七年级数学上册 5.1 一元一次方程试题 (新版)浙教版
浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。
浙教版七年级上册数学第5章 一元一次方程 基础测试卷及答案

浙教版七年级上册数学第5章一元一次方程基础测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.若x=y,下列各式中:①x-3=y-3;②x+5=y+5;③x-8=y+8;④2x=x+y.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个2.已知a=b,下列应用等式性质错误的是()A. a+c=b+cB. a-c=b-cC. ac=bcD.3.方程的解是()A. 1B.C. –1D.4.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A. 23B. 51C. 65D. 755.方程=1变形正确的是()A. B.C. D.6.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为().A. x=-x+4B. x=-x+(-4)C. x=-x-(-4)D. x-(-x)=47.某同学在解关于x的方程时,误将看作,得到方程的解为,则a 的值为A. 3B.C. 2D. 18.如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A. a<c<bB. a<b<cC. c<b<aD. b<a<c9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A. 甲B. 乙C. 丙D. 一样10.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A. -8B. 8C. ﹣8或8D. 不存在11.已知方程2x+k=6的解为正整数,則k所能取的正整数值为()A. 1B. 2或3C. 3D. 2或412.一套仪器由1个A部件和3个B部件构成,1立方米钢材可做40个A部件或240个B部件,现要用6立方米钢材制作这种仪器,设应用x立方米钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为()A. B.C. D.二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.在① ;② ;③ ;④ 中,等式有________,方程有________.(填入式子的序号)14.方程3(2x﹣1)=3x的解是________.15.三个连续奇数的和是15,那么其中最大的奇数是________.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.某品牌电脑进价为5 000元,按照定价的9折销售时,获利760元,则此电脑的定价为________元.18.如图的号码是由12为数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于12,则x的值为________.9 x ﹣2三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(10分)解下列方程:(1)4 +3=2( -1)+1 (2)(3)4x﹣2(x+0.5)=17 (4).20.(6分)根据问题,设未知数,列出方程:(1)环形跑道一周长400m,沿跑道跑多少周,路程为3000m?(2)一个长方形的周长是20厘米,长比宽多2厘米,求这个长方形的宽.21.(8分)小明解方程 + 1 = 时,由于粗心大意,在去分母时,方程左边的 1 没有乘 10,由此求得的解为 x=4,试求 a 的值,并求出方程正确的解.(分)某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间)豪华(元/间)三人间160 400双人间140 300旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?23.(10分)某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?24.(10分)一个长方形如图所示,恰好分成六个正方形。
浙教版2022年七年级上册第5章《一元一次方程》单元检测题(含解析)

浙教版2022年七年级上册第5章《一元一次方程》单元检测题满分100分一、选择题(共30分)1.下列说法中正确的是( )A .含有未知数的式子叫方程B .能够成为等式的式子叫方程C .方程就是等式,等式就是方程D .方程就是含有未知数的等式 2.下列方程是一元一次方程的是( )A .3412x x +=-B .2210x x +-=C .235x y -=D .132x x -= 3.下列方程中,解为2x =-的是( )A .22x x -=B .3121x x +=-C .313x x -=+D .322x x +=--4.运用等式性质进行的变形,正确的是( )A .如果33a b =,那么a b =B .如果a b =,那么a b c c= C .如果a b =,那么a c b c +=-D .如果23a a =,那么3a = 5.方程3141136x x --=-去分母后,正确的是( ) A .2(31)1(41)x x -=-- B .2(31)641x x -=-- C .2(31)6(41)x x -=-- D .31141x x -=-+6.一只蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,则蜗牛的起始位置所表示的数是( )A .5B .1-或5C .0或5-D .1或5 7.在解关于x 的方程2235x x a ++=-时,小颖在去分母的过程中,右边的“2-”漏乘了公分母15,因而求得方程的解为4x =,则方程正确的解是( )A .10x =-B .16x =C .203x =D .4x =8.一个两位数十位数字与个位数字的和是7,把这个两位数加上45,结果恰好等于个位与十位数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .619.如图,在11月的日历表中用框数器“”框出3,5,11,17,19五个数,它们的和为55,若将 “”在图中换个位置框出五个数,则它们的和可能是( )A .40B .88C .107D .11010.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( )A .20B .6C .4D .2 二、填空题(共18分)11.若方程()1230a a x --+=是关于x 的一元一次方程,则a 的值是_________.12.等式4152y y -=-移项,得到________.(不用求解)13.若8313x x ++-=,则x =___________.14.甲、乙两个足球队连续进打对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜___________场.15.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________. 16.规定一种新的运算:*2a b a b =--,求211*132x x -+=的解是 _____. 三、解答题(共52分)17.(6分)解方程 (1)()3836x +-= (2)1124x x -=--.18.(6分)解方程:(1)123(2)47x x --=+ (2)0.4320.20.5x x +--=19.(6分)一套仪器由2个A 部件和5个B 部件构成,用1m 3钢材可做40个A 部件或200个B 部件,现要用63m 钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,恰好能使这种仪器刚好配套?20.(6分)甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?21.(9分)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”(1)若“立信方程”211x +=的解也是关于x 的方程()123x m --=的解,则=m ____________;(2)若关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解,求n 的值.(3)关于x 的方程9314x kx -=+是“立信方程”,直接写出符合要求的正整数k 的值.22.(9分)某中学组织学生参加文艺汇演,如果单租45座客车若干辆,且每辆刚好坐满;如果单租60座客车,可少租一辆,且空15个座位.已知45座客车租金为每辆250元,60座客车租金为每辆300元,试问:(1)求参加文艺汇演的学生总人数是多少?(2)如果单租,哪种客车省钱?(3)如果同时租用两种客车分别租多少辆最省钱?-表示a与b之差的绝对值,实际上也可理解为a与b两数在数轴上所对应的两点之23.(10分)探究与发现:a bx-的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.间的距离.如3(1)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且20AB=,则数轴上点B表示的数;x-=,则x=.(2)若82(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀t t>秒.求当t为多少秒时?A,P两点之间的距离为2;速运动,设运动时间为()0(4)数轴上还有一点C所对应的数为30,动点P和Q同时从点O和点B出发分别以每秒5个单位长度和每秒10个单位长度的速度向C点运动,点Q到达C点后,再立即以同样的速度返回,点P到达点C后,运动停止.设运动t t>秒.问当t为多少秒时?P,Q之间的距离为4.时间为()0参考答案1.D【分析】根据方程的定义结合选项选出正确答案即可.【详解】A 、1x +含有未知数,但不是方程,A 选项错误;B 、213+=是等式,但不是方程,B 选项错误;C 、213+=是等式,但不是方程,C 选项错误;D 、方程就是含有未知数的等式,D 选项正确;故选:D .【点睛】主要考查了方程的定义,解题的关键是掌握方程的定义:含未知数的等式叫方程.2.A【分析】根据一元一次方程的定义,逐个判断即可.【详解】解:A 、符合一元一次方程的定义,故A 正确;B 、未知数的最高次数是2次,不是一元一次方程,故B 错误;C 、是二元一次方程,故C 错误;D 、分母中含有未知数,是分式方程,故D 错误.故选:A .【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.3.B【分析】根据方程解的定义,将方程的解代入方程的左边与右边,求代数式的值,验证方程左右两边的值是否相等即可.【详解】解:当2x =-,方程左边=22426x -=--=-,方程右边=-2,左边≠右边,故解为2x =-的不是选项A ; 当2x =-,方程左边=,()31321615x +=⨯-+=-+=-,方程右边=21415x -=--=-,左边=右边,故解为2x =-是选项B ;当2x =-,方程左边=()313217x -=⨯--=-,方程右边=3231x +=-+=,左边≠右边,故解为2x =-的不是选项C ; 当2x =-,方程左边=()32322624x +=⨯-+=-+=-,方程右边=()2220x =--=---=-2,左边≠右边,故解为2x =-的不是选项D ;故选择B .【点睛】考查方程的解,代数式的值,掌握方程的解;使方程左右两边值相等的未知数的值是方程的解是解题关键.4.A【分析】根据等式的基本性质,逐项判断即可求解.【详解】解:A 、如果33a b =,那么a b =,故本选项正确,符合题意; B 、如果a b =,当0c ≠时,那么a b c c =,故本选项错误,不符合题意; C 、如果a b =,那么a c b c +=+,故本选项错误,不符合题意;D 、如果23a a =,那么3a =或0,故本选项错误,不符合题意;故选:A【点睛】主要考查了等式的性质:等式的左、右两边同时加上或减去同一个数,等式仍然成立;等式的左、右两边同时乘上或除以同一个数(0除外),等式仍然成立.5.C【分析】方程两边乘以最小公倍数6,化简后即可作出判断.【详解】方程两边乘以最小公倍数6,得:3141616636x x --⨯=⨯-⨯, 即2(31)6(41)x x -=--;故选:C .【点睛】考查了解一元一次方程的去分母,注意去分母时,不要漏乘了右边的1,还有去分母后,分子若是多项式,则应把分子放到括号里.6.D【分析】设蜗牛的起始位置所表示的数为x ,根据题意可得632x -+=±,然后求解即可.【详解】解:设蜗牛的起始位置所表示的数为x ,蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,∴632x -+=±, 5x ∴=或1x =故选:D .【点睛】此题考查了数轴上的点所表示的数、绝对值的意义与一元一次方程的应用,熟练掌握点在数轴上移动时所表示的数的变化规律列出方程是解答此题的关键.7.A【分析】先根据小颖解方程的过程求出a 的值,然后正确求出原方程的解即可.【详解】解:由题意得()()5232x x a +=+-的解为4x =,∴()()542342a ⨯+=+-, 解得203a =, ∴2023235x x ++=-,去分母得:()20523303x x ⎛⎫+=+- ⎪⎝⎭, 去括号得:51032030x x +=+-,移项得:53203010x x -=--,合并得:220x =-,解得:10x =-,故选A .【点睛】主要考查了解一元一次方程,正确理解题意是解题的关键.8.A【分析】先设这个两位数的十位数字和个位数字分别为x ,7-x ,则这个两位数为10x+7-x=9x+7,对调后的两位数为10(7-x )+x=70-9x ,根据题意列出方程9x+7+45=70-9x ,解这个方程,求出这个两位数.【详解】解:设十位数字为x ,则个位数字为7-x ,由题意得:10x+7-x+45=10(7-x )+x ,解得:x=1,所以个位数为:7-x=7-1=6,答:这个两位数这16.故选:A .【点睛】此题主要考查了一元一次方程的应用,属于数字问题,培养学生用方程解决问题的能力.9.D【分析】设正中间的数为x ,则x 为整数,再求得这5个数的和为5x ,令5x 的值分别为40、88、107、110,分别列方程求出x 的值并进行检验,即可得到符合题意的答案.【详解】解:设正中间的数为x ,则x 为整数,这5个数的和为:86685x x x x x x +-+-++++=,当540x =时,得8x =,∴80x -=,∴8x =不符合题意;当588x =时,得885x =,不符合题意; 当5107x =时,得1075x =,不符合题意; 当5110x =时,得22x =,符合题意;∴它们的和可能是110,故选:D .【点睛】考查一元一次方程的解法、列一元一次方程解应用题等知识,设正中间的数为x ,求得五个数的和是5x 并分类讨论是解题的关键.10.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:∴534x kx -=+,∴57x kx -=,即()57k x -=,当50k -≠时, ∴75x k=-, ∴关于x 的方程534x kx -=+有整数解,k 为整数,∴51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =,∴()4621220++-+=,∴满足条件的所有整数k 的和为20.故选A .【点睛】考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解的关键. 11.2-【分析】根据一元一次方程的定义列式求解即可.【详解】解:由题意得11a -=且20a -≠,解得2a =-.故答案为:2-.【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,象这样的方程叫做一元一次方程,熟练掌握定义是解答的关键.12.4251y y +=+【分析】利用等式的性质将方程移项即可.【详解】解:等式4152y y -=-,移项得:4251y y +=+,故答案为:4251y y +=+.【点睛】此题考查了解一元一次方程,熟练掌握等式的性质是解的关键.13.9-或4【分析】根据绝对值的性质进行分类讨论即可求解.【详解】解:当∴8x <-时, ∴8313x x ++-=,∴8313x x --+-=,解得:9x =-;∴83x -≤≤时, ∴8313x x ++-=,∴8313x x ++-=,即1113=,不符合题意;∴当3x >时, ∴8313x x ++-=,∴8313x x ++-=,解得:4x =,∴x 的值为9-或4,故答案为:9-或4.【点睛】主要考查了解绝对值方程,解一元一次方程,掌握绝对值的性质是解题的关键.14.6【分析】设甲胜了x 场,则平了()10x -场,根据“共赛10场,甲队保持不败,得22分”列出方程并解答.【详解】解:设甲队胜了x 场,由题意得:()31022x x +-=,解得6x =,答:甲队胜了6场,故答案为:6.【点睛】考查了一元一次方程的应用,解答的关键是明确题意,找出等量关系,列出方程.15.245++=x x x【分析】设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意,列出方程,即可求解.【详解】解:设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意得:245++=x x x .故答案为:245++=x x x【点睛】主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.16.57x = 【分析】已知等式利用题中的新定义化简,计算即可求出解. 【详解】解:根据题中的新定义化简得:2112132x x -+--=, 去分母得:()()12221316x x ---+=,去括号得:1242336x x -+--=,移项合并得:75x -=-, 解得:57x =. 故答案为:57x =. 【点睛】主要考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解的关键. 17.(1)5x =- (2)12x =-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)按照去分母、移项、合并同类项、系数化为1的步骤解方程即可.【详解】(1)解:()3836x +-=去括号得,32436x +-=,移项得,36243x =-+,合并同类项得,315x =-,系数化为1得,5x =-(2)1124x x -=-- 去分母得,2144x x -=--,移项得,2441x x +=-+,合并同类项得,63=-x ,系数化为1得,12x =- 【点睛】此题考查了一元一次方程,熟练掌握一元一次方程的解法是解题的关键.18.(1)117x =(2)2x =-【分析】(1)展开、移项、合并同类项、再将x 系数化为1;(2)先利用分数的基本性质把分母化为整数,再去分母,再合并同类项,再求解.【详解】(1)解:123(2)47x x --=+去括号得,123647x x -+=+,移项得,347126x x --=--,合并同类项得,711x -=-,系数化1得,117x =(2)0.4320.20.5x x +--= 原方程变形得,5221162x x +--=, 去分母得,()52262x x +--=,去括号得,52262x x +-+=,移项得,52226x x -=--,合并同类项得,36x =-,系数化1得,2x =-【点睛】考查了一元一次方程求解,解题的关键是熟练掌握解一元一次方程的步骤.19.应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【分析】设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,然后根据等量关系列出方程,求解即可.【详解】解:设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,根据题意得,5×40x =2×200(6-x )解得x =46-x =2.答:应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.甲还要4个小时后可完成任务.【分析】先求出甲乙合作6小时完成的工作量为1162012⎛⎫+⨯ ⎪⎝⎭,设甲还要x 个小时后可完成任务,则完成的工作量为120x ,由前后完成的工作量之和为1为等量关系建立方程求出其解即可. 【详解】解:设甲还要x 个小时后可完成任务,根据题意,得:11161202012x ⎛⎫++⨯= ⎪⎝⎭, 解得:=4x .答:甲还要4个小时后可完成任务.【点睛】考查了列一元一次方程解工程问题的运用题的运用,工作总量=工作效率×工作时间的运用,在解答时根据各部分工作量之和=工作总量建立方程是关键.21.(1)1(2)5n =(3)8,10,26【分析】(1)求出211x +=的解,将之代入()123x m --=求出m 值即可.(2)将2340x x +-=转化为234x x += 代入26230x x n +--=即可求处n 的值.(3)先求9314x kx -=+解的表达式,然后利用“立信方程”的解都是整数的定义找出正整数解即可.(1)解:∴211x +=∴x = 0把x = 0代入()123x m --=得12(0)3m --= ,即123m +=解得:m = 1(2)解:∴2340x x +-=∴234x x +=∴222(3)268x x x x +=+=由题意可知,关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解.将2268x x +=代入26230x x n +--=得830n --=,解得n = 5(3)解:解关于x 的方程9314x kx -=+得,()1799x k k=≠- 当9k -取1,1- ,17,17-时,即k 取8,10,-8,26时,x 的值为整数.∴符合要求的正整数k 的值为8,10,26.【点睛】主要考查一元一次方程的解的应用,能根据立信方程的定义是解的关键.22.(1)学生225人(2)单租60座的客车省钱(3)租1辆45座的客车和3辆60座的客车最省钱【分析】(1)设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),计算求出x 的值,进而可得45x 的值;(2)分别计算单租不同客车的租金,然后进行比较即可;(3)设租x 辆45座客车,y 辆60座客车,则4560225x y +=,根据x y ,均为正整数进行求解即可.解:设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),解得:5x =.则455225⨯=(人).∴参加文艺汇演的学生总人数为225人.(2)解:由题意知,单租45座客车,租金为52501250⨯=元;单租60座客车,租金为43001200⨯=元;∴12501200>,∴单租60座客车更省钱.(3)解:设租x 辆45座客车,y 辆60座客车,则4560225x y +=,∴x y ,均为正整数,解得:13x y ==,,∴租1辆45座客车,3辆60座客车最省钱.【点睛】考查了一元一次方程的应用.解题的关键在于理解题意,列出正确的方程.23.(1)12-(2)6或10(3)当t 为65秒时,A ,P 两点之间的距离为2 (4)当t 为85或165或6815或7615秒时,P ,Q 之间的距离为4【分析】(1)利用数轴上两点间的距离公式,找出点B 表示的数;(2)利用绝对值的定义(绝对值是指一个数在数轴上所对应点到原点的距离),去掉绝对值符号;(3)找准等量关系,正确列出一元一次方程;(4)分0215t <<,2156t ≤<或6t ≥三种情况,找出关于t 的一元一次方程. 【详解】(1)数轴上点B 表示的数82012=-=-.故答案为:12-;(2)∴82x -=,∴82x -=-或82x -=,故答案为:6或10.(3)当运动时间为t 秒时,点P 表示的数为5t , 依题意得:582t -=,即582t -=-或582t -=, 解得:65t =或2t =. 答:当t 为65秒或2秒时,A ,P 两点之间的距离为2. (4)P 到达C 点时间:()30056-÷=(秒),Q 到达C 点时间:212301510--÷=(秒). 当0215t <<时,P 、Q 都没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为1012t -,依题意得:()510124t t --=,即1254t -=或5124t -=, 解得:85t =或165t =; 当2156t ≤<时,Q 已经到达C 点,P 没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()510724t t --+=,即72154t -=或15724t -=, 解得:6815t =或7615t =; 当6t ≥时,P 、Q 都已经到达C 点点P 表示的数为30,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()3010724t --+=, 解得:235t =(不合题意,舍去). 答:当 t 为85或165或6815或7615秒时,P ,Q 之间的距离为 4. 【点睛】考查了一元一次方程的应用、数轴以及绝对值,解题的关键是运用分类讨论的思想去解决问题.。
七年级数学上册阶段许7第5章一元一次方程5-1-5-3作业新版浙教版

第5章 一元一次方程(5.1-5.3)
一、选择题(每小题 4 分,共 32 分)
1.下列四个方程中,属于一元一次方程是( D )
A.x+y=1 B.x2-2x+1=0
C.2x =1
D.x=0
2.以x=-3为解的方程是( D )
A.3x-7=2
B.5x-2=-x
C.6x+8=26 D.x+7=4x+16
3.设 x,y,c 是有理数,下列选项错误的是
( C)
A.若 x=y,则 x+c=y+c B.若 x=y,则 xc=yc C.若 x=y,则xc =yc D.若2xc =3yc ,则 3x=2y
4.一个长方形的长比宽多2 cm,若把它的 长、宽分别增加2 cm后,面积则增加24 cm2, 求长和宽,若设宽为x cm,则列出的正确方 程为( D )
(4)0x.8 -0.160-.030.2x =1. 解:x=7965 .
14.(8 分)若代数式12 x+2(54 x+1)比 18 +x 大 10,求 x.
解:x=13.
15.(10 分)小明的练习册上有一道方程题,
其中一个数字被墨水污染了,成为3x+ 5 1 =1-
x+● 5
.他翻看书后的答案,知道了这个方程的
12.若方程9x-3=kx+14有正整数解,则 k的整数值为_____8_或__-__8___.
三、解答题(48分) 13.(20分)解下列方程: (1)-(1.5y+1)+2y=2(1.5y-3); 解:y=2;
(2)3x-[1-2(2+3x)]=12; 解:x=1;
(3)x-x-4 1 =1-3-2 x ; 解:x=-3;
7.将方程2x-2 1 -x-3 1 =1 去分母得到方程
浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。
浙教版七年级数学上册单元检测卷一元一次方程(5.1_5.3)(含答案)

浙教版七年级数学上册单元检测卷一元一次方程(5.1-5.3)(含答案)一、选择题(每小题3分,共30分)1.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球,7个篮球共需( )A. 4m +7nB. 28mnC. 7m +4nD. ll mn2.下列方程是一元一次方程的是( )A .23x y +=B .19x x -= C .62x x += D .21x x =- 3.下列方程中,解不是2x =的是( )A .24x =B .35x x -=C .62x x -+=D .1(1)0.52x -= 4. 下列等式的变形中,错误的是( )A.由x + 7= 5得x +7-7 = 5-7 ;B.由3x -2 =2x + 1得x = 3C.由4-3x = 4x -3得4+3 = 4x +3xD.由-2x = 3得x = 32-5.方程3x +2(1-x )=4的解是( )A .x =52B .x =56 C .x =2 D .x =1 6.解方程2631x x =+-,去分母,得( ) A .B .C . C . 7. 若关于x 的方程03=-m x 的解是m x -=4,则m 的值是( )A .4B .3C .2D .18.把方程17.012.04.01=--+x x 中的分母化为整数,结果应为( ). A. 1010.21147x x +--= B. 1010210147x x +--= C.101211047x x +--= D. 552101027x x +--=9.已知方程a x x -=+483的解满足02=-x ,则a 的值为( ) A .227- B .281- C .141- D .4 10.如图所示的运算程序中,若开始输入的x 值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2019次输出的结果为( )A.6B.3C. 202062 D. 201962二、填空题(每小题3分,共24分)11. 比a 的3倍大5的数是9,列出方程式是__________________12. 若x =2是方程2x -a =7的解,那么a =____ ___13.当m =_______时,代数式353+m 的值是2. 14.某个一元一次方程满足两个条件:①未知数的系数是2;②方程的解为3.请写出一个满足上述条件的方程:__________.18. 一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 .三、解答题(共46分)19.(本题8分)解下列方程:(1)238x x -=-+; (2)112322y y -=- 20. (本题8分)解方程2x -6115+x =l+342-x21.(本题10分) 如图,点A 、B 分别表示的数是6、-12,M 、N 、P 为数轴上三个动点,它们同时都向右运动.点M 从点A 出发,速度为每秒2个单位长度,点N 从点B 出发,速度为点M 的3倍,点P 从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M 、N 、P 分别表示的数是 、 、 ;(2)求运动多少秒时,点P 到点M 、N 的距离相等?22.(本题10分)小明做作业时,不小心将方程中⊗+=--34122x x ,的一个常数⊗污染了看不清楚,怎么办呢? (1)小红告诉他该方程的解是x =3,那么这个常数应是多少呢?(2)小芳告诉他该方程的解是负数,并且这个常数⊗是负整数,请你试求该方程的解.23.(本题10分)如图,用三个正方形①、2个正方形②、1个正方形③和缺了一个角的长方形④,恰好拼成一个大长方形.根据图示数据,解答下列问题:(1)用含x 的代数式表示:a =__________cm ,b =__________cm ;(2)若大长方形的周长为64,求x 的值.附加题24..阅读下面的解题过程:解方程:|x +3|=2.解:当x +3≥0时,原方程可化成为x +3=2解得x =-1,经检验x =-1是方程的解;当x +3<0,原方程可化为,-(x +3)=2解得x =-5,经检验x =-5是方程的解.所以原方程的解是x =-1,x =-5.解答下面的两个问题:(1)解方程:|3x -2|-4=0;(2)探究:当值a 为何值时,方程|x -2|=a , ①无解;②只有一个解;③有两个解.答案:一、选择题:ACCDC BBBAB二、填空题:11. 953=+a12. -313.31 14. 512=-x 等15. 816. 617. 1 18. -9三、解答题 19.(1)8=x (2)35-=y 20.)42(26)115(3-+=+-x x x ,23-=x 21.(1)12,6,3(2)1或29 22.常数为﹣;(2)设这个常数为m ,﹣1=+m3(x ﹣2)﹣6=8x+6m解得x=﹣,解是负数,m是负整数,m的值只有﹣2和﹣1,23.(1)由图象可得:a=(x+2)cm,b=(2x+2)cm;故答案为:(x+2),(2x+2);(2)大长方形的周长为:2(3x+2a+a+b)=2(3x+3a+b)=2[3x+3(x+2)+2x+2]=2(8x+8)=16(x+1).当16(x+1)=64时,x=3(2) a小于0,无解;a=0,一个解;a大于0,两个解。
七年级数学上册51一元一次方程试题(新版)浙教版

5.1 一元一次方程1.以下方程是一元一次方程的是(D )A .2x +y =0B .7x +5=7(x +1)C .x (x +3)+2=0D .2x =12.小华带x 元去买甜点,假设全买红豆汤圆,那么刚好可买30杯;假设全买豆花,那么刚好可买40杯.豆花每杯比红豆汤圆廉价10元,依题意可列出方程为(A )A.x 30=x 40+10B.x 40=x 30+10C.x 40=x +1030D.x +1040=x 303.以下方程中,解为x =-1的是(D )A .2x =x +1B .2x -1=0C .x =2x -1D .x =2x +14.假设关于x 的方程mx m -2-m +3=0是一元一次方程,那么这个方程的解为(A )A .x =0B .x =3C .x =-3D .x =25.以下方程中,解不是x =2的是(B )A.14x -2=-32B .3x -5=x C.12(x -1)=0.5 D .2x +3=7 6.2x -3与9互为相反数,用方程来表示就是(B )A .2x -3=9B .2x -3=-9C .2x +3=9D .2x +3=-97.写出一个一元一次方程,使它的解为-5,未知数的系数为45,那么方程为__45x =-4(答案不唯一)__.8.假设关于x 的方程-5x 1-a +1=6是一元一次方程,那么a =__0__.9.假设(a +1)2+|b -2|=0,那么a -b =__-3__.10.检验括号中的数是否为方程的解.(1)3x -4=8(x =3,x =4);(2)12y +3=7(y =8,y =4). 【解】 (1)x =4是方程的解,x =3不是方程的解.(2)y =8是方程的解,y =4不是方程的解.11.根据条件列方程:(1)某数的5倍比这个数大3;(2)某数的相反数比这个数大6;(3)爸爸和儿子的年龄分别是40岁和13岁,请问:几年后,爸爸的年龄是儿子年龄的2倍【解】 (1)设该数为x ,由题意,得5x =x +3.(2)设该数为x ,由题意,得-x =x +6.(3)设经过x 年后,爸爸的年龄是儿子年龄的2倍,由题意,得40+x =2(13+x ).12.假设关于x 的方程mxm +5+m -3=0是一元一次方程,那么这个方程的解为(C )A .x =1B .x =-1C .x =-74D .x =-4 【解】 由题意,得m +5=1,∴m =-4.∴该方程为-4x -7=0,解得x =-74.应选C. 13.关于x 的方程ax +b =0,当方程的解是x =0时,a ,b 应满足的条件是(C )A .a =0,b =0B .a =0,b ≠0C .a ≠0,b =0D .a ≠0,b ≠014.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,那么以下方程:①x 5-8=x 6+2;②5(y -8)=6(y +2);③5(y +8)=6(y -2);④x 5+8=x 6-2.其中正确的选项是(A )A .①③ B.②④C .①② D.③④15.3个连续偶数的和为90,设中间的偶数为x ,那么可列出方程为__(x -2)+x +(x +2)=90__.16.假设方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,那么代数式|m -1|的值为(A )A .0B .2C .0或2D .-2【解】 原方程可化为(m 2-1)x 2-(m +1)x +2=0.∵该方程是关于x 的一元一次方程,∴m 2-1=0且-(m +1)≠0,∴m =1,∴|m -1|=0.应选A.。
七年级数学上册第5章一元一次方程检测卷作业新版浙教版

21.(10 分)对于有理数 a,b,规定一种新运算: a*b=ab+2b. (1)计 算 : ( - 4)*5= ________, 4*[(- 3)*2]= ________; (2)已知方程(x-4)*1 =x-4,求 x 的值.
2
解:(1)∵a*b=ab+2b∴(-4)*5=(-4)×5+2
上车,若每辆客车乘 62 人,则最后一辆车空了 8
个座位.在下列四个方程①60m+10=62m-8;②
60m+10=62m+8;③n-10 =n+8 ;④n+10 =
60
62
60
n-8 中,其中正确的有( 62
A
)
A.①③ B.②④ C.①④ D.②③
10.甲、乙两人完成一项工作,甲先做了 3 天, 然后乙加入合作完成剩下的工作,设工作总量为 1,
三、解答题(共 66 分) 17.(6 分)解方程: (1)3(x-2)+6x=5;
解:去括号得:3x-6+6x=5,移项合并得:9x =11,解得:x=11 ;
9
(2)1.5x-2 -0.5=5x .
3
3
解:去分母得:3x-4-3=10x,移项合并得:-
7x=7,解得:x=-1.
18.(8 分)当 x 为何值时,代数式x+1 比代数式 2
工作进度如下表:则完成这项工作共需( A )
天数 第3天 工作进度
第5天
A.9 天 B.10 天 C.11 天 D.12 天
二、填空题(每小题 4 分,共 24 分) 11.已知关于 x 的方程(|m|-2)x2+(m+2)x-9
=0 为一元一次方程,则 m=__2____.
12.已知 x=1 是方程 x+2m=7 的解,则 m=__3__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 一元一次方程
1.下列方程是一元一次方程的是(D )
A .2x +y =0
B .7x +5=7(x +1)
C .x (x +3)+2=0
D .2x =1
2.小华带x 元去买甜点,若全买红豆汤圆,则刚好可买30杯;若全买豆花,则刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出方程为(A )
A.x 30=x 40+10
B.x 40=x 30+10
C.x 40=x +1030
D.x +1040=x 30
3.下列方程中,解为x =-1的是(D )
A .2x =x +1
B .2x -1=0
C .x =2x -1
D .x =2x +1
4.若关于x 的方程mx m -2-m +3=0是一元一次方程,则这个方程的解为(A )
A .x =0
B .x =3
C .x =-3
D .x =2
5.下列方程中,解不是x =2的是(B )
A.14x -2=-32
B .3x -5=x C.12
(x -1)=0.5 D .2x +3=7 6.2x -3与9互为相反数,用方程来表示就是(B )
A .2x -3=9
B .2x -3=-9
C .2x +3=9
D .2x +3=-9
7.写出一个一元一次方程,使它的解为-5,未知数的系数为45,则方程为__45
x =-4(答案不唯一)__.
8.若关于x 的方程-5x 1-a +1=6是一元一次方程,则a =__0__.
9.若(a +1)2+|b -2|=0,则a -b =__-3__.
10.检验括号中的数是否为方程的解.
(1)3x -4=8(x =3,x =4);
(2)12
y +3=7(y =8,y =4). 【解】 (1)x =4是方程的解,x =3不是方程的解.
(2)y =8是方程的解,y =4不是方程的解.
11.根据条件列方程:
(1)某数的5倍比这个数大3;
(2)某数的相反数比这个数大6;
(3)爸爸和儿子的年龄分别是40岁和13岁,请问:几年后,爸爸的年龄是儿子年龄的2倍?
【解】 (1)设该数为x ,由题意,得5x =x +3.
(2)设该数为x ,由题意,得-x =x +6.
(3)设经过x 年后,爸爸的年龄是儿子年龄的2倍,由题意,得40+x =2(13+x ).
12.若关于x 的方程mx m +5+m -3=0是一元一次方程,则这个方程的解为(C )
A .x =1
B .x =-1
C .x =-74
D .x =-4 【解】 由题意,得m +5=1,∴m =-4.
∴该方程为-4x -7=0,解得x =-74
.故选C. 13.已知关于x 的方程ax +b =0,当方程的解是x =0时,a ,b 应满足的条件是(C )
A .a =0,b =0
B .a =0,b ≠0
C .a ≠0,b =0
D .a ≠0,b ≠0
14.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程:①x 5-8=x 6+2;②5(y -8)=6(y +2);③5(y +8)=6(y -2);④x 5+8=x 6
-2.其中正确的是(A )
A .①③ B.②④
C .①② D.③④
15.已知3个连续偶数的和为90,设中间的偶数为x ,则可列出方程为__(x -2)+x +(x +
2)=90__.
16.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为(A )
A .0
B .2
C .0或2
D .-2
【解】 原方程可化为(m 2-1)x 2-(m +1)x +2=0.
∵该方程是关于x 的一元一次方程,
∴m 2-1=0且-(m +1)≠0,
∴m =1,∴|m -1|=0.
故选A.。