试纸变蓝,证明E 中有NH +4存在(5)4Fe 2++4Na 2O 2+6H 2O===4Fe(OH)3↓+O 2↑+8Na +20.(8分)等物质的量混合的NaHCO 3和KHCO 3的混合物4.60 g ,与1.00 mol/L 的盐酸反应.(1)试分析,欲求标准状况下生成的CO 2气体的体积,还需要什么数据________(用a 表示,并注明单位).(2)利用所确定的数据,求标准状况下CO 2气体的体积(填写下表):(3)若NaHCO 33标准状况下生成的CO 2气体的体积大于________L ,小于________L.解析:(1)欲求标准状况下生成CO 2气体的体积,还需知道盐酸的体积.(2)由题干数据知n (NaHCO 3)=n (KHCO 3)=0.0250 mol ,则n (HCO -3)=0.0500 mol ,当盐酸量不足时,n (HCl)<0.0500 mol ,即a<0.0500 L ;若盐酸足量,则a ≥0.0500 L ,产生CO 2气体体积分别是27.4a L 、1.12 L.(3)当NaHCO 3与KHCO 3物质的量不相等时,若全部是NaHCO 3产生CO 2的量最多,当全部是KHCO 3时,产生CO 2的量最少,故生成CO 2的体积22.4×4.60100 L<V <4.60×22.484L ,即1.03 L<V<1.23 L.答案:(1)盐酸的体积a L(2)(3)1.0321.(9分)铁是人类必需的微量元素,治疗缺铁性贫血的常见方法是服用补铁药物,又已知:氧化性Cl2>Fe3+>(SCN)2.“速力菲”主要成分:琥珀酸亚铁,呈暗黄色)是市场上一种常见的补铁药物.该药品不溶于水但能溶于人体中的胃酸.某同学为了检测“速力菲”药片中Fe2+的存在,设计并进行如下实验:(1)试剂1是________,试剂2是________,加入新制氯水后溶液中发生的离子反应方程式是______________________________;(2)加入试剂2后溶液中颜色由淡黄色转变为淡红色的原因为_____________________.(3)该同学猜想红色溶液变为无色溶液的原因是溶液中的Fe3+被还原为Fe2+,你认为该同学的猜想合理吗?______________________________________.若你认为合理,请说明理由(若你认为不合理,该空不用作答)______________________________________.若你认为不合理请提出你的猜想设计一个简单的实验加以验证(若你认为合理,该空不用作答)______________________________.解析:本题考查Fe2+的还原性及Fe3+的鉴别.Fe2+的溶液为浅绿色,由于Fe2+极易被O2、Cl2等氧化而变为黄色的Fe3+溶液,Fe3+通常由SCN-来检验:Fe3++3SCN-===Fe(SCN)3(红色溶液).由题给信息氧化性Cl2>Fe3+>(SCN)2知:当向含Fe2+及SCN-的溶液中通Cl2时,2Fe2++Cl2===2Fe3++2Cl-,若Cl2过量:2SCN-+Cl2===2Cl-+(SCN)2.答案:(1)稀盐酸KSCN溶液2Fe2++Cl2===2Fe3++2Cl-、Fe3++3SCN-===Fe(SCN)3(2)少量的Fe2+转化为Fe3+,加入KSCN后显红色(3)不合理,我的猜想是Fe(SCN)3中的SCN-被过量氯水氧化设计的实验为在褪色后的溶液中加入FeCl3溶液,仍不变红色(或在褪色后的溶液中加入KSCN溶液,变红色) 22.(9分)黄铜矿(CuFeS2)是制取铜及其化合物的主要原料之一,还可制备硫及铁的化合物.(1)冶炼铜的反应为:8CuFeS 2+21O 2=====高温8Cu +4FeO +2Fe 2O 3+16SO 2若CuFeS 2中Fe 的化合价为+2,反应中被还原的元素是________(填元素符号). (2)上述冶炼过程产生大量SO 2.下列处理方案中合理的是________(填代号). a .高空排放 b .用于制备硫酸c .用纯碱溶液吸收制Na 2SO 3d .用浓硫酸吸收(3)过二硫酸钾(K 2S 2O 8)具有强氧化性,可将I -氧化为I 2:S 2O 2-8+2I -===2SO 2-4+I 2通过改变反应途径,Fe 3+、Fe 2+均可催化上述反应.试用离子方程式表示Fe 3+对上述反应催化的过程.________、________(不必配平)(4)利用黄铜矿冶炼铜产生的炉渣(含Fe 2O 3、FeO 、SiO 2、Al 2O 3)可制备Fe 2O 3.方法为: ①用稀盐酸浸取炉渣,过滤.②滤液先氧化,再加入过量NaOH 溶液,过滤,将沉淀洗涤、干燥、煅烧得Fe 2O 3. 据以上信息回答下列问题:a .除去Al 3+的离子方程式是________.b .选用提供的试剂,设计实验验证炉渣中含有FeO.提供的试剂:稀盐酸 稀硫酸 KSCN 溶液 KMnO 4溶液 NaOH 溶液 碘水 所选试剂为________.证明炉渣中含有FeO 的实验现象为____________________________________. 解析:(1)按照题给化学方程式,氧气中氧的化合价降低,铜的化合价也降低,因此被还原的元素有铜和氧.若按照量的关系,21 mol 氧气反应时得到84 mol 电子,而铁失去4 mol 电子,硫失去96 mol 电子,根据得失电子守恒,铜应得到16 mol 电子.(2)要综合考虑二氧化硫的性质和环境保护,高空排放会引起大气污染;二氧化硫可与氧气催化氧化生成三氧化硫,进而与水结合生产硫酸;亚硫酸的酸性比碳酸强,因此可用纯碱来吸收制取Na 2SO 3;浓硫酸不能氧化二氧化硫,因此不能用浓硫酸吸收二氧化硫.(3)要考虑常见的氧化剂和还原剂之间的反应,因为Fe 3+可以氧化I -生成Fe 2+,而亚铁离子可以被过二硫酸钾(K 2S 2O 8)氧化又生成Fe 3+,这就是催化的机理.(4)要考虑氢氧化铝的两性,用过量的氢氧化钠即可除去铝离子;二价铁具有还原性,而高锰酸钾具有氧化性,通过高锰酸钾的颜色变化即可证明FeO 的存在.答案:(1)Cu 、O (2)b 、c (3)2Fe 3++2I -===2Fe 2++I 2S 2O 2-8+2Fe 2+===2SO 2-4+2Fe 3+(离子方程式不配平也可)(4)a.Al3++4OH-===AlO-2+2H2Ob.稀硫酸、KMnO4溶液稀硫酸浸取炉渣所得溶液使KMnO4溶液褪色。

高三基础知识天天练2-3. 数学 数学doc人教版

高三基础知识天天练2-3. 数学 数学doc人教版

第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。

高三基础知识天天练3-3. 数学 数学doc人教版

高三基础知识天天练3-3. 数学 数学doc人教版

第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。

高三基础知识天天练 数学检测4.人教版

高三基础知识天天练 数学检测4.人教版

单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+131解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+131]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13→.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4-π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λPA →+PB →化简即得-PC →=λPA →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i , ∴⎩⎨⎧a +6503-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12)①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12a d =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210. (2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13OB →-OA →)=13OB →+23OA →=23a +13.同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ)=12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。

高三基础知识天天练2-9. 数学 数学doc人教版

高三基础知识天天练2-9. 数学 数学doc人教版

第2模块 第9节[知能演练]一、选择题1.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )A .25元B .20.5元C .15元D .12.5元解析:每件获利100(1+25%)×0.9-100=100(1.25×0.9-1)=12.5元. 答案:D2.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种债券面值为1000元,买入价为960元,一年到期本息之和为1000元;C 种面值为1000元,半年到期本息和为1020元.设三种债券的年收益分别为a ,b ,c ,则a ,b ,c 的大小关系是( )A .a =c <bB .a <b <cC .a <c <bD .c <a <b解析:设年初为1000元,则A 种债券收益40元,B 种债券收益1000960×40≈41.67元.C 种债券收益为20+10201000×20=40.4元.∴b >c >a . 答案:C3.在一次数学试验中,运用图形计算器采集到如下一组数据:则x ,y ( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx解析:由表格数据逐个验证,知模拟函数为y =a +b x . 答案:B4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000)11%·x (x >4000). 如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.答案:C 二、填空题5.计算机的价格大约每3年下降23,那么今年花8100元买的一台计算机,9年后的价格大约是________元.解析:设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-(13)13,∴9年后的价格y =8100[1+(13)13-1]9=8100×(13)3=300(元).答案:3006.如图是一份统计图表,根据此图表得到的以下说法中,正确的是________.①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年; ③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.解析:由题意,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故①正确;“生活费收入指数”在2000年~2001年最陡,故②正确;“生活价格指数”在2001年~2002年上涨速度不是最快的,故③不正确;由于“生活价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故④正确.答案:①②④ 三、解答题7.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如下图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图象得f (1)=18=k 1,g (1)=k 2=12,f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元, 则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20)=-18(t -2)2+3.所以当t =2,即x =16时,投资债券16万元,股票4万元时,收益最大,y max =3万元. 8.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.∵x ∈N *,∴x ≥3,∴3≤x ≤6,x ∈N *, 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0, 上述不等式的整数解为2≤x ≤20(x ∈N *), ∴6<x ≤20(x ∈N *). 故y =⎩⎪⎨⎪⎧50x -115 (3≤x ≤6,x ∈N *)-3x 2+68x -115 (6<x ≤20,x ∈N *), 定义域为{x |3≤x ≤20,x ∈N *}.(2)对于y =50x -115(3≤x ≤6,x ∈N *). 显然当x =6时,y max =185(元), 对于y =-3x 2+68x -115=-3(x -343)2+8113(6<x ≤20,x ∈N *).当x =11时,y max =270(元).∵270>185,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.[高考·模拟·预测]1.某种细胞在培养过程中正常情况下,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下:( )A .200B .220C .240D .260解析:由表格中所给数据可以得出n 与t 的函数关系为n =2t 20,令n =1000,得2t20=1000,又210=1024,所以时刻t 最接近200分,故选A.答案:A2.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保证环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年解析:由题知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:C3.某市出租车收费标准如下: 起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意可得: f (x )=4.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.解析:由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b 为单调减函数,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×32+12=3π.答案:3π5.如右图,一个铝合金窗分为上、下两栏,圆周框架和中间隔档的材料为铝合金,宽均为6 cm ,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28800 cm 2,设该铝合金窗的宽和高分别为a (cm),b (cm),铝合金窗的透光部分的面积为S (cm 2).(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? 解:(1)∵铝合金窗宽为a (cm),高为b (cm),a >0,b >0, ∴ab =28800. ①又设上栏框内高度为h (cm),下栏框内高度为2h (cm),则3h +18=b ,∴h =b -183,∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×b -183=(a -16)(b -18)=ab -2(9a +8b )+288 =28800-2(9a +8b )+288 =29088-2(9a +8b ). (2)∵9a +8b ≥29a ·8b=29×8×28800=2880,当且仅当9a =8b 时等号成立,此时b =98a ,代入①得a =160,从而b =180,即当a =160,b =180时,S 取得最大值.答:铝合金窗的宽为160 cm ,高为180 cm 时,可使透光部分的面积最大.[备选精题] 6.两县城A 和B 相距20 km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(Ⅰ)将y 表示成x 的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由.解:(Ⅰ)根据题意∠ACB =90°,AC =x km ,BC =400-x 2 km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y =4x 2+k400-x 2(0<x <20).又因为垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065,所以4(102+102)2+k400-(102+102)2=0.065, 解得k =9,所以y =4x 2+9400-x 2(0<x <20).(Ⅱ)因为y ′=-8x 3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2.由y ′=0解得x =410或x =-410(舍去), 易知410∈(0,20).y ,y ′随xy最小值=y|x=410=116,此时x=410,故在弧AB上存在一点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=410 km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3模块 第7节[知能演练]一、选择题1.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A .60°B .45°或135°C .120°D .30°解析:∵a 2-c 2+b 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0°<C <180°,∴C =60°.答案:A2.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为 ( )A.85B.58C.53D.35解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.答案:D3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A 等于( )A .45°B .30°C .120°D .15°解析:由S △ABC =14(b 2+c 2-a 2)=12bc sin A得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°.答案:A4.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33D.32解析:由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ×BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.答案:C 二、填空题5.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是________.解析:如图所示,该问题转化为已知△ABC 中BC =3,AC =3,B =30°,求AB 的长.由正弦定理AC sin B =BC sin A 可求得角A ,进而可求出角C 再由AB sin C =ACsin B可求得AB ,即x . 答案:3或2 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.解析:由余弦定理变形得cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32.又∵B ∈(0,π),∴B =5π6.答案:5π6三、解答题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ). (1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状. (1)证明:因为a 2=b (b +c ),即a 2=b 2+bc , 所以在△ABC 中,由余弦定理可得, cos B =a 2+c 2-b 22bc =c 2+bc 2ac=b +c 2a =a 22ab =a 2b =sin A2sin B, 所以sin A =sin2B ,∴A =2B 或A +2B =π,而当A +2B =π时有B =C 即b =c ,代回已知得a =2b ,此时a 2=b 2+c 2,故A =90°,而B =C =45°也即A =2B .故A =2B .(2)解:因为a =3b ,所以ab =3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b 2=32所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.8.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解:(1)设x 1、x 2为方程ax 2-2c 2-b 2x -b =0的两根,则x 1+x 2=2c 2-b 2a,x 1·x 2=-b a. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =4(c 2-b 2)a 2+4b a =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab =ab 2ab =12,又∵C ∈(0°,180°),∴C =60°. (2)由S =12ab sin C =103,∴ab =40.①由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2×40×(1+12).∴a +b =13.又∵a >b ② ∴由①②,得a =8,b =5.[高考·模拟·预测]1.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1D .2∶1解析:cos2B +3cos(A +C )+2=2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴B=π3.∴c sin C =b sin B =332=2.故选D. 答案:D2.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:1sin30°=3sin C ,∴sin C =32.∴C =60°或120°. (1)当C =60°时,A =90°,∴BC =2,此时,S △ABC =32; (2)当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选D.答案:D3.在锐角△ABC 中,b =2,B =π3,sin2A +sin(A -C )-sin B =0,则△ABC 的面积为________.解析:sin2A +sin(A -C )-sin B =sin2A +sin(A -C )-sin(A +C )=sin2A -2sin C cos A =2cos A (sin A -sin C )=0,∵△ABC 是锐角三角形, ∴cos A ≠0.∴sin A =sin C ,即A =C . 又B =π3,∴△ABC 为正三角形.∴S =34×22= 3. 答案: 34.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12.由正弦定理得b =asin A ·sin B=2+62+64×12=2,故选A. 答案:A5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,AB sin C =BCsin A .于是AB =sin Csin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin ⎝⎛⎫2A -π4=sin2A cos π4-cos2A sin π4=210. [备选精题]6.已知函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =2,f (A )=32,求角C .解:(1)f (x )=2sin x 1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). 因为f (x )在x =π时取最小值. 所以sin(π+φ)=-1,故sin φ=1. 又0<φ<π,所以φ=π2.(2)由(1)知f (x )=sin ⎝⎛⎭⎫x +π2=cos x .因为f (A )=cos A =32,且A 为△ABC 的内角, 所以A =π6.由正弦定理得sin B =b sin A a =22.又b >a ,所以B =π4或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12,当B =3π4时,C =π-A -B =π-π6-3π4=π12.综上所述,C =7π12或C =π12.。

相关文档
最新文档