浙教版七年级数学上册第四章代数式练习题

合集下载

浙教版七年级上册数学第4章 代数式含答案

浙教版七年级上册数学第4章 代数式含答案

浙教版七年级上册数学第4章代数式含答案一、单选题(共15题,共计45分)1、下列各组单项式中,是同类项一组的是()A.3x 2y与3xy 2B.2abc与﹣3acC.2xy与2abD.﹣2xy与3yx2、如图,阴影部分的面积是()A. xyB. xyC.5xyD.2xy3、下列计算正确的是()A.(﹣2a 2)4=8a 8B.a 3+a=a 4C.a 5÷a 2=a 3D.(a+b)2=a 2+b 24、下列式子中,abc;7-2x3;9;-m;-ab3;;ab-mn;1-0.11mp;.单项式有()A.3个B.4个C.5个D.6个5、a的5倍与b的和的平方用代数式表示为()A.(5a+b)2B.5a+b 2C.5a 2+b 2D.5(a+b)26、如果|a|=-a,那么a可以是 ( )A.+(+5)B.-(-5)C.D.7、一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A.12+10 b+aB.12000+10 b+aC.100(12-a-b)+10 b+aD.112+10 b+a8、下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2 的积的代数式为2ab C.代数式的意义是:a与4的差除b的商 D. 是二项式,它的一次项系数是9、核桃的单价为m元/kg,栗子的单价为n元/kg,买2kg核桃和3kg栗子共需()A.( m+ n)元B.(3 m+2 n)元C.(2 m+3 n)元D.5( m+ n)元10、若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6B.0C.2D.611、某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( )A.0.92aB.1.12aC.D.12、下列运算正确的是()A.3a+2a=5a 2B.x 2-4=(x+2)(x-2)C.(x+1)2=x 2+1D.(2a)3=6a 313、如果|a+2|+(b-1)2=0,那么(a+b)2007的值是()A.-2007B.2007C.-1D.114、计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a 6b 3B.﹣18a 6b 3C.17a 6b 3D.18a 6b 315、下列说法正确的有()①﹣(﹣3)的相反数是﹣3②近似数1.900×105精确到百位③代数式|x+2|﹣3的最小值是0④两个六次多项式的和一定是六次多项式.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、“x的2倍与5的和”用代数式表示为________.17、化简:﹣[﹣(+5)]= ________18、若x﹣y=2,xy=3,则x2y﹣xy2=________.19、请写出一个单项式,同时满足下列条件:①含有字母x、y;②系数是负整数;③次数是4,你写的单项式为________.20、代数式与是同类项,则a+b=________。

浙教版七年级数学上册第四章代数式单元测试题(含解析)

浙教版七年级数学上册第四章代数式单元测试题(含解析)

第四章代数式单元测试题一、单选题(共10题;共30分)1、某厂去年产值是x万元,今年比去年增产40%,今年的产值是()A、40%x万元B、(1+40%)x万元C、万元D、1+40%x万元2、下列各式符合代数式书写规范的是( )A、 B、a×3 C、3x-1个 D、2n3、下列语句中错误的是()A、数字0也是单项式B、xy是二次单项式C、单项式-a的系数与次数都是1D、- 的系数是—4、下列各式中,不是代数式的是()A、x—yB、xC、2x﹣1=6D、05、若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是(A、10B、1C、—4D、—86、已知代数式m2+m+1=0,那么代数式2018﹣2m2﹣2m的值是()A、2016B、-2016C、2020D、—20207、已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A、m=1,n=4B、m=1,n=3C、m=2,n=4D、m=2,n=38、为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品的价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为()A、元B、元C、40%元D、60%元9、如果A和B都是5次多项式,则下面说法正确的是()A、A﹣B一定是多项式B、A﹣B是次数不低于5的整式C、A+B一定是单项式D、A+B是次数不高于5的整式10、下列各式中运算错误的是()A、5x﹣2x=3xB、5ab﹣5ba=0C、4x2y﹣5xy2=﹣x2yD、3x2+2x2=5x2二、填空题(共10题;共36分)11、若a﹣2b=3,则9﹣2a+4b的值为 ________12、一个三位数,个位上的数为,十位上的数比个位上的数大2,百位上的数是个位上数的5倍,则这个三位数是________,当时,它是________13、若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________14、单项式﹣的系数是________ ,次数是________15、若3a3b n c2﹣5a m b4c2所得的差是单项式,则这个单项式为________16、若a x﹣3b3与﹣3ab2y﹣1是同类项,则x y=________.17、观察下列单项式:x,﹣3x2, 5x3,﹣7x4, 9x5,…按此规律,可以得到第2016个单项式是________.18、按照如图所示的操作步骤,若输入的值为3,则输出的值为________.19、当x=2017时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为________.20、﹣的系数为________.三、解答题(共5题;共35分)21、某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2。

七年级数学上册《第四章 代数式》练习题及答案-浙教版

七年级数学上册《第四章 代数式》练习题及答案-浙教版

七年级数学上册《第四章代数式》练习题及答案-浙教版一、选择题1.列式表示“比m的平方的3倍大1的数”是( )A.(3m)2+1B.3m2+1C.3(m+1)2D.(3m+1)22.原产量n吨,增产30%之后的产量应为( ).A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨3.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%4.如果一个三位数的百位数字是a,十位数字是b,个位数字是c,那么这个三位数是( )A.abcB.a+b+cC.100a+10b+cD.100c+10b+a5.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( )A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米6.有12米长的木料,要做成一个如图的窗框。

如果假设窗框横档的长度为x米,那么窗框的面积是( )A.x(6﹣x)米2B.x(12﹣x)米2C.x(12﹣3x)米2D.12x(12﹣3x)米7.对于a2+b2解释不恰当的是( )A.a,b两数的平方和B.边长分别是a,b的两正方形的面积和C.买a支单价为a元的铅笔和买b支单价为b元的铅笔所花的总钱数D.边长是a+b的正方形的面积8.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为( )A.6a+πaB.12aC.15a+πaD.6a二、填空题9.一个两位数个位为a,十位数字为b,这个两位数为.10.某影剧院第一排有30个座位,以后的每一排都比前一排多4个座位,则第n排的座位是 .11.学校图书馆购进一批图书,每册定价m元,另加10%的邮费,若购n册,则需付金额为元,当m=10.5元时,n=10册时,则需付金额为元.12.如图所示,阴影部分的面积表示为.13.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.14.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b……按照这个规律写下去,第9个数是____.三、解答题15.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的14与y的差的14;(3)甲数a与乙数b的差除以甲、乙两数的积.16.学校多功能报告厅共有20排座位,其中第一排有a个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?17.某商店有一种商品每件成本a元,原来按成本增加b元定价出售,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品的总售价为多少元?(2)销售100件这种商品共盈利了多少元?18.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).19.一个四边形的周长是48 cm,已知第一条边长是a cm,第二条边比第一条边的2倍还长3 cm,第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.20.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r米,广场的长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π).参考答案1.B2.B3.B.4.C5.C.6.D7.D8.A.9.答案为:10b+a .10.答案为:4n +26.11.答案为:(1+10%)mn ,115.5.12.答案为:ab ﹣14a 2π.13.答案为:1.08a. 14.答案为:13a +21b.15.解:(1); (2)14(14x ﹣y); (3)(a ﹣b)÷ab.16.解:(1)最后一排的座位数(单位:个)为a +2×19=a +38.(2)由题意,得a +38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.17.解:(1)根据题意,得40(a +b)+60(a +b)×80%=88a +88b(元), 则销售100件这种商品的总售价为(88a +88b)元.(2)根据题意,得88a +88b-100a=-12a +88b(元),则销售100件这种商品共盈利了(-12a +88b)元.18.解:(1)l=2πr +2a.(2)S=πr 2+2ar.(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m)S=π×52+2×8×5=25π+80≈158.5(m2).19.解:(1)由题意,得第四条边长为48-a-(2a+3)-(a+2a+3)=(42-6a)cm.(2)不能.理由如下:当a=7时,42-6a=0所以第四条边长为0 cm,不符合实际意义所以不能得到四边形.20.解:(1)广场空地的面积为(ab-πr2)平方米;)(2)当a=500,b=200,r=20时,代入(1)得到的式子得500×200-π×202=100000-400π(平方米).答:广场空地的面积为(100000-400π)平方米.。

浙教版七年级(上)数学 第4章 代数式 单元测试卷(含答案)

浙教版七年级(上)数学  第4章 代数式 单元测试卷(含答案)

七年级上册数学第4章代数式单元测试卷一.选择题(共10小题)1.在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有()A.2个B.3个C.4个D.5个2.单项式﹣5a2b2c的系数和次数分别是()A.﹣5,5B.﹣5,4C.5,5D.5,43.如果单项式3x2m y n+1与x2y m+3是同类项,则m、n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3 4.若单项式xy m+3与x n﹣1y2的和仍然是一个单项式,则m、n的值是()A.m=﹣1,n=1B.m=﹣1,n=2C.m=﹣2,n=2D.m=﹣2,n=1 5.某商店对店内的一种商品进行双重优惠促销﹣﹣将原价先降低m元,然后在此基础上再打五折.按该方案促销后,若此商品的售价为n元,则它的原价是()A.(2n+m)元B.(2n﹣m)元C.(0.5n+m)元D.(0.5n﹣m)元6.按下面的程序计算,若开始输入的值x为正整数,输出结果86,那么满足条件的x的值有()A.4个B.3个C.2个D.1个7.下列说法正确的个数有()①单项式﹣的系数是﹣,次数是3;②xy2的系数是0;③﹣a表示负数;④﹣x2y+2xy2是三次二项式;⑤是单项式.A.1个B.2个C.3个D.4个8.已知x=﹣,那么4(x2﹣x+1)﹣3(2x2﹣x+1)的值为()A.﹣2B.2C.4D.﹣49.下列各式符合代数式书写规范的是()A.m×6B.C.x﹣7元D.2xy210.下列各式中,去括号正确的是()A.﹣(7a+1)=﹣7a+1B.﹣(﹣7a﹣1)=7a+1C.﹣(7a﹣1)=﹣7a﹣1D.﹣(﹣7a﹣1)=﹣7a+1二.填空题11.若多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,则m=.12.若单项式x2y m与单项式2x n+1y2是同类项,则m+n =.13.﹣2的相反数是;﹣2的倒数是;﹣的系数是.14.如图是一数值转换机,若输入的x为﹣4,y为6,则输出的结果为.15.若a+b=2,则﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=.16.多项式﹣8ab2+3a2b与多项式3a2b﹣2ab2的差为.17.已知多项式(M﹣1)x4﹣x N+2x﹣5是三次三项式,则(M+1)N=.18.某个体户将标价为每件m元的服装按8折售出,则每件服装实际售价为元.19.去括号:x﹣(y﹣z)=.20.下列各式中,整式有(只需填入相应的序号).①;②;③;④a三.解答题21.如图是数值转换机示意图.(1)写出输出结果(用含x的代数式表示);(2)填写下表;x的值…﹣3﹣2﹣10123…输……出值(3)输出结果的值有什么特征?写出一个你的发现.22.合并同类项:5m+2n﹣m﹣3n.23.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.24.计算:(1)﹣2+(﹣8)﹣(﹣24);(2)﹣22+[(﹣4)2﹣(1﹣3)×3];(3)2xy+1﹣(3xy+2);(4)3(a2﹣ab)﹣2(﹣2a2+2ab).25.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b=1,且a、b满足|a+2|+|c ﹣7|=0.(1)a=,c=;(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,AC=(用含t的代数式表示).(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.27.在七年级我们学习了许多概念,如A:有理数;B:无理数;C:负无理数;D:实数;E:整式;F:整数;G:分数;H:多项式.请根据下面的关系图将以上各概念前的字母填在相应的横线上.参考答案与试题解析一.选择题1.解:在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有:﹣1,m,x3y2,x﹣3y共4个.故选:C.2.解:单项式﹣5a2b2c的系数是﹣5,次数是2+2+1=5,故选:A.3.解:∵3x2m y n+1与x2y m+3是同类项,∴2m=2,n+1=m+3,∴m=1,n=3,故选:B.4.解:由题意,得n﹣1=1,m+3=2解得m=﹣1,n=2,故选:B.5.解:∵售价为n元,∴打折前价格为n÷0.5=2n(元),∴原价为(2n+m)元,故选:A.6.解:设输入x,则直接输出4x﹣2,且4x﹣2>0,那么就有(1)4x﹣2=86,解得:x=22.若不是直接输出4x﹣2>0,那么就有:①4x﹣2=22,解得:x=6;(2)4x﹣2=6,解得:x=2;(3)4x﹣2=2,解得:x=1,(4)4x﹣2=1,解得:x=,∵x为正整数,∴符合条件的一共有4个数,分别是22,6,2,1,7.解:单项式﹣的系数是﹣,次数是4,所以①错误;xy2的系数是1,所以②错误;﹣a可以表示正数,也可以负数,还可能为0,所以③错误;﹣x2y+2xy2是三次二项式,所以④正确;是单项式,所以⑤正确.故选:B.8.解:4(x2﹣x+1)﹣3(2x2﹣x+1)=4x2﹣4x+4﹣6x2+3x﹣3=﹣2x2﹣x+1,当x=﹣时,原式=﹣2×(﹣)2﹣(﹣)+1=﹣2,故选:A.9.解:A、不符合书写要求,应为6m,故此选项不符合题意;B、符合书写要求,故此选项符合题意;C、不符合书写要求,应为(x﹣7)元,故此选项不符合题意;D、不符合书写要求,应为xy2,故此选项不符合题意.故选:B.10.解:A、﹣(7a+1)=﹣7a﹣1,故本选项错误;B、﹣(﹣7a﹣1)=7a+1,故本选项正确;C、﹣(7a﹣1)=﹣7a+1,故本选项错误;D、﹣(﹣7a﹣1)=7a+1,故本选项错误;故选:B.二.填空题11.解:5x2﹣(m+2)xy+7y2﹣2xy﹣5=5x2﹣(m+2+2)xy+7y2﹣5=5x2﹣(m+4)xy+7y2﹣5,∵多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,解得,m=﹣4,故答案为:﹣4.12.解:∵x2y m与单项式2x n+1y2是同类项,∴m=2,n+1=2,∴n=1,∴m+n=3,故答案为:3.13.解:﹣2的相反数是2;﹣2的倒数是﹣;﹣的系数是﹣,故答案为:2;﹣;﹣.14.解:根据题意可得,x=﹣4,y=6,可得﹣4×2+6÷3=﹣8+2=﹣6.故答案为:﹣6.15.解:﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=﹣2a2b﹣ab2+2a2b+2a+2b+ab2=2(a+b),∵a+b=2,∴原式=4.故答案为:4.16.解:由题意可知:﹣8ab2+3a2b﹣(3a2b﹣2ab2)=﹣8ab2+3a2b﹣3a2b+2ab2=﹣6ab2,故答案为:﹣6ab2.17.解:由题意可知:N=3,M﹣1=0,∴M=1,N=3,∴原式=23=8,故答案为:818.解:∵8折=0.8,∴每件服装实际售价为:0.8×m=0.8m(元).故答案为:0.8m.19.解:x﹣(y﹣z)=x﹣y+z.故答案为:x﹣y+z.20.解:①是整式;②中分母含有未知数,则不是整式;③是整式;④是整式.故答案为:①③④.三.解答题21.解:(1)由题意可知,输出结果为:3x2+2;(2)当x=﹣3时,3x2+2=3×(﹣3)2+2=29,当x=﹣2时,3x2+2=3×(﹣2)2+2=14,当x=﹣1时,3x2+2=3×(﹣1)2+2=5,当x=0时,3x2+2=2,当x=1时,3x2+2=3×12+2=5,当x=2时,3x2+2=3×22+2=14,当x=3时,3x2+2=3×32+2=29,故答案为:29;14;5;2;5;14;29;(3)由(2)可知,互为相反数的x的输出结果相等.22.解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.23.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.24.解:(1)原式=﹣10+24=14;(2)原式=﹣4+(16+6)=﹣4+22=18;(3)原式=2xy+1﹣3xy﹣2=﹣xy﹣1;(4)原式=3a2﹣3ab+4a2﹣4ab=7a2﹣7ab.25.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7.故答案为:﹣2,7;(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4;②AC=t+4t+9=5t+9;故答案为:5t+9;(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.26.解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0;(2)因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x﹣1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.27.解:如图所示,。

浙教版七年级上册数学第4章 代数式 含答案

浙教版七年级上册数学第4章 代数式 含答案

浙教版七年级上册数学第4章代数式含答案一、单选题(共15题,共计45分)1、单项式的次数是( )A.2B.3C.5D.62、已知x-3y=-3,则5-x+3y为()A.0B.2C.5D.83、单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5B.﹣3,6C.﹣3π,7D.﹣3π,64、如果单项式3x2m y n+1与x2y m+3是同类项,则m、n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n =﹣35、已知2x3y2与-x3m y2是同类项,则式子4m-24的值是()A.20B.-20C.28D.-286、化简(-2x2+3x-2)-(-x2+2)正确的是()A.-x 2+3xB.-x 2+3x-4C.-3x 2-3x-4D.-3x 2+3x7、代数式-2x, 0, 3x-y, , 中,单项式的个数有( )A.1个B.2 个C.3个D.4个8、下列运算中,正确的是()A.x 2+2x 2=3x 4B.x 2·x 3=x 6C.(x 2)3=x 6D.(xy)3=xy 39、单项式-5ab的系数是()A.5B.C.2D.10、下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2 的积的代数式为2ab C.代数式的意义是:a与4的差除b的商 D. 是二项式,它的一次项系数是11、设,且,则()A.673B.C.D.67412、已知实数满足,则代数式的值是()A.7B.-1C.7或-1D.-5或313、二次三项式ax2+bx+c 为x的一次单项式的条件是()A.a≠0,b=0,c=0B.a=0,b≠0,c=0C.a≠0,b=0,c≠0 D.a=0,b=0,c≠014、若与是同类项,则的值是()A.0B.1C.2D.315、若长方形长是2a+3b,宽为a+b,则其周长是()A.6a+8bB.12a+16bC.3a+8bD.6a+4b二、填空题(共10题,共计30分)16、有理数a,b,c在数轴上的位置如图所示,则|a﹣c|﹣|a﹣b|﹣|b﹣c|=________.17、已知a,b互为相反数,并且3a-2b=5,则a2+b2=________.18、已知3a﹣2b=2,则9a﹣6b=________ .19、如果两个关于的多项式与相等,则________.20、如果+(2y+1)2=0,那么xy=________21、将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=________.22、若3a2﹣a﹣2=0,则5+2a﹣6a2=________23、代数式3x2﹣4x+6的值为12,则x2﹣x+6=________24、如果3x2y n与是同类项,那么m=________,n=________.25、已知是二元一次方程mx+ny=-2的一个解,则-2m+n的值等于________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.28、计算:(1)(﹣x)•x2•(﹣x)6(2)(y4)2+(y2)3•y2.29、先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.30、a与b互为相反数,c与d互为倒数,x的倒数是它本身,求的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、B5、B6、B7、B9、B10、D11、B12、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

第4章 代数式数学七年级上册-单元测试卷-浙教版(含答案)

第4章 代数式数学七年级上册-单元测试卷-浙教版(含答案)

第4章代数式数学七年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A. 的次数是B. 的系数是C. 是二次二项式D. 的一次项是2、下列说法中,正确的有()①的系数是;②-22ab2的次数是5;③多项式mn2+2mn-3n-1的次数是3④a-b和都是整式.A.1个B.2个C.3个D.4个3、当时,成立,则( )A.0B.1C.99.25D.99.754、若x2+mx+4是一个完全平方公式,则m的值为()A.2B.2或﹣2C.4D.4或﹣45、下列各式中去括号正确的是()A.x 2-(2x-y+2)=x 2-2x-y+2B.-(mn-1)+(m-n)=-mn-1+m-n C.ab-(-ab+5)=-5 D.x-(5x-3y)+(2x-y)=-2x+2y6、下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个7、把多项式x3-xy2+x2y+x4-3按x的降幂排列是( )A.x 4+x 3+x 2y-3-xy 2B.-xy 2+x 2y+x 4+x 3-3C.-3-xy 2+x 2y+x3+x 4 D.x 4+x 3+x 2y-xy 2-38、已知多项式,下面说法正确的是()A.它是四次五项式B.三次项式C.常数项是5D.一次项系数是19、下列运算中,正确的是().A. B. C. D.10、已知a﹣b=3,c+d=2,则(a+d)﹣(b﹣c)的值是()A.﹣1B.1C.﹣5D.511、下列各对单项式是同类项的是( )A.-x 3y 2与3y 2x 3B.-x与yC.3与3aD.3ab 2与a 2b12、下列运算正确的是A. B. C. D.13、下列运算中,正确的是()A.﹣(m+n)=n﹣mB.(m 3n 2)3=m 6n 5C.m 3•m 2=m 5D.n 3÷n 3=n14、下列计算,正确的是A. B. C. D.15、疫情期间因口罩需求急速增长导致生产口罩的原材料价格不断上涨,甲、乙、丙三家药店对同一款售价相同的口罩提价销售:甲药店提价20%销售;乙商药店提价15%后再提价5%;丙药店提价10%后再提价10%.若顾客想要购买该口罩,选择最划算的商店是()A.甲B.乙C.丙D.都一样二、填空题(共10题,共计30分)16、已知a,b,c是三角形的三条边,则化简|a﹣b+c|﹣|c﹣a﹣b|=________.17、请你写出一个只含有字母m、n,且它的系数为-2、次数为3的单项式________。

(精练)浙教版七年级上册数学第4章 代数式含答案

(精练)浙教版七年级上册数学第4章 代数式含答案

浙教版七年级上册数学第4章代数式含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列运算正确的是()A.a 5+a 5=a 10B.a 3•a 3=a 9C.(3a 3)3=9a 9D.a 12÷a 3=a 93、多边形的相邻两边互相垂直,则这个多边形的周长为()A.a+bB.2a+bC.2(a+b)D.2b+a4、下列各式中,与x2y是同类项的是( )A. B. C. D.5、下列各式中运算正确的是( ).A.4m-m=3B.a 2b-ab 2=0C.2a 3-3a 3=D.xy-2xy=3xy6、下列说法正确的个数是()①有理数包括整数和分数;②几个有理数相乘,若负因数的个数是偶数个,则积为正数;③ 是按的降幂排列的;④单项式的系数是,次数是;⑤ 是四次四项式;⑥一个整式不是单项式就是多项式.A. B. C. D.7、实数m在数轴上的位置如图所示,则化简的结果为( )A.-1B.1-2mC.1D.2m-18、下列各式计算中,正确的是()A.2a+2=4aB.﹣2x 2+4x 2=2x 2C.x+x=x 2D.2a+3b=5ab9、下列计算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 5D.a 5÷a 2=a 310、计算﹣a2+3a2的结果为()A.﹣2a 2B.2a 2C.4a 2D.﹣4a 211、下列合并同类项中,错误的个数有( )( 1 )3x-2y=1;(2) + = ;(3)3mn-3mn=0;(4)4a -5a = ab;(5)3 +4 =7A.4个B.3个C.2个D.1个12、去括号后的值是()A. B. C. D.13、下列各组式子中,为同类项的是()A.5x 2y 与﹣2xy 2B.4x与4x 2C.﹣3xy与yxD.6x 3y 4与﹣6x 3z 414、下列运算正确的是A.(a 2)3=a 6B.a 2+a=a 5C.(x﹣y)2=x 2﹣y 2D.15、代数式:,﹣xy,,0,x+2y,中,属于单项式的个数为()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知:x-2y=-4,则代数式(2y-x)2-2x+4y-1的值为________.17、单项式系数和次数之和是________.18、如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为________m2.19、已知与是同类项,则等于________.20、当a=﹣2时,求a2(2a+1)=________.21、如图,已知五角星的面积为5,正方形的面积为4,图中对应阴影部分的面积分别是S1, S2,则S1-S2的值为________.22、已知a2m b n+6和3a3n﹣3b2m+n是同类项,则m n=________23、若多项式x2+2x的值为5,则多项式2x2+4x+7的值为________.24、如果x2﹣x﹣1=0,那么代数式2x2﹣2x﹣3的值是________.25、若a、b皆为非零的有理数,已知的最大值为p,最小值为q,则代数式6p+2q2=________.三、解答题(共5题,共计25分)26、先化简,再求值:x-2(x- y2)+(- ),其中x=-2,y= .27、先化简,再求值:,其中a=-1,b=2.28、已知(10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成(ax+b)(7x+c),其中a、b、c均为整数,求a+b+c的值29、若关于x的多项式-5x3+(2m-1)x2+(3n-2)x-1不含二次项和一次项,求m,n的值.30、某市的出租车的起步价为5元(行驶不超过3千米),以后每增加1千米加价1.5元.某人乘出租车行驶x千米(x>3)的路程,所需费用是多少?若A,B两地相距10千米,该人身上仅有15元钱,他想从A地出发去B地,则乘出租车费用够吗?为什么?参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、C6、A7、B8、B9、D10、B11、B12、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

浙教版七年级上册数学第4章 代数式含答案(备考题)

浙教版七年级上册数学第4章 代数式含答案(备考题)

浙教版七年级上册数学第4章代数式含答案一、单选题(共15题,共计45分)1、-a-(b-c)去括号应为()A.-a+b+cB.-a+b-cC.-a-b-cD.-a-b+c2、下列计算错误的是()A. B. C. D.3、化简(a3﹣3a2+5b)+(5a2﹣6ab)﹣(a2﹣5ab+7b),当a=﹣1,b=﹣2时,求值得()A.4B.48C.0D.24、下列各式:(1)1 a2b;(2)a·3;(3)20%x;(4)-b÷c;(5);(6)m-3℃,其中符合代数式书写要求的有()A.5个B.4个C.3个D.2个5、若一个多项式的每一项的次数都相等,则称该多项式为齐次多项式。

例如只是三次齐次多项式。

若是齐次多项式,则等于()A.1B.C.99D.6、有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了m个人,则第二轮被传染上流感的人数是()A. B. C. D.7、下列合并同类项的结果正确的是( )A.a+3a=3a 2B.3a-a=2C.3a+b=3abD.a 2-3a 2=-2a 28、下列运算中,正确的是()A. B. C. D.9、若(x2+px+q)(x-2)展开后不含x的一次项,则p与q的关系是( )A.p=2qB.q=2pC.p+2q=0D.q+2p=010、可以写成().A. B. C. D.11、下列运算正确的是A. B. C. D.12、下列计算正确的是()A.a 2+a 2=a 4B.a 6÷a 2=a 4C.(a 2)3=a 5D.(a﹣b)2=a 2﹣b 213、下列式子:2a2b,3xy﹣2y2,,0,﹣m,,,-5其中是单项式的有()A.2个B.3个C.4个D.5个14、下列说法中正确的是()A. 是单项式B.﹣πx的系数为﹣1C.﹣5不是单项式D.﹣5a 2b的次数是315、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=________.17、根据图示的程序计算函数值,若输入的x的值为,则输出的结果为________18、若2x3y n+1与﹣5x m﹣2y2是同类项,则m+n=________.19、一个多项式A减去多项式2x2+5x﹣3,马虎同学将2x2+5x﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x﹣7,那么这个多项式A是________.20、若单项式x m+1y2与-2x3y n-1的和仍是单项式,则(m-n)n的值为________.21、已知代数式的值为,则的值是________.22、若单项式和是同类项,则的值为________.23、单项式的系数是________.24、单项式﹣的系数是________.多项式1+2xy–3xy2是________次________项式.25、计算:(8a2b﹣4ab2)÷(﹣ab)=________.三、解答题(共5题,共计25分)26、先化简,再求值:2(a2b+ ab2)﹣(4a2b+2ab2)﹣3(ab2﹣a2b),其中a=1,b=﹣1.27、如果互为相反数,互为倒数,x的绝对值是是数轴负半轴上到原点的距离为的数,求代数式的值.28、从某个整式减去多项式ab﹣2bc+3ac,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.29、已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?30、化简:(1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)}.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、D5、B6、C7、D8、B9、B10、C11、D12、B13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章代数式
类型之一 代数式
1.2017·庆元期末下列式子23a +b ,S =12ab ,5,m ,8+y ,m +3=2,23≥57
中,代数式有( )
A .6个
B .5个
C .4个
D .3个
2.如图4-X -1,小明想把一张长为a ,宽为b 的长方形硬纸片做成一个无盖的长方体盒子,于是他在长方形纸片的四个角各剪去一个边长为x 的小正方形.
(1)用代数式表示纸片剩余部分的周长:________;
(2)当a =4,b =2时,纸片剩余部分的周长是______.
图4-X -1
类型之二 整式的概念
3. 下列说法正确的是( )
A. 整式就是多项式
B. π是单项式
C. x 4+2x 3是七次二项式
D. 3x -15
是单项式 4.若5a 3b n 与-52
a m
b 2是同类项,则mn 的值为( ) A .3 B .4 C .5 D .6
5. -2x 3y 23
的系数是________,次数是________. 类型之三 整式的加减运算
6.下列式子正确的是( )
A.7ab-7ba=0 B.-5x3+2x3=-3
C.3x+4y=7xy D.4x2y-4xy2=0
7.计算-3(x-2y)+4(x-2y)的结果是()
A.x-2y B.x+2y
C.-x-2y D.-x+2y
8.某天数学课上,老师讲了整式的加减运算,小红回到家后拿出自己的课堂笔记,认真复习老师在课堂上所讲的内容,她突然发现一道题目(2a2+3ab-b2)-(-3a2+ab+5b2)=5a2□-6b2,空着的地方看不清了,请问所缺的内容是()
A.+2ab B.+3ab C.+4ab D.-ab
9.化简:
(1)5x-(2x-3y);
(2)-2a+(3a-1)-(a-5);
(3)-3a+[2b-(a+b)].
10. 已知M =3x 2+2x -1,N =-x 2+3x -2,求M -2N .
11.先化简,再求值:
(1)2(2x -3y )-(3x +2y +1),其中x =2,y =-12

(2)43a -⎝⎛⎭⎫2a -23a 2-⎝⎛⎭⎫-23a +13a 2,其中a =-14
.
12.有这样一道题“当a =2,b =-2时,求多项式 3a 3b 3- 12
a 2
b +b -⎝⎛⎭⎫4a 3b 3-14a 2b -b 2+⎝
⎛⎭⎫a 3b 3+14a 2b -2b 2+3的值.”小明做题时把a =2错抄成a =-2,小王没抄错题,但他们得出的结果却是一样的,你知道这是怎么回事吗?
13.有一道题目是一个多项式减去(x 2+14x -6),小强误当成了加法计算,结果得到2x 2-x +3,那么正确的结果应该是多少?
类型之四整式加减的应用
14.在如图4-X-2所示的2018年1月份的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()
图4-X-2
A.27 B.51 C.65 D.72
15. 把四张形状、大小完全相同的小长方形卡片(如图4-X-3①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()
图4-X-3
A.4m cm B.4n cm
C.2(m+n)cm D.4(m-n)cm
类型之五数学活动
16. 用黑、白两种正六边形瓷砖按图4-X-4所示规律拼成若干个图案,则第n个图案中有白色瓷砖________块.
图4-X-4
17.从2开始,连续的偶数相加,它们的和的情况如图4-X-5:
图4-X-5
(1)当n个从2开始的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(2)按此规律计算:2+4+6+ (100)
1.C [解析] 根据代数式的定义,23
a +
b ,8+y 是代数式,单独的一个数或一个字母也是代数式,那么5,m 也是代数式,而S =12ab ,m +3=2,23≥57
中,含有等号或不等号,因此它们都不是代数式.
2.(1)2a +2b (2)12
[解析] (1)由题意可得,剩余部分的周长是:2(a -2x )+2(b -2x )+8x =2a +2b ;(2)把a =4,b =2代入(1)中所列出的代数式即可.
3.B 4.D 5.-23
5 6.A 7.A 8.A [解析] 左边去括号,合并同类项得5a 2+2ab -6b 2,再和右边对照一下可得结果.
9.解:(1)原式=5x -2x +3y =3x +3y .
(2)原式=-2a +3a -1-a +5=4.
(3)原式=-3a +2b -a -b =-4a +b .
10.解:∵M =3x 2+2x -1,N =-x 2+3x -2,
∴M -2N
=(3x 2+2x -1)-2(-x 2+3x -2)
=3x 2+2x -1+2x 2-6x +4
=5x 2-4x +3.
11.解:(1)原式=4x -6y -3x -2y -1=x -8y -1.
当x =2,y =-12
时,原式=2-8×⎝⎛⎭⎫-12-1=2+4-1=5. (2)原式=43a -2a +23a 2+23a -13a 2=13
a 2. 当a =-14时,原式=13×⎝⎛⎭⎫-142=13×116=148
. 12.[解析] 先通过去括号、合并同类项对多项式进行化简,然后代入a ,b 的值进行计算.
解:3a 3b 3-12
a 2
b +b -⎝⎛⎭⎫4a 3b 3-14a 2b -b 2+⎝⎛⎭⎫a 3b 3+14a 2b -2b 2+3=(3-4+1)a 3b 3+
⎝⎛⎭
⎫-12+14+14a 2b +(1-2)b 2+b +3=b -b 2+3. 因为化简后的式子不含有字母a ,所以代数式的值与a 的取值无关,故小明与小王得出的结果是一样的.
13.解:这个多项式为(2x 2-x +3)-(x 2+14x -6)=x 2-15x +9,
(x 2-15x +9)-(x 2+14x -6)=-29x +15,
所以正确的结果应该是-29x +15.
14.C [解析] 设第一个数为x ,则第二个数为x +7,第三个数为x +14,
故三个数的和为x +x +7+x +14=3x +21.
令3x +21=27,得x =2;令3x +21=51,得x =10;令3x +21=65,得x =443
;令3x +21=72,得x =17,
故任意圈出一竖列上相邻的三个数的和不可能是65.
15.B [解析] 设小长方形的长为a ,宽为b ,所以上面阴影的周长为2(n -a +m -a ),下面阴影的周长为2(m -2b +n -2b ),所以总周长为4m +4n -4(a +2b ).又因为a +2b =m ,所以4m +4n -4(a +2b )=4n .
16.(4n +2) [解析] 第1个图案白色瓷砖的块数是6,第2个图案中白色瓷砖的块数是10=6+4,第3个图案中白色瓷砖的块数是14=6+4×2,…,以此类推,第n 个图案中白色瓷砖的块数是6+4(n -1)=4n +2.
17.[解析] (1)由表中数据可知,从2开始连续的正偶数的和,正好等于加数的个数×(加数的个数+1),由此得出S 与n 之间的关系;(2)直接利用公式,代入公式计算即可.
解:(1)S =n (n +1).
(2)2+4+6+…+100=50×51=2550.。

相关文档
最新文档